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We present a discrete kernel estimator appropriate for estimating probability mass functions (p.m.f’s) for
integer data. Discrete kernel functions analogous to the Beta functions used as kernels in the continuous case
are derived for the interior and for the boundary of the domain. An integer bandwidth is considered. Cross
validation is used for bandwidth selection. The estimator was motivated by the need to characterize processes
(e.g., mixtures of geometric distributions) with long tailed distributions with high mass near the origin, and
integer arguments of the random variable. Monte Carlo comparisons with the Hall and Titterington [8](HT)
estimator are offered. An application for estimating the p.m.I.'s of wet and dry spell lengths for a nonparamet-
ric renewal model of daily rainfall is also presented. Other possible methods for obtaining discrete weight
sequences are also presented.
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1. BACKGROUND

The problem of nonparametric smoothing of the empirical discrete p.m.f (or multi-
nomial cell proportions) has been of interest in recent years. However, it has not been
studied as intensively as nonparametric density estimation, its counterpart in the
continuous case. Hall and Titterington [8] mention that smoothing can be beneficial
when there are many cells with small or zero frequencies, i.c., the data are sparse. Here
we consider that we have a sample x,,...,x, for n multinomial trials with possible
outcomes 1,2,....k . eV with probabilities of occurrence py,..., p, that are un-
known. Estimates p; of the probabilities p; may be obtained as sample relative
frequencies (p; = n;/n) or cell proportions, or by smoothing the p,. In the latter case we
presume that V is an ordered set and that “distance” between its members is definable
through a standard Lebesgue measure. We consider cases where the set ¥ may be
bounded or unbounded, and focus on developing an appropriate smoother for the
sample relative frequencies that properly deals with the discrete nature of the process.

Our practical interest lay in developing a discrete, nonparametric p.m.f for data on
the length (in days) of dry or wet spells of rainfall. The shortest spell considered is 1 day.
In general, the longest possible spell is not known a priori. Data suggests long right
tailed distributions for dry spell length that may correspond to a mixture of geometric
p.m.I’s (see Rajagopalan et al. [10]).

The concept of smoothing in the context of multinomial cell probability estimation
was introduced by Good [6 and 7]. This was later studied and improved by Fienberg
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and Holland [5], Stone [13], Titterington [14], Titterington [15], Aitchison and

Aitken [1], Titterington and Bowman [ 16] among others. Bishop et al. [2] show that

these estimators are often better than the cell proportion estimate under squared error

loss. Hall and Titterington [&] argue that j, may not be consistent in data sparse

situations. The smoothing estimators developed by Wang and Van Ryzin [17],

Simonoff [12] and Hall and Titterington [8] formed a starting point for our work.
The general form of smoothing estimators in this context is given by

j=x
p;= > K, j,h)p; i jel the set of integers (1)

j=

K(i, j, h) is a weight function or kernel, j; is the relative frequency of cell jand h is called
the bandwidth of window width.

Wang and Van Ryzin [17] developed a class of estimators of the form (1), using
a Geometric kernel (WV) (K (i, j,h)=0.5h(1 —h)'1if |i —j| = 1; K(i,j, j,h)=(1 — h) if
i = j and he[0,1]). The “drop off” of weights associated with the Geometric kernel is
rapid. Wang and Van Ryzin [17] estimate h under an approximate (MSE) criterion
formed by truncating the Geometric kernel beyond two cells. As a result, very little
smoothing is obtained in most cases and not much may be gained for sparse data.

By imposing a smoothness constraint on the cell probabilities, Simonoff [12]
obtained relative consistency results for an estimator based on a maximum penalised
likelihood criterion (MPLE). In this approach, the estimates p; are solved by minimiz-
ing a penalized likelihood function defined as,

ku

ku
L= nlog(p)—p Y {log(pi/p;: 1)}

i=1 i=1

such that

B >0, is a smoothing parameter, and V: [1,k,]

The estimates from MPLE dependend significantly on the extent of estimation
required (i.e., k,) beyond the maximum observed cell (ie., k). This is of concern,
because we would prefer a natural extension of the tail of the p.m.f by the method used,
rather than a prior specification of its extent.

