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ABSTRACT: This submission is composed of two parts. First a statistical analysis
of the dam crest displacement is performed, along with a prediction for the years
2000-2001. Then a 3D finite element analysis of Schlegeis dam is performed using
an internally generated finite element mesh (based on the mathematical description
of the geometry). Finally, both analysis results are examined in light of the ICOLD
Theme-C organizers questions.

1 Introduction

This paper is the formal submission to the problem posed by the organizers of
Theme-C of the Sixth Benchmark Workshop on Numerical Analysis of Dams, (Ver-
bundplan 2001).

It is composed of two parts. First a detailled statistical analysis, and prediction
for pendulum displacement is performed. Both a stepwise linear regression and a
K-Nearest neighbor local polynomial technique are used. Then, a 3D finite element
analysis of the dam with only hydrostatic load (due to lack of time, the thermal anal-
ysis was not performed) is performed. Rather than using the finite element mesh
provided by the organizers, it was decided to begin with the mathematical descrip-
tion of the arch dam. Using Mathematica (Wolfram 1999) for symbolic operations,
elliptical arches were then defined, using our in-house mesh generator KumoNoSu
(Hansen and Saouma 2001) a 3D mesh of 4 noded tetrahedron elements was gener-
ated, and finally analysis was performed with our finite element code Merlin (Reich,
Cervenka and Saouma 1997), and visualized with our graphical post-processor Spi-
der (Haussman and Saouma 1998). KumoNoSu is based on the T3D program of
Rypl (1998).

It should be clearly stated that our contribution was primarily driven by an
intellectual curiosity in testing innovative statistical techniques, and in assessing the
performance of our in-house specialized software.
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1.1 Problem Description

Schlegeis arch dam was constructed between 1969 and 1971. It is a double curvature
arch/gravity dam with a crest length/dam height ratio of 5.5. The foundation of the
dam consists of fairly uniform granitic mica gneiss. Its plane of schistosity strikes
approximately parallel to the right bank abutment and has a very steep dip towards
downstream. The dam consists of 43 blocks, each 17 m wide. It is provided with 4
horizontal inspection galleries and the base gallery located at the foundation rock.
It has a crest elevation of 1,783 m, height of 131 m, crest length of 725 m, crest
thickness of 9 m, and base thickness of 34 m. Water level is between 1,680 and 1,782
m.

1.2 Field Measurements

Field measurements, as reported by the workshop organizers, include water ele-
vation, plum line displacement, concrete temperature at three locations (close to
upstream face, center, close to downstream face) at two different elevations (12 and
ss m), and air temperature, Fig. 1.

2 Statistical Analysis

Statistical functional estimation techniques were used to predict the pendulum using
a subset of predictors. First, the correlation matrix containing the correlations
among the predictors and to pendulum was determined, Table 1. It was noted that
the pendulum has a strong positive correlation with WL (Water Level), HY and
H?. Tt has a significant negative correlation with T,; and Hj%.

Pend. WL Toir | Hi2% HYY H{Y HP HpLi oy
Pend | 1.0000 | 0.7751 | -0.3319 | -0.3168 | 0.7607 | -0.2027 | 0.4261 | 0.3377 | -0.1355
WL 0.7751 | 1.0000 | 0.1147 | 0.2114 | 0.7300 | 0.3649 | 0.7578 | -0.0761 | 0.4374
Tair | -0.3319 [ 0.1147 | 1.0000 | 0.6933 | -0.2683 | 0.7672 | 0.2369 | -0.6445 | 0.7365
H{? | -0.3168 | 0.2114 [ 0.6933 | 1.0000 | -0.1761 | 0.8790 | 0.4388 | -0.7436 | 0.8597
H7 || 0.7607 | 0.7300 | -0.2683 [ -0.1761 | 1.0000 | -0.0655 | 0.6929 | 0.3406 | 0.0231
HYY | -0.2027 | 0.3649 | 0.7672 | 0.8790 | -0.0655 | 1.0000 | 0.5526 | -0.7070 | 0.9905
Hi? 0.4261 | 0.7578 | 0.2369 | 0.4388 | 0.6929 | 0.5526 | 1.0000 | -0.1161 | 0.6300
H7Y || 0.3377 | -0.0761 | -0.6445 | -0.7436 | 0.3406 | -0.7070 | -0.1161 | 1.0000 | -0.6672
HYY || -0.1355 | 0.4374 | 0.7365 | 0.8597 | 0.0231 | 0.9905 | 0.6300 | -0.6672 | 1.0000

Table 1: Correlation Coefficients

Then, two statistical techniques (i) Stepwise Linear Regression and (ii) K-nearest
neighbor Local Polynomial technique were used in the investigation.

