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Abstract 

A stochastic nonparametric framework to estimate structural reliability under hurricane wind hazard is 
proposed. Scenarios of maximum sustained wind speeds are simulated using nonparametric density 
estimators based on the historical wind speed data. Nonparametric methods are data driven and need no 
prior assumption as to the form of the underlying probability density function. They are "local" methods in 
that estimates at any desired point is based on a small number of data points and thus have the ability to 
capture any arbitrary (skewed, bimodal, etc.) underlying density function. The generated wind scenarios are 
convoluted with fragility curves for the different types of wood structures to obtain the failure probability 
and consequently, the reliability. This is annually performed for the assumed life of the structure, thus, 
providing time varying estimates of structural reliability. It was found that the sustained wind speeds are 
related to a large-scale climate phenomenon in the tropical Pacific Ocean, El Nino Southern Oscillation 
(ENSO). Therefore, the wind scenarios had to be simulated conditioned on this large-scale climate 
phenomenon.  The utility of the proposed framework in estimating the structural reliability of different 
wood structures over the coastal region of North Carolina is demonstrated. Significant differences in 
structural reliability relative to the state of the large-scale climate phenomenon ENSO were observed. This 
underscores the need for interdisciplinary approach to structural reliability estimation. 

Introduction and Background 
 
Natural hazards in general and hurricanes in particular, lead to loss of life and 
tremendous property damage and indirect economic loss for the United States annually 
(Mileti, 1999). Over the years several climate researchers have identified large-scale 
climatic factors, such as the El Nino Southern Oscillation (ENSO) phenomenon in the 
tropical Pacific Ocean and the Atlantic Sea Surface Temperatures (SSTs), rainfall over 
Africa’s Sahel region that appear to affect the year-to-year variability in the hurricane 
activity (e.g., Gray, 1984, 1990; Shapiro and Goldenberg, 1998; Bove et al., 1998). The 
preceding winter state of the North Atlantic atmosphere has also been shown to impact 
the occurrence and steering of hurricanes in the following summer (e.g., Elsner and 
Kocher, 2000). Mechanistically, all these climatic phenomena are believed to regulate 
tropical storm formation via their effects upon upper tropospheric wind shear (Landsea, 
1998). Events that increase shear lead to a weaker hurricane season (i.e., fewer 
hurricanes) while events that lower wind shear make for an active hurricane season. 
Consequently, the infrastructure risk too would be modulated from year-to-year by these 
large-scale climate phenomena. Therefore, for realistic simulation of hurricane tracks and 
consequently, the risk estimates, these climate features have to be appropriately included 
(or conditioned upon) in generating wind scenarios.   
    
Infrastructure risk and damage prediction due to winds is an active area of research, with 
implications to emergency planners and insurers that focus on assessing the vulnerability 
of structures and probabilistic models for hurricane damage prediction (Leicester 1981; 
Sparks et al., 1994; Holmes, 1996; Huang et al., 2001; Stewart et al., 2003; Cope et al., 
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2003; Li and Ellingwood, 2003). However, these models suffer from the following 
drawbacks: (i) Often, structural reliability is estimated in isolation of realistic likelihood 
estimates of hurricane frequencies and magnitudes, (ii) Knowledge of year-to-year 
variability in occurrence and steering of hurricanes in the Atlantic basin (described earlier 
in this section) is not incorporated in structural reliability estimation. In particular, this 
information can be very useful in probabilistic forecast of storm tracks and magnitudes in 
any given year, (iii) the estimation of losses is purely empirical, based on the wind speed 
and no consideration of structural information. For example, a new structure and a 25 
year old structure are assumed to have the same probability of failure for a given wind 
speed. The life-cycle cost of structures is also not considered. These can lead to 
substantial misrepresentation of losses and consequently far from optimal decision 
making. 
 
