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Regression Model for Daily Maximum Stream Temperature
David W. Neumann1; Balaji Rajagopalan2; and Edith A. Zagona3

Abstract: An empirical model is developed to predict daily maximum stream temperatures for the summer period. The model is
using a stepwise linear regression procedure to select significant predictors. The predictive model includes a prediction confidenc
to quantify the uncertainty. The methodology is applied to the Truckee River in California and Nevada. The stepwise procedure
daily maximum air temperature and average daily flow as the variables to predict maximum daily stream temperature at Reno, N
model is shown to work in a predictive mode by validation using three years of historical data. Using the uncertainty quantificati
amount of required additional flow to meet a target stream temperature with a desired level of confidence is determined.
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Introduction

An increasingly common problem in western U.S. river bas
and elsewhere in the world is that water storage and use for
nicipal, industrial, agricultural, and power production purpo
leaves river biota with insufficient flow to maintain population
Low flows threaten biota by deteriorating habitat and/or wa
quality. One of the most common summer water quality proble
associated with low flows is high stream temperatures—low flo
warm up more rapidly than higher flows. High stream tempe
tures reduce cold water fish populations by inhibiting growth a
by killing fish at extremely high temperatures. For this reason,
impact of low flows and high stream temperatures on fish is
issue in many operations studies and National Environme
Policy Act Environmental Impact Statement analyses such
those on the Rio Grande, Colo., and Columbia basins~Bonneville
1995; U.S. Bureau of Reclamation 1995, 2000!.

Resource managers use computer models to simulate rive
reservoir operations. Computer simulations are useful to a
water managers to investigate the effects of varying inflows, le
policies, and operating strategies. To address the problem
warm stream temperatures, resource managers need to inc
rate stream temperature objectives in their operations models
management decisions. This requires the ability to predict str
temperature. Because the prediction will be used in daily ope
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ing decisions, the prediction must meet the following specifi
requirements: it must be quick, accurate, easy to use, and spati
and temporally consistent with the operations models. To inco
porate stream temperature in the operations model, the norm
operating policies are simulated and the stream temperature
predicted. Based on the prediction, decisions can be made to
lease additional water, if necessary, to improve the stream te
perature. As various researchers explain~Beck 1987; Reckhow
1994; Varis et al. 1994!, the uncertainty of any prediction should
be quantified for decision making purposes. Thus, the temperat
prediction should also include a quantification of the uncertaint

Two types of models have been developed in the past to p
dict stream temperatures: empirical or regression models a
physical process models. Regression models have been develo
to quantify and predict stream temperatures at various time sca
Mohseni et al.~1998! developed an S-shaped regression model
predict average weekly stream temperatures at different locatio
in the United States that account for hysteresis throughout a ye
Mohseni et al.~2002! also developed statistical upper boundarie
for weekly stream temperatures, noting that in the upper part
the S curve, increasing air temperature results in constant stre
temperatures due to back radiation and evaporation. They show
that for an arid western U.S. desert region, the maximum week
stream temperature is as high as 33°C. Hockey et al.~1982! de-
veloped a daily regression model relating spot mid-day strea
temperature to flow rate and daily maximum air temperatur
They concluded that their regression was not adequate becaus
lack of data. Gu et al.~1999! produced stream temperature regres
sion models for various weather conditions. They found that co
relation of flow to river temperature is possible and useful whe
weather parameters are decoupled from the model.