In order to assess the quality of the two models, the data up to May 1996 was
used to perform a preliminary prediction for the period June 1996 - June 1997 (1,600
points). This exercise was to compare the two methods in a prediction mode. Then
the models were fit on data prior to Dec. 1998 (400 points). Finally prediction of
the pendulum for the period Jan 1999 - Jan 2001 was made based on all 2,557 data
points with pendulum reading.

The two methods are briefly described followed by a discussion of the results.
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Figure 1: Recorded Field Data, (Verbundplan 2001)
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2.1 Statistical Methods

2.1.1 Stepwise Linear Regression

This technique is an extension of the widely used linear regression. The theory of
linear regression is established strongly and requires no discussion. The Stepwise
linear regression method identifies the best subset of predictors (from the predictors
shown in table 1) that gives the highest adjusted R-square. Other criteria, instead
of R-square can also be chosen, e.g., Mallow’s Cp statistic. Generally, the results
turn out to be very similar regardless of the statistic. The method performs a
linear regression with all combinations of predictors and selects the best subset of
predictors based on the chosen statistic. In this case the method suggested a best
subset of predictors consisting of WL, Ty, HY, H& H HL HY and H{Y.
Details of this method can be found in (Radhakrishna Rao and Toutenburg 1995)
and (Weisberg 1985).

2.1.2 K-Nearest Neighbor Local Polynomial Technique

Linear regression is easily implemented and works very well when the relationship is
truly linear. If there are nonlinearities present then this method is inadequate, and
one has to resort to higher order polynomials. Nonparametric techniques provide
a flexible alternative. There are various nonparametric schemes, but we use the
K-nearest neighbor local polynomial technique, for its ease in implementation and
understanding. Essentially the method involves selecting K-nearest neighbors to a
predictor point and fitting a polynomial to this. The fitted polynomial is then used
for estimation. Two predictors were picked for this method WL and Hj} unlike a
larger set of predictors in the linear regression. Those predictors were selected by
trial and error, however one can use objective criteria described in the following
section for predictor selection. The details of this method can be obtained from
(Rajagopalan and Lall 1998). Below we provide a brief description of the method
abstracted from this paper for the benefit of the reader.

Local polynomial estimators for function estimation are one of the many non-
parametric estimators that are in practice. Nonparametric or local fitting estimators,
with weaker assumptions than the parametric estimators (e.g. kriging), adapt better
to heterogeneous and non-stationary data sets. Some attributes of these estimators
are:

1. The estimator can often be expressed as a weighted moving average of the
observations.

2. The estimates are defined locally or using data from a small neighborhood of
each point of estimate. Consequently, they can approximate a wide class of
target, underlying functions.

3. The nonparametric estimator has parameters that control the local weights
and the size of the neighborhood used for estimation.
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2.1.2.1 Local Polynomial Scheme Consider a general regression model given
as:

y = f(x)+e, i=1,---,n (1)
Y. = f(Xi)+ei7 izla"'an (2)

where x is a vector of M explanatory variables, y is the “response” variable, f(.)
represents the underlying functional relationship between y and x, e; are noise or
measurement errors, that may or may not depend on x; , and n is the number of
observations.

Generally, the strategy is to choose a certain number, k, of nearest neighbors (in
terms of Euclidean distance) of the estimation point z, and to form the estimate
f(z) through a locally weighted, polynomial regression over the (x,y) data that lie
in the neighborhood. The sampling locations x; are usually not regularly spaced.
We assume the e; are uncorrelated, mean zero, random variables, assumed to be
approximately identically distributed in the k£ nearest neighborhood of the point of
estimate. Then, the locally weighted polynomial regression at each point of estimate
xf,l=1,7,np, given a (n by M) data matrix  and a (n by 1) response vector y, is
obtained through the solution of the weighted least squares problem:

Min(y; — Zib)" Wi(y: — Ziby) (3)

where the subscript [ recognizes that the associated element is connected with the
point of estimate xj; b; are estimates of the coefficients of the terms in the basis
defined by Z;; Z; is a matrix formed by augmenting x, with columns that represent
the polynomial expansion of x to degree p ( including cross product terms if desired);
W, is a k by k diagonal weight matrix with elements

Wiy = RO (4)

Z?:l (us)

where w;; = d;;/dy; d;; is the distance from 2] to x; using an appropriate metric,
and K(.) is a weight function. We have implemented a bisquare kernel (K (u) =
15/16(1 — w?)?). The matrix Z; and vector y; are defined over the k nearest neigh-
borhood of x}. Singular Value Decomposition (SVD) is used to solve the linear
estimation problem resulting from Eq. 3. The coefficients b; are obtained as:

by = (ZW,Z,)" "Wy, (5)
The resulting estimate of f(xz7) is then
f(x) = zby (6)

where z; is the d by [ vector formed by augmenting x; with polynomial terms of
order p, and retaining the terms for which b; are found to be significantly different
from 0.
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2.1.2.2 Parameter selection k & p The Generalized Cross Validation (GCV)
statistic is given by

~

awdpnnﬁﬁqu (7)

where the Mean Square Error MSE is given by

n
A~

) =n"3 (0 — flxi)? (®)

i=1

H is the influence matrix defined through

f=Hy (9)

Note that this equation represents a linear estimator, and the i diagonal element
of H can be thought of as the "weight” of that data point on the estimate at that
point.

We shall consider the whole data set for parameter selection. The global GCV
(GGCV) can be estimated after performing n local regressions at each data point
x; (i=1,---,n), as:

n 2
i=16%;

GGCV(f) = - 10
(f) (-5 by (10)
where h;; is estimated from equation Eq. 9, and where ¢; = y; — f(x;)

One can select appropriate values of k£ and p, as the minimizers of the GGCV
value computed in Eq. 10 for each combination of k& and p. These would be the
values of k£ and p that would do well on the average. However, in certain situations
(e.g., where the curvature of the target function varies over the data, and where the
variance of the noise varies over the range of the data), one may wish to make such
choices locally at the point of estimate. Accordingly, the local GCV (LGCV) score
is then given as:

~

elTWlel

k—d\2
(%)
The appropriate values of k£ and p can then be obtained as the ones that minimize
the local GCV score for the local regression. The LGCV, value also provides insight
into the local predictive error variance.

For this data a K (the number of neighbors) of 80 and a local linear polynomial
was found to be optimal. This is used in the forecasts.

LGCV,(f) =

(11)

2.2 Result Interpretation

Figure 2 shows the actual Pendulum values and predicted values from the linear
regression technique and the K-nearest neighbor local polynomial technique. It can
be seen that the nonparametric technique predicts the values much better than the
linear regression. In particular, the peak is underestimated in the linear regression,
which is consistent with linear regression. The nonparametric technique predicts the
pendulum values very well and also it is highly parsimonious relative to the linear
regression technique.
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Figure 2: Linear and Nonparameteric Polynomial Validation

The forecast for the period Jan 1999 - Dec 2001 is shown in Figure 3, the peaks
are much smoother than in the case of linear regression. We also show forecast from
another nonparametric technique called Local Regression (Loader 1999). This is
very similar to the K-nearest neighbor local polynomial technique described above,
except that its implementation is slightly different. It can be seen that the forecast
from the two nonparametric techniques are very close to each other.

3 Finite Element Analysis

3.1 Mathematical Description

Whereas circular arches are favored in the design of US arch dams, (Anonym. 1977),
European ones are based on conic surfaces'. Schlegeis dam, is no exception.
Hence, we decided to test the capabilities of our recently developed mesh genera-
tor KumoNoSu in generating 3D data of an arch dam which can be mathematically
defined.
The dam geometry is best described through Fig. 4, where the quadratic equa-
tion of an arch is given by

"L‘2+ (1 _62)(y_ys)2 _2ps(y_ys) =0 (12)

where z and y are the coordinates of the arch center line, y, the coordinate of the
center cantilever, ¢ corresponds to either e, (east) or €, (west), ps also corresponds
to either p, (east) or p, (west). Whereas in the original blue-print, Fig. 4 equations
for these control parameters (in terms of the elevation z) were provided, indications
are that those do not match the corresponding actual values. Hence, using actual