The estimator developed by Hall and Titterington [8] (here after referred to as HT) is
given as,

j=x
pi= Z W(i~j3h)ﬁj 3)
J=—

where W(i, j,h) = K((i — j)/h)/s(h), h> 1 and s(h) = ijfm K(j/h). K(*) is any suitable
continuous univariate kernel function, with compact support satisfying the conditions
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of positivity, intergration to unity, symmetry, and finite variance which are,
(a) K(u) > 0; (b) jK(u)du =1; (¢) qu(u)du =0; (d) JuzK(u)du =k2#0 (4)

where u = (i — j)/h, and s(h) is a multiplicative factor required to normalize the continu-
ous variable kernel function for use with discrete data, such that the desired conditions
on W()viz. 3I2* W(i,j,h)=1and ¥IZ* jW(i,jh)=0 are satisfied. Hall and
Titterington [8] proposed a cross-validatory procedure for selecting h. This was later
studied by Dong and Simonoff [ 3] who extended this estimator to boundary kernels.

It is well known that kernel estimators suffer from increased bias in the boundary
region (i.e. | <i<h+ 1 in our situation of interest). For the estimates of cells in the
boundary there is a lack of full complement of observations on either side of the cell of
estimate. As a result, the desired conditions on W(i, j, h) mentioned above will not be
preserved. To correct this, special boundary kernels that satisfy the required conditions
are used (Miiller [9]). Miiller [9] formally developed special boundary kernels in the
continuous case. Dong and Simonoff[3] developed boundary kernels (condition 4(a) is
relaxed) that could be used in the HT estimator for the discrete case. We refer to the HT
estimator with the boundary modification of Dong and Simonoff [3] as HT/DS.

We performed comparisons of these three estimators (viz. WV, MPLE and HT/DS)
ondata generated from long tailed distributions (see Rajagopalan et al. [ 10]) and found
HT/DS to be the best. Hence, we compare the relative performance of the estimator we
develop later in this paper with HT/DS.

For finite samples, some disquieting aspects of the HT estimator become apparent.
The non-integer bandwidth leads to an effective kernel that also varies with h in
a manner quite different from that prescribed by (4). The effective integer support of
W(i, j, h) is [(i—h*), (i + h*)], where h* is the closest integer greater than or equal to h.
HT/DS kernels are defined as quadratics or other polynomials over [i —h, i+ h]. Since
this is not the effective integer support of the kernel the effective kernel over the space of
integers is not the quadratic defined.

Alternatively, it is possible to develop a kernel that recognizes the data to be in
integer space, has an integer bandwidth and satisfies all the required conditions in the
integer space. This also obviates the need for normalization of the kernel weights as
donein HT/DS. We explored this line of thought and, sought a direct, discrete analog of
the continuous kernel density estimator.

The estimator is first presented. Bandwidth estimation is described next. Monte
Carlo comparisons with HT/DS are then present. Comparisons with real data sets
follow. Discussion of the new estimator and other possible discrete estimators conclude
the paper.

2. THE DISCRETE KERNEL ESTIMATOR (DKE)

We define our estimator p, for cell i through a weighted linear combination of the
sample relative frequencies, p; as,

K
pi= ZK(fj)ﬁj (5)
j=1
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where i, jand h are positive integers, t; = (i —j)/h,K(t) is a kernel function,and V:[1, o0 ].
In the continuous case, Epanechnikov [4] showed that the MSE optimal kernel of
second order, is the quadratic kernel (QK), also known as the Epanechnikov kernel.
The general form of the QK is,

Kuy=au’>+b for |ul<l (6)

In the continuous case, a = —0.75, b =0.75. Scott [11], p. 140, Equation 6.25 points
out that this corresponds to a Beta density function, defined for te[ — 1,1]. Other
members of this class can be used if additional smoothness is desired.

