Regression Model for Daily Maximum Stream Temperature
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Abstract:  An empirical model is developed to predict daily maximum stream temperatures for the summer period. The model is created
using a stepwise linear regression procedure to select significant predictors. The predictive model includes a prediction confidence interv
to quantify the uncertainty. The methodology is applied to the Truckee River in California and Nevada. The stepwise procedure select:
daily maximum air temperature and average daily flow as the variables to predict maximum daily stream temperature at Reno, Nev. The
model is shown to work in a predictive mode by validation using three years of historical data. Using the uncertainty quantification, the
amount of required additional flow to meet a target stream temperature with a desired level of confidence is determined.
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Introduction ing decisions, the prediction must meet the following specific
requirements: it must be quick, accurate, easy to use, and spatially
and temporally consistent with the operations models. To incor-
porate stream temperature in the operations model, the normal
operating policies are simulated and the stream temperature is
predicted. Based on the prediction, decisions can be made to re-
lease additional water, if necessary, to improve the stream tem-
perature. As various researchers expléBeck 1987; Reckhow
1994; Varis et al. 1994 the uncertainty of any prediction should
be quantified for decision making purposes. Thus, the temperature
prediction should also include a quantification of the uncertainty.
Two types of models have been developed in the past to pre-
Idict stream temperatures: empirical or regression models and
Policy Act Environmental Impact Statement analyses such asphysical_process quels. Regression models ha"‘? bee_n developed
those on the Rio Grande, Colo., and Columbia bausneville to quant_lfy and predict stream temperatures at various time scales.
1995; U.S. Bureau of Reclamation 1995, 2p00 Moh;enl et al(1998 developed an S-shaped regression mode! to
Resource managers use computer models to simulate river and)fedlCt average weekly stream temperatures _at different locations
reservoir operations. Computer simulations are useful to allow N the United States that account for hysteresis throughout a year.
water managers to investigate the effects of varying inflows, legal Mohseni et al(2002 also developed statistical upper boundaries
policies, and operating strategies. To address the problem ofOf Weekly stream temperatures, noting that in the upper part of

warm stream temperatures, resource managers need to incorp&-he S curve, increasing air temperature results in constant stream
rate stream temperature objectives in their operations models andéMmPperatures due to back radiation and evaporation. They showed

management decisions. This requires the ability to predict streamthat for an arid western U.S. desert r?gion, the maximum weekly
temperature. Because the prediction will be used in daily operat- Stréam temperature is as high as 33°C. Hockey €188 de-
veloped a daily regression model relating spot mid-day stream

temperature to flow rate and daily maximum air temperature.
Blvd. Suite 11, San Rafael, CA 94965. E-mail: davidn@ OThey concluded that their regression was not adequate because of
stetsonengineers.com lack of data. Gu et al1999 produced stream temperature regres-
2pssistant Professor, Dept. of Civil, Environmental, and Architectural SIon models for various weather conditions. They found that cor-
Engineering, Univ. of Colorado, UCB 426, Boulder, CO 80309-0426. relation of flow to river temperature is possible and useful when

An increasingly common problem in western U.S. river basins
and elsewhere in the world is that water storage and use for mu-
nicipal, industrial, agricultural, and power production purposes
leaves river biota with insufficient flow to maintain populations.

Low flows threaten biota by deteriorating habitat and/or water
quality. One of the most common summer water quality problems
associated with low flows is high stream temperatures—Ilow flows
warm up more rapidly than higher flows. High stream tempera-
tures reduce cold water fish populations by inhibiting growth and
by killing fish at extremely high temperatures. For this reason, the
impact of low flows and high stream temperatures on fish is an
issue in many operations studies and National Environmenta

lWwater Resource Engineer, Stetson Engineers Inc., 2171 F. Francisc

E-mail: rajagopalan.balaji@colorado.edu weather parameters are decoupled from the model.

