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7.1. Introduction 

The chapter is organized as follows.  The theme of the chapter  is introduced  

in Section 7.1 . Section 7.2  presents a background on large-scale climate and its 

impacts on the western US hydroclimatology. The  basins  studied and data used are 

described in sections 7.3  and 7.4 , respectively. This is followed by the climate 

diagnostics and identification of predictors for forecasting spring streamflows in 

section 7.5. Section  7.6  presents the development of the statistical ensemble 

forecating model using the identified predictors. Model application and validation are 
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described in section  7.7 . The last section  (7.8) concludes the presntation with a 

summary and discussion of the results. 

 Water resources worldwide are faced with increasing stresses due to climate 

variability, population growth and competing growth – more so in the Western US 

(e.g., Hamlet et al., 2002; Piechota et al., 2001). Careful planning is necessary to meet 

demands on water quality, volume, timing, and flow rates. This is particularly true in 

the western US, where it is estimated that 44% of renewable water supplies are 

consumed annually, as compared with 4% in the rest of the country (el-Ashry and 

Gibbons, 1988). Consequently, the forecast for the upcoming water year is crucial  to 

the water management planning process  involving system outputs such as crop 

production and the monetary value of hydropower production (e.g., Hamlet et al., 

2002), as well as the sustenance of aquatic species.  

 Majority of river basins in the western USA are snowmelt driven in that, snow 

accumulates in the winter and melts in the spring thus producing a peak in the 

streamflow. Therefore, it is intuitive to use winter snowpack as a predictor of the  

runoff in the following spring (Serreze et al., 1999). More recently, information about 

large-scale climate phenomena such as El Niño Southern Oscillation (ENSO) and the 

Pacific Decadal Oscillation (PDO) pattern has been added to the forecaster’s toolbox. 

The link between these large-scale phenomena and the hydroclimatology of the 

western US has been well documented in the literature (e.g. Gershunov, 1998).  Clark 

et al. (2001) showed that including large-scale climate information together with 

Snow Water Equivalent (SWE) improves the overall skill of the streamflow 

predictions in the western United States. Souza and Lall (2003) showed significant 



skills at longer lead times in forecasting streamflows in Cearra, Brazil using climate 

information from the Atlantic and Pacific oceans.  

 Typically, streamflow forecasts are issued by fitting a linear regression with 

SWE and sometimes with standard indices that describe the ENSO and PDO 

phenomena. The disadvantages with this approach are (i) the rela tionship is not 

always linear, (ii) the teleconnection patterns from ENSO and PDO though dominant 

on a large scale, often fail to provide forecast skill on the individual basin scale. This 

is so because the surface climate is sensitive to minor shifts in large-scale 

atmospheric patterns (e.g., Yarnal and Diaz, 1986), and (iii) inability to provide 

realistic ensemble forecasts and thus, the probability of exceedences of various 

thresholds useful for water resources management.  

 Evidently there is a need for a generalized framework for ensemble 

streamflow forecast that utilizes large-scale climate information. We propose such a 

framework in Fig. 7.1. In this, large-scale climate predictors are first identified via 

climate diagnostics. The identified predictors are then used in a nonparametric 

framework to generate ensemble of streamflow forecast. The ensembles can then be 

incorporated in a decision support system for water resources management. In this 

chapter we focus primarily on the climate diagnostics and ensemble forecast methods, 

and then demonstrate their utility on the Truckee/Carson River basin and Gunnison 

River basin, both located in the western USA. 

  



 7. 2. Large Scale Climate and Western US Hydroclimatology  

 The tropical ocean-atmospheric phenomenon in the Pacific identified as El 

Niño Southern Oscillation (ENSO) (e.g., Allan, et al., 1996) is known to impact the 

climate all over the world and, in particular, the Western US (e.g., Ropelewski and 

Halpert, 1986). The warmer sea surface temperatures and stronger convection in the 

tropical Pacific Ocean during El Niño events deepen the Aleutian Low in the North 

Pacific Ocean, amplify the northward branch of the tropospheric wave train over 

North America and strengthen the subtropical jet over the southwestern US  (e.g. 

Rasmussen, 1985). These circulation changes are associated with below-normal 

precipitation in the Pacific Northwest and above-normal precipitation in the desert 

Southwestern US (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992). 

Generally opposing signals are evident in La Niña events, but some non- linearities 

are present (Hoerling et al., 1997; Clark et al., 2001; Clark and Serreze, 2001). 

Decadal-scale fluctuations in SSTs and sea levels in the northern Pacific 

Ocean as manifested by the PDO (Mantua et al., 1997) provide a separate source of 

variability for the western US hydroclimate. Independence of PDO from ENSO is 

still in debate (Newman et al., 2003). Regardless, the influence of PDO and ENSO on 

North American hydroclimate variability has been well documented (e.g., Regonda et 

al., 2004a).   

 Incorporation of this climate information has been shown to improve forecasts 

of winter snowpack (McCabe and Dettinger, 2002) and streamflows in the western 

US (Clark et al., 2001, Hamlet et al., 2002) while increasing the lead-time of the 

forecasts. Use of climate information enables efficient management of water 



resources and provides socio-economic benefits (e.g., Pulwarty and Melis, 2001; 

Hamlet et al., 2002). 