Here, we chose a discrete quadratic (DQ) kernel of the form K (¢)) = atj2 + b, where
t,=(i — j)/h. The main focus then is to specify the constants a and b for the interior
(i>h+1) and the boundary region(1 <i < h+ 1). The constants @ and b are solved to
satisfy: (A) the kernel function goes to zero for |i—j| > h, ie., K(t;) =0 for [1;| > 1, (B)
sum of the weights is unity, i.e., Y2 ¥ K(i—j/h) =1 and (C) the first moment of the
kernel function is zero, i.e., Zﬁffﬁ K(i—j/h)t;=0. Note that the above conditions are
the discrete versions of the conditions given in Equation (3) for continuous variable
kernels. One could choose higher order Beta kernels and derive results similar to these
that follow for DQ.

For the interior region (i > h+ 1) using Conditions (A) and (B) gives Equations (7)

and (8),

K, ,)=K(t,_,)=0 (7)
j=ith

Y, (at?+b)=1, wheret;=(i—j)/h (8)
j=i—h

Condition (C) is satisfied if ¢ = — b. The coefficients a and b can now be expressed in
terms of the bandwidth h as,

—3h 3h
—_i h=—"— 9
=T and 047 ©)

For the boundary region (1 <i < h+ 1) Condition A is modified as,
K(t)=0 for t<—1 and t>q where g=(i—1)/h (10)

Applying Conditions (B) and (C) we get Equations (11) and (12).

j=i+th

Y (at?+b)=1 (11)
i=1

j=i+h

tjat? +b)=0 (12)
i=1

J



DISCRETE KERNEL ESTIMATION 413

Solving for ¢ and b we get,

__—b | b_[_ac] 1 )
R VAT E o D T T
a2+

where,

C=hth+1D)2h+ 1)+ (i—2)(i—1)(2i—23)
D= —hh+1)+({i—2)(i—1)
E=(—hh+ 1))+ ((i—2)(i—1))?

From Equation (10) it can be seen that at the boundary (i.e.,i = 1) the weight associated
with the kernel is zero. This is not desirable because, for long tailed distributions
defined on the interval [ 1, co) most of the mass is concentrated right at i = 1. Clearly,
using the boundary modification in Equation (13) for estimation of p.m.f at the
boundary (i.e., i = 1) will introduce a large bias in the estimate. Therefore, we need
a further modification for estimation at i = 1. By not enforcing the K(t)=0ati=1, we
modify (A) to be

K(t)=0 for t<—1 (14)

while Equation (11) and (12) remain the same. Solving Equations 14,11 and 12 for
a and b we get,

—D 1 aC |1
= Cob=[1-22 2 15
““mTE cp [ 6/12}11 L
o\ R

C=hth—1)2h-1)
D= —hh—-1)
E=—(h(h—1))*.

where,

From Equations (9), (13) and (15) note that the kernel and hence, the estimator p; is
expressed strictly in terms of the bandwidth h. An optimal choice of 4 then completes
the definition of the estimator.

Three criterion often used for bandwidth estimation are (1) direct minimization of
average mean square error (MSE) (2) Maximum likelihood cross validation (MLCYV)
and (3) Least squares cross validation (LSCV). These could be optimized over a discrete
set of h values.

We tested all the three methods and found LSCV to be the best. Hall and
Titterington [8] and Dong and Simonoeff [3] also argue in favour of LSCV. The
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bandwidth is selected by minimizing the LSCV function given as,

=
3

LSCV(R =Y (3> -~ p_.n, (16)

1 i

| N
=~
3

=

where, p_, is the estimate of the i'" cell, by dropping the i'" cell and n. In a related
context, Hall and Titterington [8] also show that cross-validation automatically
adapts the estimator to an extreme range of sparseness types. If the multinomial is only
slightly sparse, cross-validation will produce an estimator which is virtually the same as
the cell-proportion estimator. As sparseness increases, cross-validation will automati-
cally supply more and more smoothing, to a degree which is asymptotically optimal.