SDirector, Center for Advanced Decision Support for Water and In contrast to regression based models, many physical process
Environmental System$CADSWES, Univ. of Colorado, UCB 421, models have been developed. Physical process models attempt to
Boulder, CO 80309-0421. E-mail: zagona@colorado.edu model the underlying processes that affect stream temperature
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0733-9372/2003/7-667—674/$18.00. sults, this type of model requires numerous detailed input data, is
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| Reno/Spark quality of the Truckee River, particularly in the lower reaches
B —~_t where the river flattens out in the desert betweeq Reno and P_yra-
T g O A mid Lake. The water acquired by the WQSA will be stored in
gflr:g‘l:n N Truckee River upstream reservoirs and released as necessary to mitigate down-
T P stream water quality problems. In particular, this WQSA water
will be released on a daily basis to meet a target daily maximum
stream temperature. The stream temperature of the Truckee River
between the confluence with the Little Truckee River and Reno is

| influenced mainly by natural warming, that includes solar radia-
|
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. tion and conduction. Downstream of Reno, wastewater effluent
North and irrigation return flows enter the river, making accurate tem-
perature predictions much more complex and uncertain. As a first
Map Not to Scale step to improve Truckee River water quality, this paper investi-
gates the temperature at Reno. A diagram of the study section is
shown in Fig. 1.
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Fig. 1. Diagram of study section

Stream Temperature Model
computationally intensive and is, therefore, difficult to incorpo-
rate in a river and reservoir operations model. Empirical, regres- The goal of regression models is to fit a set of data with an
sion based models can be computationally less intensive, thereequation, the simplest being a linear equation. The linear regres-
fore quick to implement and easy to validate. With regression Sion model takes the form
models it is possible to easily quantify the uncertainty.
In this paper, we develop a regression model to predict low
flow summer stream temperatures on the Truckee River at Renowhere T=stream temperaturea,,a;,a,,...,a,=coefficients;
The model is developed using a stepwise linear regression proceandx, ,X,,... X,=independent predictors.
dure that selects the significant predictors. The regression model The available data are summarized in Table 1 with the loca-
provides uncertainty estimates using standard linear regressiortions of the gaging sites shown in Fig. 1. Most of the temperature
theory. We develop a strategy to use the uncertainty information data were collected after 1993. Since 1993 and 1994 were dry
to determine the additional flow required to meet a temperature years with low flows and high river temperatures, the same con-
target with a given confidence level. ditions that the prediction will be used, these are the most appro-
This paper is organized as follows. We present the water qual- priate years to use in the empirical relationships. In addition, only
ity issues on the Truckee River. Next, we describe the develop-data from June, July, and August will be used. We did not include
ment of the regression model and present statistical model diag-September because the river cools in the latter half of the month.
nostics. We validate the model using historical data and presentit is likely that the model developed will be applicable to the first
strategies to use the uncertainty of the prediction. Finally, we half of September. We chose to look at data for which the flow at
discuss the results and summarize the findings. Farad was less than 14.2%k% (500 cf§ because at flows above
this threshold, there is rarely a temperature problem in the study
reach. Also, 14.2 s (500 cf9 is a logical cutoff because, ac-
Truckee River Background cording to U.S. Bureau of Reclamation water manag&ott,
personal communication, 20Qk&dditional water to mitigate tem-
The methodology developed is applied to the Truckee River in perature problems will not be released when the flow at Farad is
California and Nevada. The Truckee River, like other basins in above the legal flow target of 14.2%w (500 cf9.
the western U.S., does not have the water resources to meet ag- Candidate predictors for the stream temperature prediction at
ricultural, municipal, and industrial purposes and still provide ad- Reno include:
equate habitat for fish. The Truckee River flows 187 km from 1. Previous day’s daily maximum stream temperature at Reno
Lake Tahoe in California’s Sierra Nevada mountains through an (location B;
arid desert before terminating in Nevada’'s Pyramid Lake. The 2. Daily maximum stream temperature at the Truckee River
upstream reservoirs, shown in Fig. 1, are operated to meet the below the confluence with Little Truckee Rivéocation D);
Floriston rates, a flow target measured at the Farad gage on thes. Daily maximum air temperature at Reflocation G;
California and Nevada border. The flow target, which dictates 4. Daily maximum air temperature at Bo@acation H);
many of the release and storage decisions in the basin, varies. Average daily flow at Rendocation B;
between 8.5 and 14.2%s (300-500 cfs depending on the time 6. Average daily flow at Farad gaglcation B; and
of year and the reservoir levels. The rates were established in the7.  Daily maximum release temperature from Bdlceation Q.
1935 Truckee River Agreement to meet quantity requirements for ~ The first predictor variable is not useful for the daily opera-
irrigation and power production purposes. On average, the Floris-tions purposes. Although historically the stream temperature on
ton rates are higher than natural flows in the summer and fall andany day is closely related to the stream temperature on the previ-
lower in the winter and spring. Sometimes, stream flows are ous day, once water is released to affect the temperature, that
lower than Floriston rates because of lack of unregulated inflows relationship will be changed. For example, the previous day’s
and available stored water. The low flows result in temperaturestemperature may be below the target but only because additional
in the lower river that are too warm during the summer months water was released. This corrected temperature is not related to
for threatened cold water fish. In accordance with the 1996 Waterthe current day’s temperature unless an equivalent flow is re-
Quality Settlement Agreemeit?WQSA), the federal government  leased. Therefore, the previous day’s stream temperature cannot
will purchase water rights that will be used to improve the water be used in the predictive model.