 Often, however, the standard indices of these phenomena (e.g., NINO3, SOI, 

PDO index, etc.) are not good predictors of hydroclimate in every basin in the 

western US- even though these phenomena do impact the western US hydroclimate 

(as described earlier).  Furthermore, certain regions in the western US (e.g., basins in 

between the Pacific Northwest and the desert Southwest) can be impacted by both the 

northern and southern branches of the subtropical jet, potentially diminishing 

apparent connections to ENSO and PDO.  The Truckee and Carson basins are two 

such examples, hence, predictors other than the standard indices have to be developed 

for each basin. 

 

 7.3. Water Management Issues in the Basins Studied 

 Our motivation for the development of the ensemble streamflow approaches 

stems from the need to develop tools for efficient water management on two basins 

(i)Truckee/Carson River basins in Nevada (shown in  Fig. 7.2), western USA and (ii) 

Gunnison River basin, a tributary of Colorado River, also in the western USA that can 

be seen in Fig. 7.3.  On the Truckee/Carson basin flows at two gaging stations are to 

be forecast, while in the Gunnison streamflow forecasts are required at six sites 

simultaneously.  In both the basins, for that matter over much of the western USA, the 

bulk of the annual streamflow arrives during spring (April – July) from the melting of 

snowpack accumulated over winter. This is evident in the climatology of precipitation 



and streamflows for the Truckee River (Fig. 7.4) – similar feature is observed on the 

Gunnison as well. 

 

7.3.1 Truckee/Carson 

 The Truckee and Carson Rivers originate high in the California Sierra Nevada 

Mountains and flow northeastward down through the semiarid desert of western 

Nevada. The Truckee River originates as outflow from Lake Tahoe in California and 

terminates approximately 115 miles (185 km.) later in Pyramid Lake in Nevada. The 

Carson River has its headwaters approximately fifty miles (80 km) south of Lake 

Tahoe, runs almost parallel to the length of the Truckee River and terminates in the 

Carson Sink area. The areas of the basins are comparable and are approximately 3000 

sq. miles (7770 km2). The Bureau of Reclamation (BOR) Lahontan Basin area office 

manages operations on the Truckee and Carson Rivers and relies heavily on seasonal 

(i.e. spring) streamflow forecasts for planning and management. One of the key 

management issues is the interbasin transfer of water from the Truckee Basin to 

Lahontan Reservoir in the Carson Basin through the one-way Truckee Canal (Horton, 

1995). This transfer augments storage in Lahontan Reservoir for later use by the 

Newlands Project irrigation district and other water users. If managers divert too 

much water into the Truckee Canal, they leave insufficient flows in the Truckee River 

to support other water users, including endangered fish populations, along the last 

reach of the river. Yet, if managers divert too little water, farmers in the Newlands 

Project district will have insufficient water in storage to sustain their crops throughout 

the season. The multiple users with competing objectives coupled with limited canal 



capacity and the short water season require that managers use seasonal forecasts for 

planning and management. Recently implemented policies limit diversions through 

the Truckee Canal and require specific reservoir releases to aid in the protection of 

the endangered fish populations – adding further constraints to the reservoir 

operations and management. The accuracy of forecasts has become evermore 

important to the efficient management of the water-stressed Truckee and Carson 

River Basins.  

 The BOR currently implements forecasts of the spring runoff (April to July 

volume) into seasonal planning and basin management.  These forecasts are issued on 

the first of each month starting from January.  The January forecast affects flood 

control operations and is used to estimate the irrigation demand for the coming season 

and, thus, affects reservoir releases and diversions into the Truckee Canal. Updated 

forecasts in the ensuing months up to April 1st and throughout the runoff season 

continue to guide operations throughout the basin.  Current forecasting techniques use 

multiple linear regression analysis based on factors related to the existing snowpack 

and, hence, long- lead forecast skills are limited. Additionally, the current technique 

does not provide forecasts prior to January as the snowpack information is only 

partial. Thus, improvements to the spring forecasts, both in skill and in lead-time, are 

needed to strengthen planning and operations in the Truckee and Carson basins. 

 

7.3.2 Gunnison  

 The Gunnison River Basin (Fig. 7.3) resides largely in the South Western part 

of the state of Colorado and, is a major tributary of the Colorado River. It consists of 



six sub-basins, i.e., East-Taylor (760 sq.mi; 1968 km2), Upper Gunnison (2380 sq.mi; 

6164 km2), Tomichi (1090 sq.mi; 2823 km2), North Fork (959 sq.mi; 2484 km2), 

Lower Gunnison (1630 sq.mi; 4222 km2), and Uncompahange (1110 sq.mi; 2875 

km2). The basin has a drainage area of approximately 20,534 km2 and basin 

elevations are extremely variable, ranging from 1387 to 4359 m (McCabe, 1994). It 

contributes approximately 42% of the streamflow of the Colorado River at the 

Colorado-Utah Stateline (Ugland et al, 1990). Like Truckee/Carson, almost all of the 

annual flow in the basin occurs during spring (April-July) due to snowmelt from the 

higher elevations. The streamfows on the Gunnison impact municipal water supply, 

power generation and flow release for endangered species. Therefore, like on the 

Truckee/Carson skilful forecast of spring seasonal streamflows in the basin are key to 

improvement water management. 