An example application comparing DKE (with DQ kernel) to HT/DS with QK
based kernels for four data sets is shown in Figures 1,2, 3 and 4. The data in Figure 1
was sampled from a Geometric distribution (G1) defined as G(n=0.2). The data in
Figure 2 was sampled from a mixture of two Geometric distributions (G2) defined as
(0.3G(n =0.9) + 0.7G(r = 0.2)). The sample sizes for G1 and G2 are 250. Figure 3 shows
the p.m.festimates estimated for the mines data. analysed by Dong and Simonoff [3].
Figure 4 shows the estimated p.m.f from both estimators of dry spell length data, for
season 3 (i.e., Jul-Sep) for the station Woodruff, in Utah. The sample size in this case
was 539. All four figures indicate that both DKE and HT/DS perform comparably. As
both the estimators are similar this is expected. We investigate through Monte Carlo
simulations, the behaviour of these estimates for selected situations. The behaviour of

o
N
o
L Sample frequency
“'-_ — True p.m.f
o % — — HT/DS
S ;
- o
E S
a o
o
o
o
e}
= 2
0 5 10 15 20 25 30
cell

Figure 1. True p.m.f, estimated p.m.f from HT/DS and DKE of a sample of size 250, data generated from
Geometric (w = 0.2), along with the sample frequency.
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Figure 2. True p.m.f, estimated p.m.f from HT/DS and DKE of a sample of size 250 generated from 0.7*
Geometric (m = 0.2) + 0.3* Geometric (r = 0.9), along with the sample frequency.
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Figure 3. Estimated p.m.f from HT/DS and DKE of the mines data, along with sample frequency
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Figure 4. Estimated p.m.ffrom HT/DS and DKE of the dry spell length data of Woodruff, Utah, along with
the sample frequency.

the weight sequence from both the estimators are also probed. The results are discussed
in the following section.

3. MONTE CARLO COMPARISONS

We present results from Monte Carlo simulations, comparing our estimator with the
HT/DS estimator using QK. Data sets were generated from situations that may be of
interest in our particular context (e.g., geometric distribution, with a considerable
boundary region). We generated 500 realizations from the two populations G1 and G2.
Sample sizes chosen were n = 50, 100, 200, 300, 500.

The statistical measures computed to assess the relative performance of DKE and
HT/DS estimators are:

1. Average Sum of Squared Errors (ASSE) (X121 (324 (p,; — p)?)/nsim) across
all realizations for each sample size.

2. Sum of Squared Error (SSE (i - A (bi;— p,)?) for each realizationj=1,..., nsim.

3. Average Sum of Absolute Error(ASAE)( ’ mim (3= h abs(p;; — p;))/nsim) across
all realizations for each sample size.

4. Cell Root Mean Square Error (CRMSE) | ’ "‘”“((pU p,)*)/nsim}°- across all
realizations for each sample size and for each celli=1,..., k,.

5. Fractional Cell Root Mean Square Error: FCRMSE, = CRMSE,/p,.
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6. Average Cell Bias (CBIAS;,) Z}:"‘”" ((p;; — p;)/nsim) across all realizations for each
size and for each cell i =1,...,k,.

7. Fractional Cell Bias: FCBIAS, = CBIAS,/p,.

8. Coeflicient of variation of bandwidth C, = s/h for each sample size. Where s and
h are the standard deviation and mean of the bandwidths obtained for all the nsim
realizations.