T=ap+ayx;+aX+...+anX, (1)
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Table 1. Available Relevant Data

Schematic
locator Location Data available Collection period
A Truckee River above Prosser Cre@kSGS 10348000 Average daily flow 3/1993-9/1998
Daily maximum stream temperature 3/1993-9/1998
Hourly stream temperature 6/1993-10/1994
B Prosser Creek below Prosg@0340500 Average daily flow 1/1942—current
Daily maximum stream temperature 3/1993-9/1998
Hourly stream temperature 6/1993-10/1994
C Little Truckee River below Boc&10344500 Average daily flow 6/1980—current
Daily maximum stream temperature 4/1993-9/1998
Hourly stream temperature 6/1993-10/1994
D Truckee River below Little Truckee River confluence Average daily flow 7/1994-10/1994
Hourly stream temperature 7/1994-10/1994
E Truckee River at Farad 0346000 Average daily flow 1/1909—current
Daily maximum stream temperature 4/1980-9/1998
Hourly stream temperature 7/1993-10/1994
F Truckee River at Ren@l0348000 Average daily flow 7/1906—current
Daily maximum stream temperature 8/1989-9/1998
Hourly stream temperature 1/1994-11/1994
G Reno Airport Daily maximum air temperature 1/1986-12/1996
H Near Boca Reservoir Daily maximum air temperature 1/1986-12/1996

Predictor 2 is not an observed quantity; rather, it is a flow- Higher flow leads to lower stream temperatures and warm air
weighted average of historical temperature observations at A, B,temperatures lead to warmer water temperatures. Also, there is a
and C in Fig. 1. It is computed as strong correlation between upstream stream temperatBesa

release and location)land stream temperatures at Reno. Since it
appears that all of these predictors are related to Reno water tem-
@) peratures, the goal is to select the best subset of predictors that
explain the most variability in the stream temperature.
whereT,; =temperature of the water at locatigrandQ; = flow at A stepwise regression procedure is used to select the best sub-
location i. Eg. (2) represents a conservation of heat assuming set of predictors from the candidate predictors. The stepwise pro-
there are no additional heat sources or sinks. cedure selects the subset of predictors optimizing on one the fol-

Fig. 2 shows scatter plots of the predictors and the daily maxi- lowing indicator statistics: Mallow'sCp, Akaike's Information
mum stream temperature at Reno along with a locally weighted Criteria (AIC), R?, or adjustedR?. The AIC andCp statistics are
regression curvélLoader 1999 through the scatter. The figure widely used because they try to achieve a good compromise be-
shows there is a strong positive correlation between air tempera-tween the desire to explain as much variance in the predictor
ture and stream temperature, and a negative correlation betweerariable as possibléminimize biag by including all relevant pre-
flow and stream temperature. These results are as expecteddictor variables, and to minimize the variance of the resulting

_ TaQa+TeQs+TcQc
b Qa+Qp+Qc
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Fig. 2. Data used in regression relationships
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Table 2. Stepwise Selection to Find Daily Maximum Stream
Temperature at Reno

AIC value
f(flow
f(flow at Farad,
f(variable at Farad, Reno airT,
in variable in variable in
Stream temperature at Remo  column ) column ) column 1
Constant 1,016 239 140
Stream temperature at location D 309 198 153
Air temperature at Reno 379 140 —
Air temperature at Boca 500 190 159
Flow at Reno 278 250 158
Flow at Farad 239 — —
Boca release temperature 244 225 155

estimategminimize the standard errpby keeping the number of
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Fig. 3. Estimated versus observed daily maximum stream tempera-
ture for Truckee River at Reno

ence(location D). This model has an adjust&f of 0.92 which is

not significantly different than th&? in the regression described
by Eq.(6). Because th®? values are similar, it is more efficient
to use the model with the smallest number of predictor variables.
Therefore, the predictive temperature model described in@&q.

coefficients small. The stepwise regression procedure fits all pos-iS used.

sible combinations of predictors and selects the model that results

in the most optimal indicator statistic.