!Probably because of the greater mathematical insight of European Engineers!
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Figure 3: Linear and Nonparameteric Polynomial Future Forecast

data, the following equations were determined through a regression analysis, and
provided to us by the organizers:

ye = 0.474883(309.903 4 0.559746 z + 1.97441/18395.5 + 208412z — 1.22)  (13)
ps = 0.456092 (591.871 — 2.36057 z — 1.08959 \/9111.7 — 172.086 z + 1. 22) (14)
e2 = 0.5(1.73296 — 0.0132876 z 4 0.00782506 \/2978.18 — 102.345 2 + 1.22)  (15)
£2 = 0.5(2.5606 — 0.0119123 z — 0.0114553 /10264.9 — 200.849 z + 1. 22) (16)

Substituting, into Eq. 12, we obtain an analytical expression for the y coordinate
in terms of x and the elevation z at the arch center line.

Furthermore, the arches have a variable thickness. From the center to x4 (on
both the east and the west sides), the arch has a constant thickness x4, and from z4
to x, the arch has a varying thickness given by

(x —x4)?

d=d, +
(z — 14)?

where x4, 1y, di and dg are given in Table 2.

3.2 Discretization

3.2.1 Arch

In our investigation, 10 arch elevations were retained (0, 9, 18, 32, 41.519, 50, 70,
90, 110, and 120 m). To each elevation, the corresponding set of parameters were
interpolated from Table 2.

KumoNoSu, the 3D mesh generator being used, enables the definition of ratio-
nal Bezier splines, hence the arches can be correctly represented by a quadratic
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Figure 4: Dam Layout

Var. Elevations
0. ‘ 8. ‘ 33. ‘ 58. ‘ 83. ‘ 108. ‘ 130
West

Ty 252. | 245.16 | 207.50 | 128. 49. | 11.14 | 0.
xr || 312.50 | 301.76 | 264.50 | 213.25 | 144. | 73.95 | O.
d 9. 10.61 | 15.50 | 18.98 | 22.10 | 27.05 | 34.0
dy, 9. 12.2 19.55 | 23.75 | 27.67 | 31.60 | 34.0
East
Tq 208. 203. 174. 109. 41. 8.67 | 0.
Tk 249.5 | 242.56 | 216. 176.6 | 131. | 70.75 | O.
d 9. 10.61 | 15.50 | 18.98 | 22.10 | 27.05 | 34.0
dy, 9. 12.2 19.55 | 23.75 | 27.67 | 31.60 | 34.0

Table 2: Measured Values of Key Variables at Selected Elevations

Saouma, Hansen € Rajagopalan
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representation of the spline. The rational Bezier curve has the form
i wiPiB (1)
2imowi B (1)

where P(t) is the point on the curve, P; are Bezier control points, w; are weights of
Bezier control points, B!(t) is the Bernstein polynomial

P(t) =

(18)

BI(t) = ( 7; )ti(l — ) (19)

where ¢ denotes an independent variable varying in the range from 0 to 1, and n
is the curve degree. The curve order is equal to n + 1, Py and P,, correspond to
model vertices while the remaining points form the control polygon of the curve.
The first and last segments of the control polygon coincide with the curve tangent
in the starting and ending vertices respectively.

Interestingly, and perhaps not so coincidentally, Equation 18 is very similar in
form with Eq. 5.

For a quadratic representation of an elliptical arc, Fig. 5. we have

2b

2a

Figure 5: Bezier Polygon for an Elliptical Arc

2«
sin” £
b = b—2 (20)
cos §
sin 5
s = = \/a2 cos? = 4 B sin? & (21)
cos 5 2 2
W1 = W3 = 1 (22)
a
wy = cosy (23)

Hence, the Mathematica program provided to us, with the mathematical descrip-
tion of the arches, was modified to determine the Bezier parameters for each of the
10 arches at each elevation (East and West, Upstream and downstream, 0 < z > x4

Saouma, Hansen & Rajagopalan 10
Statistical and 3D Nonlinear Finite Element Analysis of Schleiges Dam



and ry < x < xy). For each arch, the end points are known, only the control point
Ps3 and its weight w3 had to be determined.
In order to determine the coefficients, it was first noted that the equation of an

ellipse is
(x—h)>*  (y—k)?
" + B =1 (24)

which can be rewritten in normalized form as

ar® + eyt Fesr?y e+ ey =1 (25)
where c3 should be equal to zero and
T = b2/A
o = a’/A
g = —2b*h/A (26)

s = —2a*k/A
A = a?b® - V?*h? — a®k?