 

 7. 4. Data  

The following data sets for the period 1949 – 2003 are used in the analysis: 

(i) Monthly natural streamflow data for Farad and Ft. Churchill gaging stations on the 

Truckee and Carson Rivers, respectively, obtained from USBR. Natural streamflows 

are computed based on inflows to the seven major storage reservoirs near the top of 

the basin before any significant depletion have been made (pers. comm., Jeff Rieker, 

2003). Spring seasonal (April – July) volume is computed from the monthly 

streamflows that are used in this study.  

(ii) Gunnison basin streamflows, at six locations (Fig. 7.3) are selected from the 

Hydro Climate Data Network (HCDN). This network, HCDN, was developed by 



USGS (http://water.usgs.gov) to analyze the climate impacts on the rivers and 

it has more than 1000 streamflow stations across the conterminous USA that is not 

affected by human activities (Slack and Landwehr, 1992).  

(iii) Monthly  SWE (Snow Water Equivalent) data obtained from the NRCS National 

Water and Climate Center website (http://www.wcc.nrcs.usda.gov). The SWE data is 

gathered from snow course and snotel stations in the upper Truckee Basin (17 

stations) and upper Carson Basin (7 stations). For Gunnison too we had thirteen SWE 

stations. Basin averages of SWE are calculated using the method employed by the 

NRCS:  the SWE depth from every station in the basin is summed and then divided 

by the sum of the long-term averages for each of the stations (pers. comm.,Tom 

Pagano, 2003).  

(iii) Monthly winter precipitation data for the California Sierra Nevada Mountains 

region. This is obtained from the U.S. climate division data set from the NOAA-

CIRES Climate Diagnostics Center (CDC) website (http:// www.cdc.noaa.gov).  

(iv) Monthly values of large-scale ocean atmospheric variables – Sea Surface 

Temperatures (SST), Geopotential heights (Z500, Z700), Sea Level Pressure (SLP), 

wind, etc., from NCEP/NCAR Re-analysis project (Kalnay et al., 1996) also obtained 

from the CDC website.  

 

7. 5. Climate Diagnostics and Predictor Selection 

    The first step in the forecasting framework is to identify large-scale climate 

predictors of spring streamflows in the basin. To this end, we first examined the 

relationship between SWE and spring runoff in the basins.  Next, we correlated spring 



streamflows with global climate variables from preceeding Fall and Winter seasons.  

We chose to examine variables from Fall and Winter because the state of the 

atmosphere during this time affects the position of the jet stream, and consequently, 

snow deposition and the resulting spring runoff.  Also, predictors from Fall and 

Winter allow for potential long lead forecasts. 

   

7.5.1 Truckee/Carson Basin 

 As expected, there is a high degree of correlation between winter SWE and 

spring runoff, particularly with April 1st SWE as it provides a more complete 

representation of the end of winter snowpack in the basins. Correlation values for 

Truckee spring streamflows are 0.80 and 0.9 with March 1st SWE and April 1st SWE, 

respectively, and 0.81 and 0.9, respectively, with the Carson flows. High correlations 

of streamflows with March 1st SWE offers the opportunity for at least a one month-

lead forecast.  January 1st SWE, however, does not correlate as well with spring 

streamflows (0.53 for the Truckee and 0.49 for the Carson) and, hence, provides less 

skill as a predictor of spring runoff. The snow information by January 1st is only 

partial and hence, the weak correlation with spring flows. 

 Spring streamflows in the Truckee and Carson basins are likely modulated by 

ENSO and PDO, but their standard indices of these phenomena did not show 

significant correlations with spring streamflows (0.22 for the NINO3, -0.13 for the 

PDO, and –0.21 for the SOI, for the Truckee; results are similar for the Carson).  

Thus, we correlated the spring streamflows with the standard ocean-atmospheric 

circulation fields (e.g., 500mb geopotential height fields, SSTs, SLPs, etc.) to 



investigate the large-scale climate link and potential predictors. 

 Correlation map of Carson River spring streamflows and the preceding winter 

SSTs and 500mb geopotential heights, henceforth, referred to as Z500, are shown in 

Fig.  7.5. Strong negative correlations (approximately -0.7) with Z500 in the region 

off the coast of Washington can be seen. The SSTs in the northern mid-Pacific Ocean 

exhibited a strong positive (about 0.5) correlation and to the east of this, a negative 

correlation. Similar, but slightly weaker correlation patterns were seen with preceding 

Fall (Sep – Nov) Z500 and SSTs (Grantz, 2003), suggesting that the physical 

mechanisms responsible for the correlations are persistent from Fall through Winter. 

These correlations offer hopes for a long- lead forecast of spring streamflows – at the 

least, they can provide significant information about the upcoming spring 

streamflows in Fall, before SWE data is available.  

 To understand the physical mechanisms driving the correlation patterns seen 

above, a composite analysis was performed. In this, average SST, wind and Z500 

patterns for high and low streamflow years were obtained to identify coherent regions 

with strong magnitudes of the variables. We chose years with streamflows exceeding 

the 90th percentile as “high” years and those below the 10th percentile as “low” years. 

Fig. 7.6 shows the composites of vector wind, Z500 and SST anomalies during the 

winter season preceding the high and low streamflow years. The winds in high 

streamflow years show a counterclockwise rotation around the low pressure region 

off the coast of Washington - the region of highest correlation seen in Fig. 7.5. This 

counterclockwise rotation brings southerly winds over the Trukee and Carson Basins. 