The AIC statistic, the likelihood version of th€p statistic
(S-Plus 5 for UNIX Guide to Statistid998, p. 153 is calculated
as

AIC=62(Cp+n) 3)
and theCp statistic is

n—p)(s2—g2
Cp=p+ (p)é—zp) @)
where n=number of observationsp=number of explanatory
variables plus oné&or the constant in the regression equatig;
s§= mean square error of eagh coefficient model; ands?
=best estimate of the true err@tlelsel and Hirsch 1992, p. 312
The adjusted?? is calculated as

82

. p
[(S§)/(n—1)]

where S$=total sum of squares.

adjusted R?=1 (5)

Although Boca’s release temperature does have an impact on
the Truckee River, the stepwise regression did not select this vari-
able. This indicates that the prediction site at Reno is far enough
downstream from the reservoir that air temperature and flow are
the dominating factors. This assumes that the reservoirs are deep
enough such that water released out of the bottom of the reservoir
is cold. If the reservoir depth becomes too low, the regression
developed is not valid.

The model is consistent with earlier work by Brock and Caupp
(1996 in which they used air temperature and river flow to pre-
dict Truckee River temperatures to get the upstream boundary
condition at Reno for their Dynamic Stream Simulation and As-
sessment Model; temperatuieSSAMY).

A local nonlinear regression mod@loader 1999 was also fit
to the data using the predictors selected in the linear stepwise
procedure. We tried local spans ranging from 0.05 to 0.95. The
span that produced the highd®t value (0.96) was 0.95. TheR?
is very similar to theR? found from the linear model. Because the
linear model is simpler and allows for easy uncertainty computa-
tions, we use the linear model. For other basins or predictors, a
nonlinear local regression fit may be necessary to produce a rea-

The AIC statistic is used because it further rewards for having ggnable fit.

a low mean square error while penalizing for including too many
variables. We performed a stepwise procedure on the set of pre-

dictor variables listed above, optimizing on AIC. Table 2 shows \jode| Diagnostics

the AIC values for the stepwise procedure which indicate that air

temperature at Reno and flow at Farad are the significant predic-To investigate the performance of the regression model, we look

tors.

at the following diagnostics: normality of the residuals, autocor-

A linear regression using the predictors selected has the fol-rejation of the residuals, and cross validation of the data. Linear

lowing equation:
T=ap+a; Ty +a,Q (6)

whereT 5, = air temperature at Reno; arg@l=flow at Farad. The
regression coefficients are,=14.4°C, a,;=0.40, and a,=
—0.49°C/ni/s. The adjuste®? for this regression is 0.91. Fig. 3
shows the estimated values of maximum daily Truckee River tem-
perature at Reno from the regression equation plotted against the
historical observations. The dotted line represents the best fit.

We also performed a stepwise selection procedure optimizing
on the adjustedR? and Cp statistic as the indicator statistic. In
addition to flow at Farad and air temperature at Reno, the step-
wise procedure selected the flow at Reno and the stream tempera-

Probability of occurrence

Fig. 4.

0.6

0.4

l i) II [ S
-3 -2 -1 0 1 2

Residuals (°C)

Reno water temperature regression residuals histogram

ture at the Truckee River below the Little Truckee River conflu-
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Fig. 7. Cross validation of daily maximum stream temperature
regression, Truckee River at Reno

regression theory assumes residuals are normally distributed and
symmetric about the mean. A histogram of the residuals, Fig. 4, I

: . Model Verification
shows that the residuals of the Reno water temperature estimates

aggﬁ?frytevr?:thnec,rrgarlllgt?;lsigIgigiﬁghggztiirgdasgs)ﬁanndbzelr:d(iwn € ;?nAn empirically developed multiple linear regression model may
gi 5 which shows the quantiles of the residuals vers)lljs the guan-ﬁt the data used to estimate the regression coefficients very well,
9. q 4 but its ability to predict new data is not certain. We validate the

oo e mar T oy e i, comesiag, Todel g absenvatons ot used i ftg e regession
) y Y assess the ability of the model to predict future events.

