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Abstract 

Nonparametric estimators of at-site flood frequency using annual maximum 

flow data present an alternative to methods that a priori assume a specific probability 

distribution function. They approximate a wide class of distribution functions. Past 

work in this direction using kernel density and quantile estimators is extended here 

using a higher order approximation technique, locally weighted polynomial 

regression, for estimating the quantile function. An empirical investigation of the 

performance of this method relative to selected alternatives and for selected target 

distributions is presented here. 
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Introduction 

Flood frequency analysis entails relating the magnitude of annual maximum 

flood events to their frequency of occurrence at a gauged site. The typical interest is 

estimating extreme flood quantiles i.e. - 100-year or 500-year flood, from a small 

number of observations (~50 to 100 years) for design of hydraulic structures such as 

dams, culverts and bridges. Traditional parametric methods for this problem assume 

that the annual maximum floods are independent and identically distributed and 

drawn from a population with a known Probability Density Function (PDF). An 

appropriate PDF is selected from a candidate set or mandated by a regulatory agency 

for at site applications. Typical distributions that are prescribed by agencies such as 

USBR, USGS and widely used in practice are Log-Pearson Type III, Log-Normal and 

Extreme Value distributions (see Kite, 1977, Chow et al., 1988). There are statistical 

tests to discriminate between choices of distributions including L-moments methods 

(see Kite, 1977; Vogel 1986; Hosking, 1990; Vogel and McMartin, 1991). However, 

it is often difficult to discriminate between candidate models for a given data set, and 

the best fit criteria emphasize the bulk of the distribution rather than its tails. 

Consequently, there is considerable uncertainty as to the best underlying model for 

the estimation of the upper flood quantiles. 

Nonparametric methods, on the other hand, do not assume a distributional 

form to the data. Rather, the flood magnitude at any quantile is estimated by locally 

smoothing the empirical quantile function of the data or estimating the PDF using a 

kernel based estimator. Because the method is “local”, in that estimates of the 

function at a point are based on data points in its neighborhood – this provides the 

ability to better capture an arbitrary features exhibited by  the data and furthermore, 

easily portable across sites. For the estimation of tail quantiles, an extrapolation rather 
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than interpolation of the empirical quantile function is needed. The “local” estimation 

procedure inherent in nonparametric flood frequency analysis translates into a model 

for tail probability estimation. Traditional tail probability estimators consider specific 

models of tail behavior whose parameters are to be estimated. Typically, a threshold 

beyond which the tail probability model should be applied also needs to be inferred 

from the data. Moon et al (1993) demonstrated that kernel based methods often 

performed better in practice than some of the tail probability models that are 

commonly used. In this paper, we present a higher order nonparametric estimation 

scheme that improves further on the kernel quantile estimations presented by Moon et 

al (1994).  

Nonparametric flood frequency estimators were developed and studied by 

Schuster and Yakowitz (1985), Adamowski (1985, 1989), Adamowski and Feluch 

(1990), Bardley (1988, 1989) and more recently Lall et al. (1993), Moon et al. (1993) 

and Moon and Lall (1994). Lall et al. (1993) developed a kernel based quantile 

estimator, where in, a kernel density estimator is used to estimate the probability 

distribution function and consequently, the quantiles of interest. They also showed 

that parametric estimates based on the cumulative distribution function are more 

appropriate than those based on density estimates in the flood frequency context. 

Kernel density based estimators while easy to implement, suffer from (1) loss of 

efficiency of estimation with respect to the true distribution, (2) an uncertain and 

likely negligible ability to extrapolate beyond the data (Lall et al., 1993) and (3) over 

smooth the distribution function. Adamowski (1989) suggested a variable bandwidth 

kernel density estimator that addresses the extrapolation problem. Later Moon and 

Lall (1994) developed a nonparametric kernel based regression estimator for 

quantiles. Here, the empirical quantile function is smoothed using a kernel regression 
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estimator. They find that both, the density and regression based estimators are 

competitive to other estimators. However, both these nonparametric quantile 

estimators suffer from boundary problems, i.e., the tail quantiles are biased (Lall et 

al., 1993; Moon and Lall, 1994). Here, we present a local polynomial (Loader, 1999) 

based estimator that improves upon the kernel regression estimator. 