Clearly, to address these deficiencies an integrated interdisciplinary framework is 
required. Such a “holistic” approach is recognized and recommended by professional 
agencies like ASCE (IBHS, 2001) and also by the U.S. House of Representatives in their 
bill H.R. 2020 also known as the “Hurricane, Tornado and Related Hazards Research 
Act”.  In this paper we present our initial efforts at developing an integrated framework 
that combines the large-scale climate information, to better capture the hurricane risk, 
with a structural failure model. We demonstrate the utility of this framework by applying 
it to single-storied wooden structures in coastal region of North Carolina. The proposed 
framework and the steps for implementation are first presented, followed by a brief 
description of the data sets used. Results from applications to coastal region in North 
Carolina conclude the paper. 

Proposed Approach 
The proposed framework is outlined in the flowchart below (Figure 1).  
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Figure 1: Flowchart of the proposed framework 

The key elements are generating scenarios of winds from probability density functions 
(PDFs) of the historical data estimated by nonparametric techniques (Rajagopalan and 
Lall, 1999; Bowman and Azzalini, 1997; Loader, 1999). The scenarios are generated 
conditioned upon the state of the large-scale climate (in this case the state of ENSO). The 
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simulations are then used in conjunction with fragility curves to estimate the 
infrastructure reliability estimates. Based on the structural failure model it was found that 
characteristics of hurricanes such as the three-second gust are important (as will be 
shown later) in the scenario generation, hence, the two-way arrow.  Presumably further 
studies will indicate other characteristics, such as frequency regions with strong power 
spectral density function content, that are important for such wind-sensitive structures as 
tall buildings and towers. The implementation algorithm is described later in this section. 
 

Data Sets Used 

The annual maximum wind speed within 2.5o latitude by 2.5 o longitude grid box was 
obtained. This grid encompasses the North Carolina sea coast, from the Atlantic 
hurricane track data available from NOAA (http://www.nhc.noaa.gov) for the 1886-
present period. The widely used Tropical Pacific ocean sea surface temperature based 
index of ENSO phenomena, called the NINO3 index (Diaz and Markgraf, 2000) was 
obtained from the data library at (http://iri.ldeo.columbia.edu). Typically, values of the 
index greater than 0.5 imply El Nino conditions that tend to inhibit the formation and 
sustenance of hurricanes, while the values less than -0.5 indicate La Nina conditions (e.g., 
Gray, 1990). ENSO has profound impacts on the world’s climate and weather including 
the hurricane activity in the Atlantic, and is actively studied (Diaz and Markgraf, 2000). 
 

Algorithm for Implementation 

Single story light-frame structures without overhangs and a design life time of 25 years 
were assumed. The aim was to investigate the impact of large-scale state variables on 
structural risk estimates. The following steps were performed to obtain the time-varying 
structural reliability estimates: 
(i) Assume the 25-year life time to be El Nino active. 
(ii) Bootstrap a NINO3 index from the historical values greater than 0.5 (to simulate El 
Nino state), say, xi 
(iii) Generate maximum wind speed from the conditional PDF, f(MAX Wind speed | xi). 
This involves finding the K-nearest neighbors (K-NN) of xi from the historical record (i.e. 
K years from the past that are similar to the current index value xi). One of the K-NN is 
bootstrapped via a weight function that gives high probability to the nearest neighbor (i.e. 
year) of xi and low to the farthest. The corresponding maximum wind speed of the 
bootstrapped neighbor forms the simulated value. Instead of re-sampling the neighbors, 
polynomials can be fit to the K-NN that can then be used to estimate the wind speed 
corresponding to xi. Nonparametric estimators are data-driven, flexible and have the 
capability to capture any arbitrary characteristics (e.g., nonlinear, bimodal distribution) 
exhibited by the data. Nonparametric estimators have been applied successfully in a 
variety of hydroclimate and other applications involving simulating from multivariate 
PDFs, spatial interpolation and extreme value analysis (e.g., Lall, 1995; Rajagopalan and 
Lall, 1999; Bowman and Azzalini, 1997, Loader, 1999). 
(iv) Step (iii) is repeated to generate an ensemble of 250 maximum wind speed scenarios. 
The annual maximum hurricane wind speeds are converted to 3-second gust using gust 
correction factor (~1.5) suggested by Simiu et al. (1996). 
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(v) Structural fragility curves developed by Li and Ellingwood (2003) were then used to 
study two example states of structural failure, that of roof panel uplift and roof-to-wall 
separation for single story light-frame homes without overhangs, subjected to ASCE 7 
Exposure Category B. The panels were 4’ x 8’, attached with 8d and 6d nails. This 
construction is typical of houses in the Southeast United States.  
(vi) Conduct a convolution of the fragility curve with the simulated wind speeds to 
compute the structural failure risk as a function of duration of exposure (i.e., cumulative 
failure probability).The simulations assume that there is at least one hurricane occurrence 
each year. To correct for this, in the convolution process the probability of at least one 
hurricane from the historical data is multiplied by the probability that any particular year 
is hurricane-active.  
(vii) Repeat steps (ii) to (vi) for all the years in the 25 year life horizon. 
(viii) Repeat steps (ii) to (vii) to simulate La Nina conditions and all years. 
Other relevant large-scale climate information can be easily included in this framework. 
Furthermore, this approach can incorporated in a stochastic hurricane track simulation 
model.  