In contrast to regression based models, many physical proc
models have been developed. Physical process models attemp
model the underlying processes that affect stream temperat
such as channel geometry, conduction, radiation, advection, a
dispersion. Among various work, Taylor~1998!; Carron and Ra-
jaram ~2001!; and Brock and Caupp~1996! developed stream
temperature models using mechanistic one- or two-dimensio
heat advection/dispersion transport equations. Although a mec
nistic temperature model could, in theory, give very accurate r
sults, this type of model requires numerous detailed input data
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Fig. 1. Diagram of study section
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quality of the Truckee River, particularly in the lower reach
where the river flattens out in the desert between Reno and
mid Lake. The water acquired by the WQSA will be stored
upstream reservoirs and released as necessary to mitigate
stream water quality problems. In particular, this WQSA wa
will be released on a daily basis to meet a target daily maxim
stream temperature. The stream temperature of the Truckee
between the confluence with the Little Truckee River and Ren
influenced mainly by natural warming, that includes solar ra
tion and conduction. Downstream of Reno, wastewater effl
and irrigation return flows enter the river, making accurate t
perature predictions much more complex and uncertain. As a
step to improve Truckee River water quality, this paper inve
gates the temperature at Reno. A diagram of the study sect
shown in Fig. 1.

Stream Temperature Model

The goal of regression models is to fit a set of data with
equation, the simplest being a linear equation. The linear re
sion model takes the form

T̂5a01a1x11a2x21...1anxn (1)

where T̂5stream temperature;a0 ,a1 ,a2 ,...,an5coefficients;
andx1 ,x2 ,...,xn5 independent predictors.

The available data are summarized in Table 1 with the l
tions of the gaging sites shown in Fig. 1. Most of the tempera
data were collected after 1993. Since 1993 and 1994 were
years with low flows and high river temperatures, the same
ditions that the prediction will be used, these are the most ap
priate years to use in the empirical relationships. In addition,
data from June, July, and August will be used. We did not inc
September because the river cools in the latter half of the m
It is likely that the model developed will be applicable to the fi
half of September. We chose to look at data for which the flo
Farad was less than 14.2 m3/s ~500 cfs! because at flows abov
this threshold, there is rarely a temperature problem in the s
reach. Also, 14.2 m3/s ~500 cfs! is a logical cutoff because, a
cording to U.S. Bureau of Reclamation water managers~Scott,
personal communication, 2001!, additional water to mitigate tem
perature problems will not be released when the flow at Far
above the legal flow target of 14.2 m3/s ~500 cfs!.

Candidate predictors for the stream temperature predictio
Reno include:
1. Previous day’s daily maximum stream temperature at R

~location F!;
2. Daily maximum stream temperature at the Truckee R

below the confluence with Little Truckee River~location D!;
3. Daily maximum air temperature at Reno~location G!;
4. Daily maximum air temperature at Boca~location H!;
5. Average daily flow at Reno~location F!;
6. Average daily flow at Farad gage~location E!; and
7. Daily maximum release temperature from Boca~location C!.

The first predictor variable is not useful for the daily ope
tions purposes. Although historically the stream temperatur
any day is closely related to the stream temperature on the p
ous day, once water is released to affect the temperature
relationship will be changed. For example, the previous d
temperature may be below the target but only because addi
water was released. This corrected temperature is not relat
the current day’s temperature unless an equivalent flow is
leased. Therefore, the previous day’s stream temperature c
be used in the predictive model.
computationally intensive and is, therefore, difficult to incorp
rate in a river and reservoir operations model. Empirical, regr
sion based models can be computationally less intensive, th
fore quick to implement and easy to validate. With regress
models it is possible to easily quantify the uncertainty.

In this paper, we develop a regression model to predict l
flow summer stream temperatures on the Truckee River at R
The model is developed using a stepwise linear regression pr
dure that selects the significant predictors. The regression m
provides uncertainty estimates using standard linear regres
theory. We develop a strategy to use the uncertainty informa
to determine the additional flow required to meet a temperat
target with a given confidence level.

This paper is organized as follows. We present the water q
ity issues on the Truckee River. Next, we describe the deve
ment of the regression model and present statistical model d
nostics. We validate the model using historical data and pres
strategies to use the uncertainty of the prediction. Finally,
discuss the results and summarize the findings.