The local polynomial estimator is first described. We then compare the 

performance of this estimator with traditional parametric estimators on a suite of 

synthetic data set, followed by their comparison on two streamflow data sets. 

Local Polynomial Estimator 

Given an n-year historical record of annual maximum floods, we can define 

the empirical quantile function through the following set of ordered pairs: (Xi, Yi), i = 

1,2,…,n where )500()250( .n.iX i +−= , Yi = ranked annual maximum flood data. 

The Xi is the so-called plotting positions, and one can use any other formula of 

interest for the purpose. Here Adamowski’s (1981) formula is used. 

Then, we consider a general model for the quantile function as:  

iii )X µY += (   (1) 

Where )µ (.  is a nonlinear function, i  are assumed to be identically 

distributed errors with mean 0 and finite variance, and ∈iX  [0,1]. 

In this context if we consider the estimation of the T year flood, then we are 

interested in an estimate )( TXµ  such that TXT /11−= . The specific proposal 

advanced here is that )( TXµ  be estimated using locally weighted polynomial 

regression, where we assume that )( TXµ  is a general function that is continuous and 

has (p-1) derivatives. Hence, it is reasonable to approximate )( TXµ  using a local 



 5 

polynomial of order p, following Taylor series arguments. “Local”, here refers to an 

approximation in the neighborhood of TX . The size of the neighborhood depends on 

the smoothness of the target regression function and on the nature of the residual 

process, 
i .

For details as to the specific local polynomial estimation method (LOCFIT) 

used here see Loader (1999). The estimation algorithm is summarized below: 

1. For any point of estimate, ,TX  nearest neighbors (i.e. nearest data points), 

)( nk α= , are identified, where α  varies from 0 to 1 (when 1=α  then all the data 

points are neighbors to 
TX ). The bandwidth )( TXh of this window of k neighbors 

around TX  is the distance to the k
th
 neighbor. For tail quantiles, this translates into 

the number of upper order statistics that are used to fit a polynomial tail quantile 

model.  

2. Each of the k data pairs used is then weighted according to the distance to T via a 

weight function (e.g. Bisquare, Tricubic etc.). The Bisquare weight is given as 

22 )1(*)16/15()(
ii

uuW −= , where )(/)(
TTi

XhXXu −= , and 1≤u .

3. Within the smoothing window (i.e. with the k neighbors), )(Xµ is approximated 

by a polynomial order p. For example, a local quadratic model would be 

2

210 )()()( XaXaaX ++=µ  (2) 

The coefficients of the polynomial 0a , 1a and 2a are obtained by minimizing the 

weighted least squares function, 

2

1

))()(( iiT

k

i

i XYXW µ−
=

 (3) 

These steps are repeated for each estimation point. 
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The key parameters identify are the optimal number of neighbors k and the 

order of polynomial p. These are obtained via minimization of a Generalized Cross 

Validation (GCV) function described below. If h(X) is too small, insufficient data fall 

within the smoothing window, the estimated quantile value will have a very high 

variance. On the other hand, if h(X) is too large, the quantile estimate may have a 

large bias. Therefore, the bandwidth must be chosen to compromise this bias-variance 

trade-off.  Similar to the bandwidth, the degree of the local polynomial p, affects the 

bias-variance trade-off. 

It often suffices to choose a low order polynomial and concentrate on choosing 

the bandwidth to obtain a satisfactory fit (Loader, 1999). Typically, in parametric 

regression, mean squared error is used to assess the performance of the fit. However, 

this is a poor indicator of future performance of the model (i.e. predictive error). 

Craven and Wahba (1979) developed a measure called the GCV, similar to Akaike 

Information Criteria (AIC) and Bayesian Information Criteria (BIC), that 

approximates predictive risk.  