Note that we chose k, to be 30 in this case, and p;’s are the true p.m.f’s obtained from
the known underlying distributions from the samples were generated, nsim is the
number of simulations, in our case it is 500,

Table 1 shows the ASSE and ASAE for the two estimators for the two populations
G1 and G2 considered. It can be observed from Table 1 and Figures 5 and 6 that the
performance of the two estimators over these two measures is quite close. Figures 5 and
6 indicate that the ASSE appears to decrease with n at rates — 1.03 and — 0.86 for
HT/DS and —0.85 and — 0.9 for DKE, for G1 and G2 respectively. These rates are
very similar, and are close to the rate n~ ' as anticipated in Hall and Titterington’s [8]
Theorem 2.1. However, the SSE for HT/DS has a larger spread that DKE as can be
seen from Figures 7 and 8 for G1 and G2 respectively for a sample size of 50. The results
were generally similar for other sample sizes.

As mentioned earlier we are interested in the behaviour of these estimators at the
boundary (left boundary) and in the tails. To assess this, CRMSE; and FCRMSE, for
different sample sizes n were estimated. As an illustration we present the estimates of
FCRMSE; for sample sizes 50 and 500 for G1 in Figures9a and 9b respectively.
Figures 10a and 10b are corresponding figures for G2. These figures suggest that DKE
performs better than HT/DS in the tail region for all sample sizes, more so for smaller
sample sizes. The results for other sample sizes were intermediate.

From Figures 11 and 12 we see that part of the poorer performance of HT/DS in the
tails is due to higher bias.

Table 1. Comparison of ASSE and ASAE

ASSE ASAE

DKE PAR HT/DS DKE PAR HT/DS

Samples generated from G1 (Geometric (7 = 0.2))

n=>50 0.0058 0.0008 0.0084 0.2032 0.0816 0.2737
n=100 0.0032 0.0006 0.0038 0.1558 0.0599 0.1814
n=200 0.0019 0.0003 0.0019 0.1183 0.4250 0.1264
n=2300 0.0013 0.0002 0.0012 0.1000 0.0323 0.0987
n=>500 0.0008 0.0000 0.0008 0.0780 0.0226 0.0797
Samples generated from G2 (0.7* Geometric (r = 0.2) + 0.3* Geometric (r = 0.9))

n=>50 0.0080 — 0.0081 0.2300 - 0.2481
n=100 0.0039 - 0.0038 0.1676 — 0.1638
n=200 0.0021 0.0022 0.1261 - 0.1194
n=300 0.0016 - 0.0016 0.1071 - 0.0978
n=>500 0.0010 - 0.0011 0.0855 — 0.0785

NOTE: PNR is the fitted parametric (in this case the fitted Geometric distribution)
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Figure 5. Log-Log plot of ASSE with sample size n, of samples generated from Geometric (x = 0.2) along
with the fitted lines.
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Figure 6. Log-Log plot of ASSE with sample size n, of samples generated from 0.7* Geometric
(r =0.2) + 0.3* Geometric (n = 0.9) along with the fitted lines.
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Figure 7. Boxplots of SSE; from HT/DS, DK E and fitted Parametric distribution, of samples generated from
Geometric (r = 0.2) of sample size 50.
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Figure 8. Boxplots of SSE; from HT/DS and DKE of samples generated from 0.7% Geometric
(m=0.2)+ 0.3* Geometric (r = 0.9) of sample size S0.
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Figure 9(a). FCRMSE, from HT/DS, DKE and fitted Parametric distribution, of samples generated from
Geometric (n = 0.2) of sample size 50.
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Figure 9(b). FCRMSE, from HT/DS, DKE and fitted Parametric distribution, of samples generated from
Geometric (n = 0.2) of sample size 500.
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Figure 10(a). FCRMSE, from HT/DS and DKE, of samples generated from 0.7* Geometric (n = 0.2) + 0.3*
Geometric (m = 0.9) of sample size 50.
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Figure 10(b). FCRMSE, from HT/DS and DKE, of samples generated from 0.7* Geometric (n = 0.2) + 0.3*
Geometric (z = 0.9) of sample size 500.
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Figure 11. FCBIAS, from HT/DS and DKE, of samples generated from Geometric (n = 0.2) of sample size
500.
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Figure 12. FCBIAS,; from HT/DS, and DKE of samples generated from 0.7* Geometric (r = 0.2) +0.3*
Geometric (1 = 0.9) of sample size 500.
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The MSE expression of the estimate p; as given by Wang and Van Ryzin [17] is,