is computed between the residual and normal quantiles. For the Fig. 8 shows the predicted and observed daily maximum

g'sag?l:;'?ﬂet%g; rc];(;rnr?igle’r;[zz ﬁa?/réflitrli(t)izarlrlursc:bgebil%:eatl‘f) rt t:;?e(_)r stream temperature at Reno for June, July, and August of 1990,
d ° ’ P y P 1991, and 1992. The predicted temperatures are from(&q.

lc‘?t'roga(tjgeg'g'gg;'gn%etlﬁglcf.r:%;'rzﬁgf%?'a-rgseo /C%r(;iﬁ;f:cl;olre ol Missing predictions indicate that the Farad flow was greater than
u IS . tical vald 0 : V€l 14.2 nils (500 cfy. The R? value for each year is also shown in

and 108 observations is 0.987. Therefore, the residuals are Sig'Fig. 8. TheR? values found in this validation process are lower

n'f'coinélﬁfn&?:ls'sum tions of linear rearession theory is that thethan the fitting procedure which is consistent with linear regres-
P 9 y sion theory. Fig. 3 shows that there are two regions in the fitting

:ﬁ)ﬂiﬂagigr‘?&cﬂ; alzttogf{gzligggu';:g' ?hsehg;\éf’e;hﬁn:gtgrc;;ﬁa'procedure, the range below 23°C has less scatter than the range
P : above 23°C. In other words, the regression is better at explaining

0, 1 I 1 i 0,
95% confidence lines. If no ACF estimates fall outside the 95% variance below 23°C than above. As a result, the skill in predict-

confidence limit, one can safely assume there is no autocorrela-, - o
. ' . e ) ing temperatures below 23°C is better. The temperature prediction
tion. The autocorrelation plot in Fig. 6 shows that there is some 9 P P P

autocorrelation between the residuals at lag 1 but shows no clearmOdeI will be used o try to meet a temperature target at Reno of
trends. A lack of autocorrelation in the residuals together with the approximately 22°C by releasing additional water. Therefore, the

. S T ) regression and confidence intervals are valid in the range in which
ggignsvlgﬁ of their distribution indicates that the model fits the the prediction will be used.

To further test the regression, a cross validation technique is
used. In cross validation, one historical observation is dropped
from the fitting process and is predicted using the regression fit
based on the remaining observations. This is repeated for all ob-

servations. The cross validated estimates are plotted against th?0 quantify the uncertainty. Helsel and Hirstt992, p. 300 de-

act.ual obseryatlons in Fig. 7. THe” value .between the CIOSS  fine theconfidence intervais the rangé+ the meanof values in
validated estimates and observed values is 0.91, which is quite

d. This furth h that th lationshin fits the dat I which the mean of estimates by regression will lie. For example,
good. 2 IS further shows that the refationship fits the gata Well. yhe 9504 confidence interval indicates that 95% of the time, the
This R? value is slightly less than the regression fittiRg be-

cause the cross validation is more of a predictive mode.

Uncertainty of Predicted Temperatures

Now that we have created a stream temperature model, we need
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Fig. 6. Reno water temperature regression residuals autocorrelation Fig. 8. Validation of daily maximum stream temperatures
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Fig. 9. Estimated versus observed daily maximum stream tempera-
ture for Truckee River at Reno Fig. 10. Temperature reduction to meet desired exceedance
probability

mean estimated response variable will be within the interval. A

similar concept called thprediction intervalis used in a predic-

tive model. The prediction interval is defined as “the confidence

interval for prediction of an estimate of an individual response Xo(X'X) o, in Eq. (7) is small compared to the first term, 1,

variable.” For example, the 95% prediction interval indicates that Provided the sample size is largelelsel and Hirsch 1992, p.

95% of the time the predicted value will be within the interval. ~ 242. This leads to an approximation of the prediction interval as
Linear regression theory provides the prediction interval to be  pregiction Intervak[§—t(a,n—p)o, §+t(a,n—p)o]

(Helsel and Hirsch 1992, p. 30 (10)

Prediction Intervak[§—t(a/2,n—p)o 1+Xx5(X' X)X,
J+t(al2n—p)oy1+x5(X'X) " x0] Prediction Confidence Distance
O

As the stream temperature model in Ef) includes flow as a
predictor, we can release additional water to lower warm stream
temperatures. The operations approach is as follows: determine
reservoir releases based on baseline operating policies, predict the
stream temperature using E§). If the predicted stream tempera-
ture is too high, release additional water to meet a target tempera-
ture. The regression and the prediction upper interval can be used
to determine a strategy to determine how much additional water
to release.