Truckee River Background

The methodology developed is applied to the Truckee River
California and Nevada. The Truckee River, like other basins
the western U.S., does not have the water resources to mee
ricultural, municipal, and industrial purposes and still provide a
equate habitat for fish. The Truckee River flows 187 km fro
Lake Tahoe in California’s Sierra Nevada mountains through
arid desert before terminating in Nevada’s Pyramid Lake. T
upstream reservoirs, shown in Fig. 1, are operated to meet
Floriston rates, a flow target measured at the Farad gage on
California and Nevada border. The flow target, which dicta
many of the release and storage decisions in the basin, va
between 8.5 and 14.2 m3/s ~300–500 cfs! depending on the time
of year and the reservoir levels. The rates were established in
1935 Truckee River Agreement to meet quantity requirements
irrigation and power production purposes. On average, the Flo
ton rates are higher than natural flows in the summer and fall
lower in the winter and spring. Sometimes, stream flows
lower than Floriston rates because of lack of unregulated inflo
and available stored water. The low flows result in temperatu
in the lower river that are too warm during the summer mon
for threatened cold water fish. In accordance with the 1996 Wa
Quality Settlement Agreement~WQSA!, the federal governmen
will purchase water rights that will be used to improve the wa
03
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Table 1. Available Relevant Data

Schematic
locator Location Data available Collection period

A Truckee River above Prosser Creek~USGS 10348000! Average daily flow 3/1993–9/1998
Daily maximum stream temperature 3/1993–9/199
Hourly stream temperature 6/1993–10/199

B Prosser Creek below Prosser~10340500! Average daily flow 1/1942–current
Daily maximum stream temperature 3/1993–9/199
Hourly stream temperature 6/1993–10/199

C Little Truckee River below Boca~10344500! Average daily flow 6/1980–current
Daily maximum stream temperature 4/1993–9/199
Hourly stream temperature 6/1993–10/199

D Truckee River below Little Truckee River confluence Average daily flow 7/1994–10/19
Hourly stream temperature 7/1994–10/199

E Truckee River at Farad~10346000! Average daily flow 1/1909–current
Daily maximum stream temperature 4/1980–9/199
Hourly stream temperature 7/1993–10/199

F Truckee River at Reno~10348000! Average daily flow 7/1906–current
Daily maximum stream temperature 8/1989–9/199
Hourly stream temperature 1/1994–11/199

G Reno Airport Daily maximum air temperature 1/1986–12/199
H Near Boca Reservoir Daily maximum air temperature 1/1986–12/19
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Higher flow leads to lower stream temperatures and warm
temperatures lead to warmer water temperatures. Also, there
strong correlation between upstream stream temperatures~Boca
release and location D! and stream temperatures at Reno. Since
appears that all of these predictors are related to Reno water
peratures, the goal is to select the best subset of predictors
explain the most variability in the stream temperature.

A stepwise regression procedure is used to select the best
set of predictors from the candidate predictors. The stepwise p
cedure selects the subset of predictors optimizing on one the
lowing indicator statistics: Mallow’sCp, Akaike’s Information
Criteria ~AIC!, R2, or adjustedR2. The AIC andCp statistics are
widely used because they try to achieve a good compromise
tween the desire to explain as much variance in the predic
variable as possible~minimize bias! by including all relevant pre-
dictor variables, and to minimize the variance of the resulti
Fig. 2. Data used in regression relationships
Predictor 2 is not an observed quantity; rather, it is a flow
weighted average of historical temperature observations at A,
and C in Fig. 1. It is computed as

TD5
TAQA1TBQB1TCQC

QA1QB1QC
(2)

whereTi5temperature of the water at locationi; andQi5flow at
location i. Eq. ~2! represents a conservation of heat assumin
there are no additional heat sources or sinks.