Kmas kiax Kiax Kmox Lo 2
E[ Y {ﬁi—pi}2]= Y D, Wz(i,j,h)p,-/n— Y {Z Wz(i,j,h)pj} /n
i=1

i=1j=1 i=1 j=1

Kkmax kmax 2
+ Z { Z W(i-.j’h)pj_pi} (17)

i=1 (j=1

where p; is the true p.m.f, W(i, j, h) is the weight function, 4 is the bandwidth and n is the
sample size. For the two populations considered viz. G1 and G2 we know the true p.m.{
Substituting this for p; in the above equation, the optimal bandwidth can be determined
for various sample sizes. These bandwidth values are then compared with the corres-
ponding average bandwidths obtained from the simulations. These along with the
coefficient of variance of bandwidth C, are summarized in Table 2. It can be observed
that Cy, is smaller for DKE for all the sample sizes for G1 and G2. Note that DKE
smooths the Geometric distribution data (G1) more than HT/DS, and smooths the
mixture data (G2) less than HT/DS. Also the average bandwidths from DKE are close
to the MSE optimal bandwidths. This suggests that the bandwidth from DKE is more
stable than from HT/DS.

The behaviour of HT/DS in these simulations is interesting. There is a tendency to
undersmooth relative to the optimal bandwidth. As a result the boundary bias
decreases with n, while the tail bias may be high. The higher coefficient of variance of the
HT/DS bandwidth suggests a higher degree of adaptation to sample attributes.
However, this fails to consistently provide a lower bias on MSE than DKE.

The need to choose a bandwidth in the boundary region that is different from the
interior has been recognized by several researchers (e.g, Miiller [9]). Generally
variation in h across the range of the data, and especially in the tails is needed. The
selection of a “local” bandwidth considering boundary kernels and tail regions remains
an area of research.

Table 2. Bandwidth statistics.

Coefficient of Variation Average Bandwidth Optimal Bandwidth from
MSE Criteria
DKE HT/DS DKE HT/DS DKE HT/DS
Sample from G1
n=>50 0.349 0.442 6.73 5.48 7.00 8.06
n=100 0.305 0.401 6.13 497 6.00 8.06
n=200 0.361 0.316 4.96 4.36 5.00 7.14
n=2300 0.290 0.314 451 421 4.00 6.25
n=>500 0.275 0.341 4.00 347 4.00 5.56
Sample from G2
n=>50 0.309 0.291 2.844 3.067 3.00 4.10
n=100 0.210 0.220 2.280 2931 2.00 4.03
n=200 0.007 0.213 2.020 2.902 2.00 4.03
n=300 0.000 0.212 2.000 2912 2.00 4.03

n=>500 0.000 0:214 2.000 2.844 2.00 4.03
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4. OTHER POSSIBLE ESTIMATORS

Miiller [9] shows how one can develop minimum variance kernels and kernels
belonging to different smoothness classes for continuous variates. Extensions of these
ideas to the discrete case is also feasible. Here we outline two such extensions.

A discrete, minimum variance (DMYV), second order kernel can be developed as the
solution to:

ith
Minimize ) w? (18)
i=q
Subject to:
w,=w;,., =0 (19)
i+h
Y w=1 (20)
i=q
i+h
Y tw,= (21)
i=q

wheret; = (i — j)/h,i, j, hare integers and g = max (i — h, 1), recognizes whether we are in
the boundary region or the interior.

A smooth, disrete (DSy) kernel of smoothness u can be defined by solving the
problem: Minimize 3{2%™*(w,, , —w;)? subject to the conditions (19) through (21)
above. Solutions to the two problems defined above can be readily obtained by defining
the associated Lagrangian problems and solving them for the weights w ; that define the
kernel sequence over the appropriate span of integers.