Southerly winds tend to be warm and moist, thus increasing the chances of enhanced 



winter snow and, consequently, higher streamflows in the following spring. The 

opposite pattern is seen during low streamflow years when anomalous northeasterlies 

tend to bring cold dry air and, consequently, less snow and decreased streamflows. 

The Z500 patterns and the vector wind anomalies in high and low streamflow years 

are consistent with each other. The SST patterns in high and low streamflow years 

(Fig. 7.5) are a direct response to the pressure and winds. The winds are generally 

stronger to the east of a low pressure region-- this increases the evaporative cooling 

and also increases upwelling of deep cold water to the surface. Together, they result 

in cooler than normal SSTs to the east of the low pressure region. The opposite is true 

on the west side of the low pressure region. Composite maps for the Fall season show 

similar patterns – indicating that the physical mechanisms are persistent. Results for 

the Truckee River streamflows are very similar (Grantz, 2003). 

 Thus, based on the correlation and composite analyses we developed 

predictors of the Truckee and Carson basins by averaging the ocean-atmospheric 

variables over the areas of highest correlation (e.g. as in Fig. 7.4). These areas were 

determined by visual inspection of the correlation maps. Specifically, the Z500 index 

was obtained as the average over the region 225°-235° E and 42°-46° N and the SST 

predictor index as the average over 175°-185° E and 42°-47° N. Time series of these 

indices were obtained to be used as predictors in the forecast model. 

  

7.5.2 Gunnison 

 In the Gunnison river basin we have streamflows from six locations (Fig. 7. 3) 

that are highly correlated with each other (correlation coefficients of 0.75 and higher). 



One option is to create a basin streamflow series by averaging the flows across the six 

locations. The other is to perform a Principal Component Analysis (PCA) on the 

streamflow data and retain the first principal component (PC), which is in essence the 

average of the six streamflows. In fact, the first principal component (PC1) is 

correlated 0.99 with the basin average streamflows. The PCA is briefly described in 

the context of ensemble forecast in the following section. 

 The first PC of spring flows is correlated with large-scale climate variables 

from preceding seasons to identify predictors. Fig. 7.7 shows the correlation map of 

PC1 with winter Geopotential height at 700mb (Z700) and SST.  A strong negatively 

correlated region of Z700 can be seen over the South Western US also, highly 

correlated regions of SSTs observed in the Central and Northern Pacific. We also 

correlated PC1 with other circulation variables such as, zonal and meridional winds 

(figures not shown). These correlation patterns were persistent in the preceding Fall 

season as well. To understand the physical mechanisms, composite maps of vector 

winds in the wet and dry years are shown in Fig. 7.8. The wet and dry years are 

defined as the years with PC values greater than the 90th and below the 10th 

percentile, respectively. Notice that a strong counter clock wise flow around the 

region with strong negative correlation with Z700 (Fig. 7.7a) for the wet years and 

vice-versa in the dry years. This implies, advection of warm moist air from the south 

to the basin, thus tending to produce more snow and consequently, higher 

streamflows in the following spring. These are very similar to the findings from the 

Truckee/Carson streamflows (Figs. 7. 5 and 7.6). 



 Based on the correlation maps, we selected four potential predictors of PC1 to 

be the time series of average values of difference between the positive and negative 

correlation regions in (i) Z700 (Fig. 7.7a) (ii) SST (Fig. 7.7b), (iii) Zonal winds, and 

(iv) Meridional winds. Often, the difference between the regions of strong positive 

and negative correlation constitutes a much better predictor. For example, in the case 

of the Z700 predictor we took the difference between the average value over the 

region with negative correlation (32.5°N-42.5°N latitude and 230°-250°E longitude) 

and positive correlation (42.5°N – 55°N latitude: 275°-297.5°E longitude) as can be 

seen from Fig. 7.7a. 

 

7.6. Forecast Models  

Statistical forecast models can be represented as: 

   Yt = ƒ( xt) + et                              [7.1] 

where, xt = (x1t, x2t, x3t, … x  pt), t = 1,2,…N ,   f is a function fitted to the predictor 

variables (x1,x2,…,xp), Y is the dependent variable (e.g., Spring seasonal streamflow), 

and et is the errors assumed to be Normally (or Gaussian) distributed with a mean of 0 

and variance s. Traditional parametric methods involve fitting a linear function, also 

known as linear regression. The theory behind the parametric methods, procedures for 

parameter estimation and hypothesis testing are well developed (e.g., Helsel and 

Hirsch, 1995; Rao and Toutenburg, 1999). The main drawbacks, however, are: (i) the 

assumption of a Gaussian distribution of data and errors, (ii) the assumption of a 

linear relationship between the predictors and the dependent variable, (iii) higher 



order fits (e.g., quadratic or cubic) require large amounts of data for fitting and, (iv) 

the models are not portable across data sets, i.e., sites. 

 Nonparametric methods, in contrast, estimate the function f “locally”. There 

are several nonparametric approaches, such as kernel-based (Bowman and Azzalini, 

1997), splines, K-nearest neighbor (K-NN) local polynomials (Rajagopalan and Lall, 

1999; Owosina, 1992); locally weighted polynomials (Loader, 1999), etc. The K-NN 

local polynomials and the local weighted polynomial (LOCFIT)1 approaches are very 

similar. Owosina (1992) performed an extensive comparison of a number of 

regression methods both parametric and nonparametric on a variety of synthetic data 

sets and found that the nonparametric methods out-perform parametric alternatives. 