Fig. 2 shows scatter plots of the predictors and the daily max
mum stream temperature at Reno along with a locally weighte
regression curve~Loader 1999! through the scatter. The figure
shows there is a strong positive correlation between air temper
ture and stream temperature, and a negative correlation betwe
flow and stream temperature. These results are as expect
AL OF ENVIRONMENTAL ENGINEERING © ASCE / JULY 2003 / 669
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Table 2. Stepwise Selection to Find Daily Maximum Strea
Temperature at Reno

Stream temperature at Reno5

AIC value

f~variable
in

column 1!

f~flow
at Farad,

variable in
column 1!

f~flow
at Farad,

Reno airT,
variable in
column 1!

Constant 1,016 239 140
Stream temperature at location D 309 198 153
Air temperature at Reno 379 140 —

Air temperature at Boca 500 190 159
Flow at Reno 278 250 158
Flow at Farad 239 — —

Boca release temperature 244 225 155
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ence~location D!. This model has an adjustedR2 of 0.92 which is
not significantly different than theR2 in the regression describe
by Eq. ~6!. Because theR2 values are similar, it is more efficien
to use the model with the smallest number of predictor variab
Therefore, the predictive temperature model described in Eq~6!
is used.

Although Boca’s release temperature does have an impa
the Truckee River, the stepwise regression did not select this
able. This indicates that the prediction site at Reno is far eno
downstream from the reservoir that air temperature and flow
the dominating factors. This assumes that the reservoirs are
enough such that water released out of the bottom of the rese
is cold. If the reservoir depth becomes too low, the regres
developed is not valid.

The model is consistent with earlier work by Brock and Cau
~1996! in which they used air temperature and river flow to p
dict Truckee River temperatures to get the upstream boun
condition at Reno for their Dynamic Stream Simulation and
sessment Model; temperature~DSSAMt!.

A local nonlinear regression model~Loader 1999! was also fit
to the data using the predictors selected in the linear step
procedure. We tried local spans ranging from 0.05 to 0.95.
span that produced the highestR2 value~0.96! was 0.95. TheR2

is very similar to theR2 found from the linear model. Because t
linear model is simpler and allows for easy uncertainty comp
tions, we use the linear model. For other basins or predicto
nonlinear local regression fit may be necessary to produce a
sonable fit.

Model Diagnostics

To investigate the performance of the regression model, we
at the following diagnostics: normality of the residuals, autoc
relation of the residuals, and cross validation of the data. Lin

Fig. 3. Estimated versus observed daily maximum stream temp
ture for Truckee River at Reno
m

estimates~minimize the standard error! by keeping the number o
coefficients small. The stepwise regression procedure fits all
sible combinations of predictors and selects the model that re
in the most optimal indicator statistic.

The AIC statistic, the likelihood version of theCp statistic
~S-Plus 5 for UNIX Guide to Statistics1998, p. 153!, is calculated
as

AIC5ŝ2~Cp1n! (3)

and theCp statistic is

Cp5p1
~n2p!~sp

22ŝ2!

ŝ2 (4)

where n5number of observations;p5number of explanatory
variables plus one~for the constant in the regression equationa0);
sp

25mean square error of eachp coefficient model; andŝ2

5best estimate of the true error~Helsel and Hirsch 1992, p. 312!.
The adjustedR2 is calculated as

adjustedR2512
sp

2

@~SSy!/~n21!#
(5)

where SSy5total sum of squares.
The AIC statistic is used because it further rewards for hav

a low mean square error while penalizing for including too ma
variables. We performed a stepwise procedure on the set of
dictor variables listed above, optimizing on AIC. Table 2 sho
the AIC values for the stepwise procedure which indicate tha
temperature at Reno and flow at Farad are the significant pre
tors.