The weight sequences resulting for DMV and DS1 (u = 1) for selected values of h,
and i are compared with the DQ and HT/DS weight sequences in Table 3. In the
interior, the HT/DS, DQ and DSI1 weight sequences coincide. This is to be expected
since they all converge to the quadratic kernel. The DMV sequence degenerates
to uniform weights as expected. An examination of the weight sequences in the
boundary region shows that the DQ sequences stay closer to the DS1 sequences
than the HT/DS ones. Thus if a computationally fast approximation to the DSI1
sequences was desired in the boundary region, DQ would be preferred. Note that
the DMV sequences in the boundary region are still generally closer to the DS1 than
the HT/DS.

An interesting aspect of the HT/DS sequence is the adaptation of the weight
sequence as h varies between two integers. We observe that the weight sequences at the
intermediate h value are not strictly in between the weight sequences at the end points.
While this may lead to a high degree of adaptability of the HT/DS procedure, it makes
it rather difficult to assess its impact on the estimation procedure. The high coefficient
of variation of the bandwidth selected by HT/DS may be related to the nature of the
resulting weight sequence.
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Table 3. Comparison of weight sequences.

h=2 h=25 h=3
Interior
DQ 0,.3,.4,.3,0 — 0,.14.23,.26,.23,.14,0
HT/DS 0,.3,.4,.3,0 0,.11,.25,.29,.285,. 11,0 0,.14.23,. 26,.23,.14,0
DMV 0,.33,.33,.33,0 0,2, 2525 <2,: 2,10
DS1 0,.28,.44,.28,0 0,.14.23,. 26,.23,.14,0
Boundary
i=1
DQ 1,0,0 — 79;+5,—25,0
HT/DS 0.1,0 0,1.7,-7,0 0,.5,-.25,0
i=2
DQ 0,1,0,0 = 0,.75,.5,-.25,0
HT/DS 0,.63,.37,0 0,.62,.45,-.07,0 0,.5,.4,.1,0
DMV 0,1,0,0 0,.83,.33,-.16,0
DSI 0,1,0,0 0,.8,.4,-.2,0
i=3
DQ ~ 0,.3,.4,.3,0,0
HT/DS 0,.28,.35,.28,.08,0 0,.28,.32,.28,.12,0
DMV 0,.4,.3,.2,.1,0
DS1 0,.34,.37,.23,.06,0

Notes: iis the point of estimate, on which the kernel is placed, h is the bandwidth. DQ,DMY and DSI do not
admit non integer bandwidths. The HT/DS weights correspond to a quadratic kernel, and admits
non-interger h

The boundary kernels developed by Dong and Simonoff [13] do not correspond to
the ones presented by Miiller [9] for the continuous case. It may be interesting to try the
Miiller [9] boundary kernels, possible with a floating boundary value, directly with the
HT procedure.

Computational considerations have restricted our Monte Carlo investigations thus
far to DQ and HT/DS. The relative utility of DMV and DS may be investigated
subsequently. Except in the boundary region, our limited investigations show that
differences between the different kernels may not be large. Consequently, kernels that
are easier to compute are expedient. In this respect the DQ kernels are to be preferred.

5. SUMMARY AND CONCLUSIONS

The estimator presented here was motivated by practical considerations. We offer this
work in the hope that it will stimulate interest and theoretical development. We show
that the discrete kernel procedure advocated can give results comparable to those from
the HT/DS procedure. Computational advantages of the DKE procedure and the
similarity of its properties to kernel sequences based on smoothness criteria were
demonstrated. The relative stability of the bandwidth selection procedure and the DQ
weight sequence also recommend it as an alternative to the HT/DS method.

We present only one special case (a quadratic kernel in the interior and in the
boundary region). Clearly other similar higher order kernels can be derived. However,
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as it is typical in the kernel smoothing literature, bandwidth selection is likely to be
a more tenuous issue than kernel specification. The LSCV choice of h appears to
perform quite satisfactorily for the test cases. Extensions to the multivariate case are
being investigated.
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