To this end, we develop the variable called the prediction con-
fidence distanc€PCD). Fig. 10 illustrates this concept. Using the

wheret(a/2,n—p)=quantile given by the 10@/2) percentile on
the student'¢-distribution havingn—p degrees of freedortAng
and Tang 1975, p. 237At large degrees of freedorm{p) the
studentgd distribution is identical to a Gaussian distribution. The
desired confidence level is-kx. There aren observations used to
create the regression apaxplanatory variables plus offfr the
intercept term The standard deviation of the residualsrisx, is
the vector{l,xl,xz,...,xp} wherexl,xz,...,xp are the predictor
variables. The matrixX consists of a column of ones and the
matrix of the new observations of predictor variables:

1 X1 X2 0 Xgp regression model, E6), we predict a stream temperattifeand
1 Xp1 X 0 Xgp its associated Gaussian distribution denoted by curvé . too
X=l... . 8 warm and may adversely affect fish. By releasing more water, we
can shift the distribution to the left. If the expected value of the
1 X Xz o Xnp distribution is shifted to the target temperatufgyge, as shown
Because the prediction is for summer only, we are only con- by curve B, the probability of exceeding that target is 0.5. Shifting
cerned with an upper boundary. By evaluating the studeérmtis- the distribution to the left of the target temperature, a distance
tribution ata instead ofa/2, we get the upper limit to be defined as PCD, such that the distribution gives a specified prob-
ability of exceeding the target temperature. Curve C shows the
Prediction Upper Limit§+t(a,n—p)oy1+xg(X' X)X distribution that results by shifting the distribution Tecessary

9) which is the target minus the PCD such that the distribution gives

This means that with 1G8)% confidence, Eq9) is the upper ~ 0.05 probability of exceedindr,ge. The PCD is defined as the
limit for the predicted value at,. Using historical data, an upper distance from the mean to the prediction interval as in (£Q):
prediction interval can be computed for the full range of predictor
variables. Fig. 9 shows the dotted regression line from(&cand PCD=t(a,n=p)o (11)
the solid 95% confidence upper prediction interval line from Eq. ~ The empirical regression formula to predict stream tempera-
(9). The upper prediction interval is approximately 1.5°C from the ture from flow and air temperature, E@), is used to determine
dotted, best fit line. Most of the observations are below the upperthe additional water required to lower the temperature such that
prediction interval line as expected. Lowering the prediction con- the probability of exceeding the target is as specified. The pre-
fidence below 95% would move the upper prediction interval dicted daily maximum air temperature is given; thus, the only
closer to the fitted regression liriee., the dotted ling controlling variable that can influence Truckee River temperature

Like a confidence interval, the prediction interval is smaller is flow. Rearranging Eq6) to solve for flow gives
near the center of the data and larger toward the edges. However,
we can assume that the prediction interval is linear. This assump-
tion is valid because the second term under the square root, ax

_ T—a;Tar—as (12)
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Table 3. Additional Flow Required at Farad to Reduce Daily Maxi-
mum River Temperature to Target of 22°C

Predicted Probability of exceedance
temperature

(°C) 0.05 0.10 0.20 0.30 0.40 0.50
22 3.2 2.5 1.6 1.0 0.5 0
23 5.4 4.7 3.8 3.2 2.7 2.2
24 7.6 6.9 6.0 5.4 4.8 4.4
25 9.8 9.1 8.2 7.6 7.1 6.5
26 11.9 11.2 10.4 9.7 9.2 8.7
27 14.1 13.4 12.5 11.9 11.4 10.9
28 16.3 15.6 14.7 14.1 13.6 13.1

Note: Values in table are additional flow required®/s).

whereT y;, = predicted air temperature at Rer@@=flow at Farad;
and T=target water temperature at Reno. Evaluating B®)
with TNecessaryas'T', we get the required flow at Farad

_ TNecessary_ arTar—as
QRequired‘ a,

(13)

ability of exceedance column. Linear interpolation can be per-
formed between rows if necessary. The additional flow required
for a probability of exceedance of 0.5 at the predicted value equal
to the target value of the table is zero because the mean predicted
value is the target value. But, additional flow is required if a more
confident prediction is required.