A linear regression using the predictors selected has the
lowing equation:

T̂5a01a1TAir1a2Q (6)

whereTAir5air temperature at Reno; andQ5flow at Farad. The
regression coefficients area0514.4°C, a150.40, and a25
20.49°C/m3/s. The adjustedR2 for this regression is 0.91. Fig.
shows the estimated values of maximum daily Truckee River t
perature at Reno from the regression equation plotted agains
historical observations. The dotted line represents the best fi

We also performed a stepwise selection procedure optimi
on the adjustedR2 and Cp statistic as the indicator statistic. I
addition to flow at Farad and air temperature at Reno, the s
wise procedure selected the flow at Reno and the stream tem
ture at the Truckee River below the Little Truckee River confl
0

-
e

-
a-

Fig. 4. Reno water temperature regression residuals histogra
3



Fig. 5. Quantile versus quantile plot to test for normality
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Fig. 7. Cross validation of daily maximum stream temperat
regression, Truckee River at Reno
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regression theory assumes residuals are normally distributed
symmetric about the mean. A histogram of the residuals, Fig
shows that the residuals of the Reno water temperature estim
appear to be normally distributed, centered around zero. We
quantify whether or not this distribution is Gaussian by looking
Fig. 5 which shows the quantiles of the residuals versus the q
tiles of a normal distribution. If the points fall on the line, th
distribution is normal. To formally test for normality, a correlatio
is computed between the residual and normal quantiles. Fo
distribution to be normal, the correlation must be greater tha
equal to the 95% confidence level, critical probability plot cor
lation coefficient in Helsel and Hirsch~1992!. The correlation for
our data is 0.987 and the critical value for a 95% confidence le
and 108 observations is 0.987. Therefore, the residuals are
nificantly normal.

One of the assumptions of linear regression theory is that
residuals have no autocorrelation. Fig. 6 shows the autocor
tion function~ACF! plot of the residuals. The dotted lines are t
95% confidence lines. If no ACF estimates fall outside the 9
confidence limit, one can safely assume there is no autocor
tion. The autocorrelation plot in Fig. 6 shows that there is so
autocorrelation between the residuals at lag 1 but shows no
trends. A lack of autocorrelation in the residuals together with
normality of their distribution indicates that the model fits t
data well.

To further test the regression, a cross validation techniqu
used. In cross validation, one historical observation is drop
from the fitting process and is predicted using the regressio
based on the remaining observations. This is repeated for al
servations. The cross validated estimates are plotted agains
actual observations in Fig. 7. TheR2 value between the cros
validated estimates and observed values is 0.91, which is q
good. This further shows that the relationship fits the data w
This R2 value is slightly less than the regression fittingR2 be-
cause the cross validation is more of a predictive mode.
n
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Model Verification

An empirically developed multiple linear regression model m
fit the data used to estimate the regression coefficients very w
but its ability to predict new data is not certain. We validate t
model using observations not used in fitting the regression
assess the ability of the model to predict future events.

Fig. 8 shows the predicted and observed daily maxim
stream temperature at Reno for June, July, and August of 1
1991, and 1992. The predicted temperatures are from Eq.~6!.
Missing predictions indicate that the Farad flow was greater t
14.2 m3/s ~500 cfs!. TheR2 value for each year is also shown
Fig. 8. TheR2 values found in this validation process are low
than the fitting procedure which is consistent with linear regr
sion theory. Fig. 3 shows that there are two regions in the fitt
procedure, the range below 23°C has less scatter than the r
above 23°C. In other words, the regression is better at explai
variance below 23°C than above. As a result, the skill in pred
ing temperatures below 23°C is better. The temperature predic
model will be used to try to meet a temperature target at Ren
approximately 22°C by releasing additional water. Therefore,
regression and confidence intervals are valid in the range in w
the prediction will be used.