( )( )

2

1

1

2

1

ˆ

),(

−

−

=

=

=

n

i

ii

n

i

ii

h

XY

npGCV

µ

α  (4) 

Where n is the sample size, ( )ii XY µ̂−  is the residual and h ii are the diagonal 

terms of the hat matrix H. The hat matrix can be estimated using standard linear 

regression procedures. For fairly small datasets Loader (1999) suggests the use of the 

Cross Validation (CV) function: 

( )
=

−−=
n

i

iii XY
n

pCV
1

2
)(ˆ

1
),( µα   (5) 
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Where )(ˆ
ii

X−µ denotes the leave-Xi-out estimate of )(ˆ
i

Xµ . That is, each X i is 

removed from the dataset in turn, and the local regression estimate computed from the 

remaining n-1 data points.  

Loader (1999, page 29) also developed an approximate confidence and 

prediction intervals for the estimates from the local polynomial, assuming the 

residuals to be normally distributed locally (within the neighborhood of k data points). 

If the prediction points are not normally distributed, the prediction intervals from this 

approach will not be correct, even asymptotically. Therefore, we used the bootstrap 

approach for obtaining the intervals – in this, a large number (1000) of bootstrap 

samples were generated and the quantile estimates obtained from the methodology 

applied to each of the sample, the 5
th
 and 95

th
 percentiles of the estimates from the 

bootstrap samples 90% intervals. Bootstrap approach is nonparametric in that, no 

distributional assumption of the data is required and is consistent with the 

nonparametric LOCFIT estimator proposed here. 

Applications 

We tested the LOCFIT quantile estimator on a suite of synthetic data sets and 

two streamflow data sets. We also compared with traditional parametric estimators. 

Synthetic experiments 

To simulate the “choice” of models that a practitioner may face, we 

considered a set of probability distribution models as “parents” for the at-site flood 

generation process, and similarly for the estimation of quantiles. The LOCFIT 

procedure is considered as an alternative for estimation across the suite of “parents”. 

The setting is of interest where a public regulatory agency may have mandated the use 

of a specific distributional model across all enterprises as a “best practice”. This has 
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been the case in the U.S., since the publication of Bulletin 17B (Interagency Advisory 

Committee on Water Data, 1982), U.S. Water Resources Council procedures were 

adopted. Our hypothesis is that the nonparametric procedure will be competitive 

against parametric alternatives, where a mix of parent populations may be appropriate 

across the country or region. We test this hypothesis by examining the success or lack 

thereof versus the proper specification and mis-specification of the parametric model. 

Consequently, we generated 500 samples of size 75 each from the following parent 

populations: 

1) Log-Normal: 
( )

0,
2

exp
2

1
)(

2

2
>

−
−= x

y

x
xf

y

y

σ

µ

πσ
 where xy log= ,

yyy
sy == σµ ,

2) Log-Pearson type III: 
( ) ( )

ε
β

ε ελ

≥
Γ

= x
ex-

xf
-

log,
)(x

)(
-x-1

 where 

xy log= , βλ ys= , [ ]2
)(2 yCs=β , βε ysy −=  (assuming )(yCs  is 

positive) 

3) Extreme Value Type I: 
−

−−
−

−=
ααα

uxux
xf expexp

1
)( , 

∞<<∞− x  where πα xs6= , α5772.0−= xu

4) Mixture of Normal: ),(),()( 222111 σµσµ NcNcxf += , ∞<<∞− x where 

c1 and c2 are weighted constant and c1+ c2=1. 

In each case we compare the performance of LOCFIT for selected tail 

quantiles relative to properly and improperly specified parametric models. The above 

distributions were chosen for the synthetic experiments because they are from the 

exponential family-which is widely considered in practice. 
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Real Data 

We also applied the LOCFIT estimator to two streamflow data sets (i) Annual 

maximum flow on the Santa Cruz at Tucson, Arizona for the period 1915-2000 and 

(ii) 3-day annual maximum flow on the American river at Folsom dam, CA for the 

period 1905-2001. The LOCFIT estimate at these sites are compared to Log-Normal 

(LN), Log-Pearson type III (LPIII), Extreme Value I distribution (EVI). Confidence 

intervals for the traditional methods were also computed using the bootstrap method 

described earlier, for estimates at selected return periods.