Discussion and Interpretation of Results

The stepwise selection procedure creates a standardized process
to select the most relevant predictors. This is useful when there
are large amounts of data that appear to be related to the stream
temperature. For summer Truckee River stream temperatures, the
most significant predictors are flow and air temperature. The
stream temperature prediction model fits the historic data well
(R?=0.9) and fits the verification period relatively well. A more
accurate, less simple model could be developed, particularly for
the high temperature range. The relationships in this study were
strongly linear, therefore linear regression is adequate. In other
studies, nonlinear techniques that can capture the dependence
structure are attractive and should be explored. Further data and
monitoring will help to improve the relationship to make it more
certain. Less water will be necessary to meet the temperature

Rearranging Eq(13), the necessary temperature at Reno, can be targets with the desired probability of exceedance allowing water

expressed as

TNecessary: aota Tay+ a-ZQRequired (14)
Subtracting Eq(14) from Eq. (6) gives
T- TNecessary: a(Q— QRequire() (15)

Rearranging, we get the additional flow required at Farad

T- TNecessary
—a,

(QRequired— Q)= (16)
To make this more general, we can also defigeessanAS in Fig.

10

TNecessary: TTarget_ PCD (17)
We can replacd yecessanin EQ. (16) with Eq. (17) to get
T— Tragett PCD
AQZ Target (18)

—a,
In the example illustrated in Fig. 10, the predicted stream tem-
perature calculated from E¢6) based on baseline operations, at
Reno isT. We want to lower the temperature to a targefyget
with probability of exceedancB. The PCD forP exceedance is
given by Eq.(11). To find the additional flow required at Farad
we enter the predicted temperatufe the target temperature
Trarger @nd the PCD into Eq(18). The resultAQ is the additional

to be saved for the future.

The structure of the linear prediction model lends itself to
relatively easy computation of uncertainties of the prediction.
Using the uncertainty, the additional flow required can be calcu-
lated such that the probability of exceeding a target temperature is
as desired. This is useful as decision makers can use varying
probability of exceedances to determine how much water to re-
lease. They might decide that on a given day they must meet the
temperature target with a high degree of certainty and will set the
probability of exceedance very low. Or, they might decide they
only have minimal confidence in the prediction and will, there-
fore, not release as much water. The structure of the prediction
leads to flexibility of operations.

There is another aspect of uncertainty that could be explored.
In an operations mode, the prediction model will use a forecasted
dialy maximum air temperature. Currently, the National Weather
Service and other agencies provide a single value for the air tem-
perature forecast. As a result, the uncertainty of the stream tem-
perature regression does not take the uncertainty of the air tem-
perature forecast into account. To include this information in the
uncertainty, one could assume a distribution of predicted air tem-
peratures and perform Monte Carlo analysis to simulate en-
sembles of predicted air temperatures. Consequently, ensembles
of stream temperature predictions can be obtained from the re-
gression.

The effect of different confidence levels, use of climate infor-

flow that must be released to reduce the stream temperature to thénation, and the effect of using information about the previous
target with the specified probability of exceeding the target stream days stream temperatures on future stream temperatures and vol-
temperature. To use a different probability of exceedance, theume of water necessary are further explored by Neunt2002).

confidence level in the PCD calculation can be modified.

The stream temperature model is used by the Decision Support

A lookup table was developed for each target temperature for System(DSS to help determine how much stored water to re-

easy use in a decision support system. For a target temperaturdgase to try to meet stream temperature targets downstream. In
the table has the initial predicted temperature on one axis and thethis application, the stream temperature prediction works very
probability of exceedance on the other axis. The values in the well because of its speed in the operations DSS and the ability to
table are the additional flow necessary to reduce the temperatureasily quantify and use the uncertainty in the decisions making
to the target as calculated by Ed.8). Table 3 shows additional  algorithm.

flows needed for a target temperature of 22°C. The table works as

follows. The expected water temperature at Reno is predictedSummary

using the regression E¢6). This value is found in the first col- We presented a regression model to predict daily maximum
umn, and the additional flow needed is found in the desired prob- stream temperatures. A stepwise procedure was used to select a
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parsimonious set of predictors that capture as much variance of
the stream temperature as possible. The results of this study show
that Truckee River stream temperatures at Reno can be predicted

confidence level,
= standard deviation of residuals; and
= best estimate of true error.

A R
I

using a simple linear regression relationship based on flow and air

temperature. A nonlinear relationship is also explored but does
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