Below we describe a few nonparametric methods for ensemble forecast. 

 

7.6.1 Local methods of Ensemble Forecast  

 The local polynomial methods obtain the value of the function f at any point 

‘xt
*’ by fitting a polynomial to a small set ])1,0(,*( == αα NK of neighbors to ‘xt

*’. 

The neighbors can be identified based on the Euclidean distance (Rajagopalan and 

Lall, 1999; Lall and Sharma, 1996) or Mahalanobis distance (Yates et al., 2003). 

Other approaches include weighting the predictors differently in the distance 

calculation, such as weighted obtained via coefficients from a linear regression 

between the dependent variable and predictors (Souza and Lall, 2003). Once the 

neighbors are identified, there are two main options for generating ensembles: 

                                                 
1LOCFIT is the package to perform local polynomial fits developed by Loader (1999) and available 
freely at http://cm.bell-labs.com/cm/ms/departments/sia/project/locfit/index.html 



(i) The neighbors can be re-sampled with a weight function that gives more weight 

to the ‘nearest’ neighbors and less to the farthest, thus generating ensemble  (e.g.. 

Souza and Lall, 2003). This has been widely applied for stochastic weather and 

streamflow simulation in the above mentioned references. 

(ii) A polynomial or order p can be fit to the neighbors that can be used to estimate 

the mean of the dependent variable (Rajagopalan and Lall 1998; Loader, 1999) using 

LOCFIT and the local variance σle
2 of the errors around the mean. The local error 

variance can be used to generate random normal deviates which, when added to the 

mean estimate, yield ensembles. Thus, the parameters to be estimated are the size of 

the neighborhood (K) and the order of the polynomial (p), which is obtained using 

objective criteria such as Generalized Cross Validation (GCV).  
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where ie is the error, N is the number of data points, m is the number of parameters. 

For stability purposes, the minimum neighborhood size should be twice the number 

parameters to be estimated in the model. The K, p combination to be selected is the 

one that has the minimum GCV score. This was used in the Thailand summer rainfall 

forecast (Singhrattna et al., 2004)  

(iii) In (ii) above the local errors are assumed to be normally distributed. Often times 

this may not be the case. To get over this problem,  Prairie (2002) and Prairie et al.( in 

press) proposed an interesting variation and applied it for streamflow and salinity 

modeling on the Colorado Rive Basin. This was later applied to the Thailand summer 



rainfall forecasting (Singhrattna et al., in press). In this variation, the mean value, Yi 

of the predictor vector ‘xt
*’ is obtained from the steps described in (ii) above. Then, 

one of the neighbors of ‘xt
*’ is selected and the corresponding residual, et

* is picked 

up. This residual is then added to the mean forecast Yt
*+et

*, thus obtaining one of the 

ensemble members, repeating this several times results in an ensemble. This is 

pictorially shown in Fig. 7. 9 for the Truckee river spring streamflows and the Z500 

index as the predictor. The solid line is the mean fit using LOCFIT, the points are the 

observations and the dashed rectangle is the neighborhood size from which the 

residuals are resampled. The neighbors are obtained using any of the distance metric 

described in (ii). Furthermore, the selection of one of the neighbors is done using a 

weight function of the form: 
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This weight function gives more weight to the nearest neighbor and less to the 

farthest neighbors. The number of neighbors to be used to resample the residuals can 

be the same as (K) that used in fitting the local polynomial or could be different. In 

practice, the N  neighbors for resampling the residuals seem to work fine. This 

heuristic rule is justified by theoretical arguments  of  Fukunaga (1990). 

 Being a local estimation scheme, these methods have the ability to capture any 

arbitrary local features. Furthermore, unlike the parametric alternatives, no prior 

assumption are need be made regarding the functional form of the relationship (e.g., a 

linear relationship, Gaussian distribution, etc.). Other variations using nonlinear 

dynamics based time series analysis (Regonda et al., 2004b) can also be explored. 



 7.6.2 Multi-site Ensemble forecast 

 Often times forecasts are required at several sites simultaneously that captures 

the spatial correlation structure. For example, ensemble forecasts will be required at 

all the streamflow locations in a basin for use in decision support system. The local 

methods described above can be used in this case but there needs to be a pre-

processing step prior to using them. The steps are as follows: 

(i) A principal component analysis (PCA) (von Storch and Zwiers, 1999; and 

Preisendorfer, 1988) is performed on the seasonal steamflows at all the sites. PCA 

provides an orthogonal space-time decomposition, with spatial part represented as 

Eigen Vectors (EV) and the temporal part as Principal Components (PC). The theory 

and implementation of this is widespread in climate analysis and the above references 

offer a detailed exposition of this and other related approaches. Typically, the leading 

PC captures almost all of the variance, especially in homogeneous basins.  

(ii) Predictors are identified for the leading PC 

(iii) For a given predictor vector (i.e. a given year) ensembles of the leading PC are 

generated from the local methods described in the previous section.  

(iv) The PC ensembles are back transformed to the original flow space by multiplying 

with the appropriate Eigen Vector. Thus, resulting in ensembles of streamflows at all 

the locations simultaneously, preserving the spatial correlation structure. 

This approach was recently developed and encouraging results from preliminary 

application to the Gunnison River Basin in the western US are presented later in this 

chapter. 