Results 

Synthetic Data 

The LOCFIT estimator and the parametric estimators are applied to each 

synthetic data and we estimated the 10-, 50-, 100-, 250- and 500-year return period 

magnitudes. These estimates from the simulations are shown as boxplots along with 

the true values as a solid line. Box sizes provide the variance of the estimates.  

It can be seen from Figures 1-4 that the LOCFIT estimator exhibits good 

performance for all the tested distributions. The variance of the estimates from 

LOCFIT increases (bigger boxes) as the return period increases – more so for return 

periods 250 and 500 years. This is to be expected from standard regression theory, as 

LOCFIT extrapolates beyond the range of the data at higher return periods and hence, 

has larger variance. It performs well especially with the mixture distribution (Figure 

4) when compared with other estimators. LPIII estimator is also good for all the 

distributions with relatively smaller variance in comparison to LOCFIT. This is 

because, LPIII performs very well for exponential family of distributions, as is the 
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case with the distributions tested here. However, for the mixture distribution (Figure 

4) the variances from LPIII are higher than those from LOCFIT. LN estimator works 

well for simulations from EVI and LN distributions (Figure 1 and 2), but performs 

badly in all other cases. The EVI estimator exhibits poor performance in all the 

distributions except of course, the simulations from EVI.  The performance of the 

LOCFIT estimator on the mixture distribution is comparable to kernel-based 

nonparametric flood frequency estimators (Lall et al., 1993; Moon and Lall, 1994). 

Real Data 

 The LOCFIT estimator and the traditional methods are applied to the Santa 

Cruz annual maximum flow data. As shown in Figure 5a, the LOCFIT estimates 

closely follow and smooth the empirical quantiles (shown as circles) in the tails. The 

parametric methods fit well at lower return periods, but for higher return 

periods they grossly underestimate relative to the observed quantiles, with 

EVI performing especially poorly. The cross-validated quantile estimates  

(Figure 5b) appear to be within the 90% confidence interval (obtained from 

the bootstrap approach). Residuals from the cross-validated estimates were found to 

be normally distributed with little autocorrelation (figures not shown) indicating 

the goodness of the LOCFIT model.  

 In the case of American River (Figure 6) as well, the LOCFIT estimator 

follows the empirical quantiles quite well, while parametric methods perform poorly 

in the tails. Also the Log-Normal estimator appears to overestimate the 

higher return period flows and EVI seems to underestimate. The 

confidence intervals from the LOCFIT estimator are generally tighter than those from 

the parametric models (Table 2). Similar results are found when applying these 
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methods to the data from the 1905-1945 (Figures 7a and b) and 1946-2001 (Figures 

7c and d) sub periods (Tables 3 and 4). These sub periods were chosen because the 

Folsom dam was built in 1945. The Folsom dam was a case study of a recent National 

Research Council report (Potter et al., 1999) - where they suggest climate variability 

as being a reason for increased annual maximum flows in the latter sub period. 

Summary 

Locally weighted polynomial regression technique, a nonparametric approach, 

is applied to flood frequency estimation. The estimation is “local” and therefore, has 

the ability to capture any smooth distribution that generated the data. Unlike  

its parametric counterparts, no prior assumption of the underlying distribution is 

required, which makes it portable across sites. This also improves upon kernel-based 

nonparametric estimators developed in the past in that it is easy to implement. Good 

performance on a variety of synthetic and real data sets is observed. Thus, the 

proposed approach provides an attractive robust alternative for single-site flood 

frequency estimation that is completely data-driven and portable across sites. 