Uncertainty of Predicted Temperatures

Now that we have created a stream temperature model, we
to quantify the uncertainty. Helsel and Hirsch~1992, p. 300! de-
fine theconfidence intervalas the range~6 the mean! of values in
which the mean of estimates by regression will lie. For exam
the 95% confidence interval indicates that 95% of the time,

Fig. 8. Validation of daily maximum stream temperatures
Fig. 6. Reno water temperature regression residuals autocorrela
AL OF ENVIRONMENTAL ENGINEERING © ASCE / JULY 2003 / 671
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Fig. 9. Estimated versus observed daily maximum stream temp
ture for Truckee River at Reno
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Fig. 10. Temperature reduction to meet desired exceeda
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mean estimated response variable will be within the interval
similar concept called theprediction intervalis used in a predic-
tive model. The prediction interval is defined as ‘‘the confiden
interval for prediction of an estimate of an individual respon
variable.’’ For example, the 95% prediction interval indicates th
95% of the time the predicted value will be within the interval

Linear regression theory provides the prediction interval to
~Helsel and Hirsch 1992, p. 300!

Prediction Interval5@ ŷ2t~a/2,n2p!sA11x08~X8X!21x0,

ŷ1t~a/2,n2p!sA11x08~X8X!21x0]
(7)

wheret(a/2,n2p)5quantile given by the 100~a/2! percentile on
the student’st-distribution havingn–p degrees of freedom~Ang
and Tang 1975, p. 237!. At large degrees of freedom (n–p) the
studentst distribution is identical to a Gaussian distribution. Th
desired confidence level is 12a. There aren observations used to
create the regression andp explanatory variables plus one~for the
intercept term!. The standard deviation of the residuals iss; x0 is
the vector$1,x1 ,x2 ,...,xp% wherex1 ,x2 ,...,xp are the predictor
variables. The matrixX consists of a column of ones and th
matrix of the new observations of predictor variables:

X5F 1 x11 x12 ¯ x1p

1 x21 x22 ¯ x2p

¯ ¯ ¯ ¯ ¯

1 xn1 xn2 ¯ xnp

G (8)

Because the prediction is for summer only, we are only co
cerned with an upper boundary. By evaluating the student’st dis-
tribution ata instead ofa/2, we get the upper limit to be

Prediction Upper Limit5 ŷ1t~a,n2p!sA11x08~X8X!21x0
(9)

This means that with 100~a!% confidence, Eq.~9! is the upper
limit for the predicted value atx0 . Using historical data, an uppe
prediction interval can be computed for the full range of predic
variables. Fig. 9 shows the dotted regression line from Eq.~6! and
the solid 95% confidence upper prediction interval line from E
~9!. The upper prediction interval is approximately 1.5°C from t
dotted, best fit line. Most of the observations are below the up
prediction interval line as expected. Lowering the prediction co
fidence below 95% would move the upper prediction interv
closer to the fitted regression line~i.e., the dotted line!.

Like a confidence interval, the prediction interval is small
near the center of the data and larger toward the edges. Howe
we can assume that the prediction interval is linear. This assu
tion is valid because the second term under the square r
0

r,
-
t,

x08(X8X)21x0 , in Eq. ~7! is small compared to the first term, 1
provided the sample size is large~Helsel and Hirsch 1992, p
242!. This leads to an approximation of the prediction interval

Prediction Interval5@ ŷ2t~a,n2p!s, ŷ1t~a,n2p!s#
(10)

Prediction Confidence Distance

As the stream temperature model in Eq.~6! includes flow as a
predictor, we can release additional water to lower warm stre
temperatures. The operations approach is as follows: determ
reservoir releases based on baseline operating policies, predi
stream temperature using Eq.~6!. If the predicted stream tempera
ture is too high, release additional water to meet a target temp
ture. The regression and the prediction upper interval can be
to determine a strategy to determine how much additional w
to release.