 



7.6.3 Subset Selection 

 As we saw from the previous section several potential predictors are identified 

for forecasting the streamflows in two basins. The task then is to select the best 

predictor subset. In the linear regression framework this is done using stepwise 

regression (e.g, Rao and Toutenburg 1999; Walpole et al., 2002), where in the 

smallest subset that explains most variance in the dependent variable is selected. 

Other methods use score functions such as Mallow’s Cp, Akaike Information Criteria 

(AIC) (Rao and Toutenburg, 1998) etc., which favor parsimony.   

 We propose the use of GCV (equation 7.2) as a tool for subset selection. In 

this, one fits local polynomial for different predictor combinations along with the 

polynomial order and the neighborhood size and the GCV value computed in each 

case. The combination that produces the least GCV value is chosen as the best subset. 

The GCV function is a good surrogate of predictive error (Craven and Whaba, 1979) 

of the model, unlike least squares which is a measure of goodness of fit and provides 

no information on the predictive capability. Hence, we feel that the GCV will be a 

better alternative for subset selection. 

 Applying the GCV criteria we selected Z500 index and SWE as the best set of 

predictors for the Truckee/Carson streamflows and SST predictor and SWE for the 

Gunnison. These respective subsets will be used in the ensemble forecast.  

 

7.7. Model Validation  

 The large-scale climate predictors identified for the spring seasonal 

streamflows are used in the ensemble forecast models. Each year is dropped from the 



record and ensemble forecasts are made for the dropped year based on the rest of the 

data. This is repeated for all the years, thus obtaining cross-validated ensemble 

forecasts. The forecasts are issued at several lead times.  

 

7.7.1 Skill Measures for Validation 

Apart from visual inspection, the ensembles are evaluated on a suite of three 

performance criteria: 

 (i) Correlation coefficient of the mean of the ensemble forecast and the 

 observed value. This measures the skill in the mean forecast. 

 (ii) Ranked Probability Skill Score (RPSS) (Wilks, 1995).  

 (iii) Likelihood Function Skill Score (LLH) (Rajagopalan et al., 2002). 

 RPSS and LLH measure the forecast’s ability to capture the probability 

distribution function (PDF). The RPSS is typically used by climatologists and 

meteorologists to evaluate a model’s skill in capturing categorical probabilities 

relative to climatology. 

 We divided the streamflows into three categories, at the tercile boundaries, 

i.e., 33rd percentile and 66th percentile. Values above the 66th percentile are in the 

“above normal” category, below the 33rd percentile are in the “below normal” 

category, and the remainder fall in the “normal” category. Of course, one can divide 

into unequal categories as well. The categorical probability forecast is obtained as the 

proportion of ensemble members falling in each category. The “climatology” forecast 

is the proportion of historical observations in each category. For the tercile categories 

presented here  the climatological probability of each category is 1/3.  



 For a categorical probabilistic forecast in a given year, P = (P1, P2, ... Pk) 

(where k is the number of mutually exclusive and collectively exhaustive categories – 

here it is 3) the rank probability score (RPS) is defined as: 
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The vector d (d1, d2, ... dk) represents the observations, such that dk equals one if the 

observa ion falls in the kth  category and zero otherwise. The RPSS is then calculated 

as (Toth, 2002): 

   
)yclimatolog(

)forecast(
1

RPS
RPS

RPSS −=                         [7.5] 

The RPSS ranges from positive 1 (perfect forecast) to negative infinity. Negative 

RPSS values indicate that the forecast has less accuracy than climatology. The RPSS 

essentially measures how often an ensemble member falls into the category of the 

observed value and compares that to a climatological forecast. The likelihood 

function is also used to quantify the skill of ensemble forecasts. This function 

compares the  likelihood  of the ensemble forecast falling into the observed category 

with respect to climtology. The likelihood skill score for the ensemble forecast in any 

given year is calculated as: 
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Where N is the number of years to be forecasted, j is the category of the observed 

value in year t, tjP ,
ˆ  is the forecast probability for category j in year t, and Pcj,t is the 

climatological probability for category j in year t. 



 The LLH values range from 0 to number of categories (3 in this study). A 

score of zero indicates lack of skill; a score of greater than 1 indicates that the 

forecasts have skill in excess of the climatological forecast and a score of 3 indicates 

a perfect forecast. The LLH is a nonlinear measure and is related to information 

theory (Rajagopalan et al., 2002). 

 

7.7.2 Results 

Truckee/Carson 

 For the Truckee/Carson basins we had identified in the previous section, two 

best predictors – Z500 index and SWE. The SWE, however, is only available from 

Jan 1st onwards, as prior to that there is little snow in the basin and hence, of limited 

use for forecasting spring streamflows.  

 Given that SWE is highly correlated spring streamflows, the utility of Z500 

index in the model could be doubted. To investigate this, ensemble forecasts are 

issued for the Truckee and Carson Rivers on the 1st of each month from Nov. through 

April from two models – one using Z500 and SWE as predictors and another with 

only the SWE. The skill scores were computed for the forecasts and are shown in Fig. 