Multivariate extensions of this approach to forecasting regional flood quantiles 

conditioned on large-scale ocean-atmospheric information (e.g., Sankarasubramanian 

and Lall, 2003) are underway.  
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Table 1 Comparison of 90% confidence intervals for various estimators    

            at 100- and 500-year flood for the Santa Cruz River (1915-2000)    

  100-year Flood 500-year Flood 

  Estimated Confidence Interval Estimated Confidence Interval 

  Flood upper lower Interval Flood upper lower Interval 

Estimator   limit limit width   limit limit width 

  (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) 

       EVI            860        1,144        529       615          1,124       1,506        672         834  

       LN            896        1,199        657       542          1,374       1,936        949         987  

       LPIII            960        1,508        573       935          1,540       3,007        746      2,261  

       LOCFIT          1,462        1,552        630       922          1,817       1,952        671      1,281  

         

Table 2 Comparison of 90% confidence intervals for various estimators    

            at 100- and 500-year flood for the American River (1905-2000)    

  100-year Flood 500-year Flood 

  Estimated Confidence Interval Estimated Confidence Interval 

  Flood upper lower Interval Flood upper lower Interval 

Estimator   limit limit width   limit limit width 

  (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) 

       EVI          3,134        3,602     2,578    1,024          4,071       4,692     3,336      1,356  

       LN          4,801        6,090     3,677    2,413          8,099     10,640     5,943      4,697  

       LPIII          4,470        5,700     3,342    2,358          7,203     10,132     4,846      5,286  

       LOCFIT          3,360        3,515     2,868       647          3,530       3,768     3,001         767  

         

Table 3 Comparison of 90% confidence intervals for various estimators    

            at 100- and 500-year flood for the American River (1905-1945)    

  100-year Flood 500-year Flood 

  Estimated Confidence Interval Estimated Confidence Interval 

  Flood upper lower Interval Flood upper lower Interval 

Estimator   limit limit width   limit limit width 

  (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) 

       EVI          2,842       3,418    2,158   1,260          3,648       4,399     2,738      1,661  

       LN          3,659       4,819    2,619   2,200          5,537       7,599     3,750      3,849  

       LPIII          3,726       5,024    2,543   2,481          5,706       8,667     3,402      5,265  

       LOCFIT          2,927       3,045    2,417      628          3,046       3,228     2,355         873  

         

Table 4 Comparison of 90% confidence intervals for various estimators    

            at 100- and 500-year flood for the American River (1946-2000)    

  100-year Flood 500-year Flood 

  Estimated Confidence Interval Estimated Confidence Interval 

  Flood upper lower Interval Flood upper lower Interval 

Estimator   limit limit width   limit limit width 

  (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) (cms.) 

       EVI          3,340        4,027     2,514    1,513          4,370       5,267     3,267      2,000  

       LN          5,383        7,527     3,563    3,964          9,644     14,120     5,993      8,127  

       LPIII          5,645        7,784     3,697    4,087        10,434     16,582     5,872     10,710  

       LOCFIT          3,502        3,671     2,984       687          3,619       3,961     2,932      1,029  
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Figure Captions 

Figure 1. Boxplots of estimates of 10, 50, 100, 250 and 500-year return period of data 

from EVI distribution. The estimates are from (a) True distribution (EVI), (b) 

LOCFIT (c) Log Normal, and (d) Log Pearson III estimators. The solid line in all the 

figure is the true value.  

Figure 2. Same as Figure 1 but for data from Log-Normal distribution. 

Figure 3. Same as Figure 1 but for data from Log Pearson III distribution. 

Figure 4. Same as Figure 1 but for data from Mixture Normal distribution. 

Figure 5. For the Santa Cruz River, AZ annual maximum flows, (a) Quantile 

estimates from LOCFIT and other parametric alternatives, (b) Cross-validated 

quantile estimates from LOCFIT along with the 90% confidence intervals. 

Figure 6. Same as Figure 5 but for 3-day annual maximum flows at American River, 

CA. 

Figure 7. (a) and (b) same as Figure 5 (a) and (b), respectively, but for the 3-day 

annual maximum flows at American River, CA, for the 1905-1945 period. (c) and (d) 

are for the 1946-2001 period. 
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