To this end, we develop the variable called the prediction c
fidence distance~PCD!. Fig. 10 illustrates this concept. Using th
regression model, Eq.~6!, we predict a stream temperatureT̂ and
its associated Gaussian distribution denoted by curve A.T̂ is too
warm and may adversely affect fish. By releasing more water,
can shift the distribution to the left. If the expected value of t
distribution is shifted to the target temperature,TTarget, as shown
by curve B, the probability of exceeding that target is 0.5. Shift
the distribution to the left of the target temperature, a dista
defined as PCD, such that the distribution gives a specified p
ability of exceeding the target temperature. Curve C shows
distribution that results by shifting the distribution toTNecessary,
which is the target minus the PCD such that the distribution gi
0.05 probability of exceedingTTarget. The PCD is defined as th
distance from the mean to the prediction interval as in Eq.~10!:

PCD5t~a,n2p!s (11)

The empirical regression formula to predict stream tempe
ture from flow and air temperature, Eq.~6!, is used to determine
the additional water required to lower the temperature such
the probability of exceeding the target is as specified. The p
dicted daily maximum air temperature is given; thus, the o
controlling variable that can influence Truckee River temperat
is flow. Rearranging Eq.~6! to solve for flow gives

Q5
T̂2a1TAir2a3

a2
(12)
3
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Table 3. Additional Flow Required at Farad to Reduce Daily Max
mum River Temperature to Target of 22°C

Predicted
temperature
~°C!

Probability of exceedance

0.05 0.10 0.20 0.30 0.40 0.50

22 3.2 2.5 1.6 1.0 0.5 0
23 5.4 4.7 3.8 3.2 2.7 2.2
24 7.6 6.9 6.0 5.4 4.8 4.4
25 9.8 9.1 8.2 7.6 7.1 6.5
26 11.9 11.2 10.4 9.7 9.2 8.7
27 14.1 13.4 12.5 11.9 11.4 10.9
28 16.3 15.6 14.7 14.1 13.6 13.1

Note: Values in table are additional flow required~m3/s!.
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ability of exceedance column. Linear interpolation can be
formed between rows if necessary. The additional flow requ
for a probability of exceedance of 0.5 at the predicted value e
to the target value of the table is zero because the mean pred
value is the target value. But, additional flow is required if a m
confident prediction is required.

Discussion and Interpretation of Results
The stepwise selection procedure creates a standardized p
to select the most relevant predictors. This is useful when t
are large amounts of data that appear to be related to the s
temperature. For summer Truckee River stream temperature
most significant predictors are flow and air temperature.
stream temperature prediction model fits the historic data
(R250.9) and fits the verification period relatively well. A mo
accurate, less simple model could be developed, particularly
the high temperature range. The relationships in this study w
strongly linear, therefore linear regression is adequate. In o
studies, nonlinear techniques that can capture the depend
structure are attractive and should be explored. Further data
monitoring will help to improve the relationship to make it mo
certain. Less water will be necessary to meet the tempera
targets with the desired probability of exceedance allowing w
to be saved for the future.

The structure of the linear prediction model lends itself
relatively easy computation of uncertainties of the predict
Using the uncertainty, the additional flow required can be ca
lated such that the probability of exceeding a target temperatu
as desired. This is useful as decision makers can use va
probability of exceedances to determine how much water to
lease. They might decide that on a given day they must mee
temperature target with a high degree of certainty and will se
probability of exceedance very low. Or, they might decide t
only have minimal confidence in the prediction and will, the
fore, not release as much water. The structure of the predi
leads to flexibility of operations.

There is another aspect of uncertainty that could be explo
In an operations mode, the prediction model will use a foreca
dialy maximum air temperature. Currently, the National Wea
Service and other agencies provide a single value for the air
perature forecast. As a result, the uncertainty of the stream
perature regression does not take the uncertainty of the air
perature forecast into account. To include this information in
uncertainty, one could assume a distribution of predicted air t
peratures and perform Monte Carlo analysis to simulate
sembles of predicted air temperatures. Consequently, ense
of stream temperature predictions can be obtained from the
gression.

The effect of different confidence levels, use of climate inf
mation, and the effect of using information about the previ
days stream temperatures on future stream temperatures an
ume of water necessary are further explored by Neumann~2001!.
The stream temperature model is used by the Decision Su
System~DSS! to help determine how much stored water to
lease to try to meet stream temperature targets downstrea
this application, the stream temperature prediction works v
well because of its speed in the operations DSS and the abil
easily quantify and use the uncertainty in the decisions ma
algorithm.