7.10. The results show that using the Z500 index together with SWE as predictors 

provides better skills at all lead times. This is a significant outcome in that it clearly 

demonstrates the importance of incorporating basin specific large-scale climate 

indices in streamflow forecasts.  It is also apparent from Fig. 7.10 that the forecast 

skills are above climtology at all lead times (the RPSS is above zero and the LLH is 

above 1), indicating the presence of useful information about the spring streamflows 



from as early as Fall. As in most forecasting models, the skills on all the measures 

improve with decreased lead-time.  

 To assess the performance of the model in extreme years we calculated the 

RPSS and LLH for wet and dry years. We define years with streamflows above the 

75th percentile as wet and those below the 25th percentile as dry. Roughly 12 years fall 

into each category. Median skills for forecasts issued on April 1st and December 1st 

are shown in Table 7. 1. It is apparent that the model has a slightly higher skill in 

predicting the wet years relative to dry. This asymmetry in the skills is consistent with 

the nonlinearities seen in the relationship between the predictors and the streamflows 

(Fig. 7.9). Whereas high streamflow years exhibit a strong linear relationship with the 

Z500 index, this relationship breaks down, i.e., flattens out in low streamflow years. 

The skills for forecast issued on December 1st are relatively poor but there are 

substantial, especially in the extreme years – providing useful long lead forecast for 

water resources planning. 

 Ensemble forecasts provide the probability density function (PDF) and 

consequently, they can be used to obtain threshold exceedence probabilities. This 

information can be very useful for water managers in preparing for extreme events. 

Fig. 7.11  presents the PDF of the ensemble forecasts for 1992 and 1999, below 

normal and above normal streamflow years, respective ly. The climatological PDF, 

i.e., the PDF of the historical data, is overlaid in these plots. Notice that  the PDFs of 

the ensemble forecasts are shifted toward the observed values. In 1992, a dry year, the 

observed streamflow in the Truckee River was 75 kaf (~ 93 M m3), much below the 

historical average. Based on the climatological PDF the exceedence probability of 



this value is 0.92, while that from the ensemble forecasts is 0.49, indicative of drier 

conditions. Similarly, for the above average flow of 408 kaf  (~ 504 M m3) in 1999, 

climatology suggested an exceedence probability of 0.17 while the ensemble 

forecasts show a much higher probability of exceedence (0.59), thereby better 

capturing the probability of the observed flow value.  

 

Gunnison 

 In this basin as described earlier, we generate ensemble forecast of the first PC 

and then multiply it with the Eigen vector to provide the ensemble streamflow 

forecast at all the six locations. Fig. 7.12 shows the skill scores (RPSS) for forecast 

issued on January 1st and April 1st. It can be seen that the skills increase with lead 

time and they are quite good overall. To evaluate the forecasts in extreme (wet and 

dry) and average years, the ensemble forecasts for the East River site is shown in Fig. 

7.13. We loosely defined, for this purpose, the wet years as those with streamflows 

above the upper tercile and dry as those below the lower tercile and the rest as 

average. The ensembles are shown as boxplots with the boxes being the interquartile 

range, the whiskers at the 5th and 95th percentile and the points are outside this range, 

the observed values are shown as thick solid points. If the observed values fall within 

the box it implies that the ensembles are better able to capture the PDF of the flows in 

that year. The horizontal lines are the 25th, 50th, 75th, 90th and 95th percentile values of 

the historical data. It can be seen that the boxplots are shifted in the right direction in 

the extreme years. Notice that the skills in the extreme years are particularly good that 



can be of great importance in water management in the basin. The median skill scores 

at all the locations for all years, wet and dry years are shown in Table 7.2. 

   

7.8. Summary and Discussion 

We presented a framework for ensemble forecast tha t uses large-scale climate 

information and demonstrated its utility on providing seasonal streamflow forecasts in 

two river basins in the western USA. Climate diagnostics is first performed to obtain 

a suite of potential large-scale climate predictors. Local polynomial based 

nonparametric methods can then be used to identify the best subset of predictors and 

use them to generate ensemble forecasts. We developed methods for ensemble 

forecasts at a single site and also for multi-site preserving the spatial correlation. The 

proposed nonparametric methods are data driven and provide a flexible and powerful 

alternative to traditional parametric (i.e. linear regression) methods in capturing any 

arbitrary relationship between the predictors and the dependent variable and error 

structure. Application to Truckee/Carson and Gunnison river basins show that 

significant long- lead skill in forecasting seasonal streamflows can be achieved, 

especially in extreme years. This has tremendous impact on improving the water 

resources management and planning in these basins. Our preliminary application of 

these forecasts on the Truckee/Carson basin to improve the operations of Truckee 

canal (descried earlier in the chapter) gives encouraging results (Grantz, 2003). The 

proposed framework can be easily applied to any other basin and other variables – 

e.g., we applied this to Thailand summer rainfall forecast with good success 

(Singhrattna, et al., 2004).  
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Median Skill Score 

RPSS LLH 

 

Truckee Carson Truckee Carson 

All Years 1.0(0.2) 0.9(0.0) 2.3(1.1) 2.3(1.1) 

Wet Years 1.0(0.4) 1.0(0.3) 3.0(1.1) 2.6(1.2) 

Dry Years 0.9(0.0) 0.6(0.0) 2.2(1.1) 2.2(1.1) 

 

Table 1: Median Skill Scores for ensemble forecast issued on April 1st, for all 
years, wet years and dry years for the Truckee/Carson basin. The values in 
parenthesis are for forecast issued on December 1st. 
 