Results 
The joint PDF of maximum wind speed and NINO3 index estimated by nonparametric 
estimators (Bowman and Azzalini, 1997) is shown in Figure 2. Non-Gaussian features are 
apparent. To illustrate this further, the conditional PDFs of maximum wind speed 
conditioned at NINO3 values of -1 and 1 are shown in Figure 3.  

Figure 2. Joint Probability density of NINO3 
index and maximum wind speed  

Figure 3. PDF of maximum wind speed conditioned 
upon NINO3 index value of -1 (solid line) and 1 

(dotted line), respectively. 
 

  
It can be seen that El Nino conditions tend to have higher probability of lower wind 
speeds and vice-versa. This is further confirmed in Figure 4. In this figure, boxplots of 
Cumulative Distribution Function (CDFs) of maximum wind speeds from simulations 
conditioned on El Nino state, following the steps above, are shown, along with the CDFs 
of maximum wind speeds of historical data from El Nino (red line) and La Nina (blue 
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line) years. The boxes represent the interquartile range of the CDFs from the simulations 
and the whiskers are the 5th and 95th percentiles.  Notice that the simulations capture the 
historical CDF of El Nino years very well (as the red line is within the boxes).  Structural 
failure probabilities are shown for the 25 year life horizon for two failure states – panel 
uplift (Figure 5) and roof-to-wall separation (Figure 6), for two nail types (6d and 8d) and 
for the three climate states (El Nino active, La Nina active and all years that has the 
climate variability similar to the historical record).  

 

Figure 4. Boxplots of CDFs from the simulations 
conditioned upon El Nino state. CDF of the 

historical data from El Nino years (red) and La 
Nina years (blue) 

Figure 5.  Structural failure probabilities due 
to panel uplift. 

  

Figure 6.  Structural failure probabilities due 
to Roof-to-Wall connection. 

Figure 7.  Structural failure probabilities due 
to Gust. 

  
It can be seen that the risk during El Nino active period is substantially lower than during 
a La Nina active phase. Obviously, the 8d nails have a smaller risk than their 6d 
counterparts and the strapping of roof dramatically reduces the risk. The risk estimates 
appear to be much higher in general (e.g., a 0.8 failure probability at the end of 25-year 
period). This is probably due to the gust correction factor, which has historically come 
primarily from turbulence structure studies in extra-tropical winds. To test this, the failure 
probabilities are estimated without considering the gust correction (Figure 7) and a 
dramatic reduction can be seen. Clearly, the gust correction factor to be applied to 
hurricane winds needs to be further studied. 
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