Summary
We presented a regression model to predict daily maxim
stream temperatures. A stepwise procedure was used to se
whereTAir5predicted air temperature at Reno;Q5flow at Farad;
and T̂5target water temperature at Reno. Evaluating Eq.~12!

with TNecessaryas T̂, we get the required flow at Farad

QRequired5
TNecessary2a1TAir2a3

a2
(13)

Rearranging Eq.~13!, the necessary temperature at Reno, can
expressed as

TNecessary5a01a1TAir1a2QRequired (14)

Subtracting Eq.~14! from Eq. ~6! gives

T̂2TNecessary5a2~Q2QRequired! (15)

Rearranging, we get the additional flow required at Farad

~QRequired2Q!5
T̂2TNecessary

2a2
(16)

To make this more general, we can also defineTNecessaryas in Fig.
10

TNecessary5TTarget2PCD (17)

We can replaceTNecessaryin Eq. ~16! with Eq. ~17! to get

DQ5
T̂2TTarget1PCD

2a2
(18)

In the example illustrated in Fig. 10, the predicted stream t
perature calculated from Eq.~6! based on baseline operations,
Reno isT̂. We want to lower the temperature to a target,TTarget,
with probability of exceedanceP. The PCD forP exceedance is
given by Eq.~11!. To find the additional flow required at Fara
we enter the predicted temperatureT̂, the target temperatur
TTarget, and the PCD into Eq.~18!. The resultDQ is the additional
flow that must be released to reduce the stream temperature
target with the specified probability of exceeding the target stre
temperature. To use a different probability of exceedance,
confidence level in the PCD calculation can be modified.

A lookup table was developed for each target temperature
easy use in a decision support system. For a target tempera
the table has the initial predicted temperature on one axis and
probability of exceedance on the other axis. The values in
table are the additional flow necessary to reduce the temper
to the target as calculated by Eq.~18!. Table 3 shows additiona
flows needed for a target temperature of 22°C. The table work
follows. The expected water temperature at Reno is predi
using the regression Eq.~6!. This value is found in the first col
umn, and the additional flow needed is found in the desired p
NAL OF ENVIRONMENTAL ENGINEERING © ASCE / JULY 2003 / 673
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b-
parsimonious set of predictors that capture as much varianc
the stream temperature as possible. The results of this study
that Truckee River stream temperatures at Reno can be pred
using a simple linear regression relationship based on flow an
temperature. A nonlinear relationship is also explored but d
not improve the prediction significantly. Linear regression the
is used to quantify the prediction uncertainty. Using the un
tainty, a method is developed to determine the additional fl
required to meet a target temperature with a desired level of
fidence. This is useful because not only the prediction but
confidence level can be used in the decision-making proced
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Notation

The following symbols are used in this paper:
AIC 5 Akaike’s information criteria;

a 5 coefficient;
adjustedR2 5 coefficient of determination adjusted for

degrees of freedom;
Cp 5 Mallow’s Cp statistic;

n 5 number of observations;
PCD 5 prediction confidence distance;

p 5 number of explanatory variables;
Q 5 stream flow;

QRequired 5 flow necessary to have desired probability
of stream temperature exceedance;

R2 5 coefficient of determination;
SSy 5 total sum of squares;

sp
2 5 mean square error ofp coefficient model;
T̂ 5 predicted stream temperature;
T 5 stream temperature;

TAir 5 air temperature;
Tmixed 5 completely mixed water temperature;

TNecessary5 stream temperature required to have
specified probability of exceedance;

TTarget 5 desired stream temperature;
X 5 matrix of a column of ones and each new

observation;
x 5 independent predictor variable;

x0 5 $1,x1 ,x2 ,...,xp%;
ŷ 5 predicted response variable;
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a 5 confidence level;
s 5 standard deviation of residuals; and

ŝ2 5 best estimate of true error.
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