 
 

RPSS (LLH) 
USGS Station 

Total years Wet years Dry years 
09110000 0.72 (1.91) 1.00 (3.00) 0.92 (2.35) 

09112500 0.92 (2.58) 1.00 (3.00) 0.98 (2.68) 

09119000 0.73 (1.91) 0.98 (2.72) 0.97 (2.64) 

09124500 0.73 (1.84) 0.93 (2.39) 0.91 (2.32) 

09132500 0.91 (2.35) 1.00 (3.00) 0.92 (2.35) 

09147500 0.87 (2.27) 1.00 (3.00) 0.97 (2.68) 

 
 
Table 2: Median Skill Scores for ensemble forecast issued on April 1st, for all 
years, wet years and dry years for the Gunnison basin. The values in parenthesis 
are the LLH. 
 
 



Figure Captions: 
 
Figure 7. 1: Flow chart of the forecast framework. 

Figure 7.2: Map of the Truckee/Carson basin 

Figure 7.3: Gunnison River Basin and stream flow locations. USGS gage 

locations and river names are mentioned below. 

1. 09112500 East River at Almont, CO 

2. 09110000 Taylor River at Almont, CO 

3. 09119000 Tomichi Creek at Gunnison, CO 

4. 09124500 Lake fork at Gate view, CO 

5. 09147500 Uncompahgre River at Colona, CO 

6. 09132500 North fork Gunnison river near Somerset, CO 

Figure  7.4: Climatology of streamflows and precipitation in the Truckee River, at 

the gauging station Farad (based on data for the 1949 – 2003 period). 

Figure  7.5: Correlation of Carson River spring streamflows with winter (Dec – 

Feb) climate variables (a) 500mb geopotential height (Z500) and (b) SST. 

Figure  7.6:  Composites of vector winds, SST and Z500 during the winter of high 

and low streamflow years. 

Figure  7.7: Correlation between PC1 of Spring flows and Nov-Mar Climate 

indices (a) Geopotential Height – 700mb and (b) Sea Surface Temperature. 

Figure  7.8: Composite of Vector wind at 700 mb for (a) wet years and (b) dry 

years. 

Figure  7.9: Residual resampling to obtain an ensemble forecast. 

Figure 7.10:  Skill scores of forecasts issued from the 1st of each month Nov – 

April for Truckee and Carson Rivers. 

Figure  7.11:  PDF of the ensemble forecasts in a (a) dry year (1992) and (b)  wet 

year (1999) for the Truckee River. 

Figure  7.12: Median RPSS score for forecasts issued on January 1st and April 1st 

for the six streamflow sites. 

 

 

 



 

Fig.  7.13: Boxplots of ensemble streamflow forecasts at the station East River, 

Almont, for the dry, wet and average years. The wet, dry and average years are 

divided based on the terciles – i.e. years with streamflows values below the lower 

tercile are dry, those above the upper tercile are wet and the rest as average. The 

horizontal lines are the 25th, 50th, 75th, 90th , and 95th percentiles of the historical 

data.   

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.1:  Flow chart of the forecast framework. 
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 Fig.  7.2:  Map of the Truckee/Carson basin 

 
 
 
 



 

 
 

 

 Fig. 7.3: Gunnison River Basin and stream flow locations. USGS gage locations and 

river names are mentioned below. 

1. 09112500 East River at Almont, CO 

2. 09110000 Taylor River at Almont, CO 

3. 09119000 Tomichi Creek at Gunnison, CO 

4. 09124500 Lake fork at Gate view, CO 

5. 09147500 Uncompahgre River at Colona, CO 

6. 09132500 North fork Gunnison river near Somerset, CO 

 
 

1 2 

4 

5 
3 

6 



 

 
 
 
Fig. 7.4: Climatology of streamflows and precipitation in the Truckee River, at the 

gauging station Farad (based on data for the 1949 – 2003 period). 
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Fig. 7.5: Correlation of Carson River spring streamflows with winter (Dec – Feb) climate 

variables (a) 500mb geopotential height (Z500) and (b) SST. 

 



 
 

 
 
 
 
Fig.7.6:  Composites of vector winds, SST and Z500 during the winter of high and low 

streamflow years. 

 
 
 



 
 
 
Fig. 7.7: Correlation between PC1 of Spring flows and Nov-Mar Climate indices (a) 

Geopotential Height – 700mb and (b) Sea Surface Temperature. 
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Fig.  7.8: Composite of Vector wind at 700 mb for (a) wet years and (b) dry years. 
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Fig.  7.9: Residual resampling to obtain an ensemble forecast. 
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.Fig. 7.10:  Skill scores of forecasts issued from the 1st of each month Nov – April for 

Truckee and Carson Rivers. 
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Figure  7.11:  PDF of the ensemble forecasts in a (a) dry year (1992) and (b)  wet year 

(1999) for the Truckee River.  

 

Fig.  7.12: Median RPSS score for forecasts issued on January 1st and April 1st for the six 

streamflow sites. 
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 Fig.  7.13: Boxplots of ensemble streamflow forecasts at the station East River, Almont, 

for the dry, wet and average years. The wet, dry and average years are divided based on 

the terciles – i.e. years with streamflows values below the lower tercile are dry, those 

above the upper tercile are wet and the rest as average. The horizontal lines are the 25th, 

50th, 75th, 90th , and 95th percentiles of the historical data.   

 

 