Hence, the following simple algorithm was implemented with Mathematica:
1. Select arch, z elevation and interpolate control parameters.
2. Determine the corresponding end points.

3. Select three additional internal points which break the arch’s x projection into
four equal segments.

4. Using Eq. 13-16 and 12, solve for the y coordinate. We now have the z,y, z
coordinates at the center line at five points.

5. Determine the five coefficients of the quadratic curve in Eq. 25
6. Solve for the elliptical curve parameters (a, b, h and k) from Eq. 26.
7. Determine the slope, and its normal at each of the five points

8. Determine the thickness at each of the five points, and project half of it to the
upstream and the other half to the downstream face along the normal to the
slope.

9. Determine the coordinates on the upstream (or downstream) face.
10. Repeat steps 5-6 once for the upstream, and once for the downstream face.

11. From h and k, determine the angle o and solve for the weight of the external
control point.

12. Determine the coordinates of point P; as being the intersection of the two
tangents to the curve at P, and Ps.

Saouma, Hansen & Rajagopalan 11
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Figure 6: Dam Discretization for Finite Element Mesh Generator

3.2.2 Dam and Foundation

3.2.2.1 Outline Using the procedure previously described, the dam and foun-
dation outlines were subdivided in vertices, curves, and patches as shown in Fig. 6.

3.2.2.2 Finite Element Mesh Finally, the mesh outline shown above was dis-
cretized into tetrahedron elements, resulting in the mesh shown in Fig. 7.

K=
gl

LN\
NN

Figure 7: Finite Element Mesh

At this point the reader should be warned not to be misled by the apparent
complexity of the resulting mesh. Undoubtedly, when this finite element mesh is
compared with the one provided by the organizer of the workshop, it does not look
as “nice”, however it should be kept in mind that

Saouma, Hansen & Rajagopalan 12
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1. Once the external control point of the dam are known (an essential operation
required for any meshing technique), the time needed to triangularize the mesh
should be less that the time needed to hand-craft the mesh with brick elements.

2. The element formulation of tetrahedron elements is well established, and there
is no reason to suggest that brick elements yield more accurate results than
tetrahedron.

3. This meshing technique will result in substantially more nodes/elements than
a brick-based finite element mesh.

4. This same mesh can readily be used in conjunction with quadratic, rather than

linear finite element mesh, by simply modifying the element type in Merlin.

3.3 Material Properties

The specified material properties are shown in Table 3

Rock | Concrete
p | kg/m3 2,400
E; | GPA 30 25
FE, | GPA 10
v 0.17 0.17

Table 3: Rock and Concrete Material Properties

Whereas the concrete is homogeneous and isotropic, the rock is reported as being
orthotropic and massless. The rock is granite-gneiss with a schistosity of 340/75
degrees related to Gauss-Kriiger-System (29.98/75 degrees relative to local Y axis),
Fig. 8. An orthotropic material is characterized by 9 independent constants, however

Figure 8: Orthotropic Rock Foundation; Theme-C Coordinate System, and Adopted
One

only four were provided. Hence, based on the following assumption, (Lekhnitskii

Saouma, Hansen & Rajagopalan 13
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1981)
EyEy
Ey (14 2v15) + Ey
we select for the orthotropic model of Merlin: E;=30 GPa; v;;=0.17, E>=10 GPa,
E3=10 GPa, G5 = G3=5.98 GPa, (13=12.82 GPa; v, = c0s29.9 = 0.867, v, =
sin 29.9 = 0.498, v! = 1.0, v? = 0.498, UZ = 0.867, v? = 1.0,
Finally, the interface element properties, (Cervenka, Chandra Kishen and Saouma

1998) between the rock and the concrete were assigned the properties shown in Table
4.

G12 = G23 =

(27)

f 0.69 x 10° | Pa
K, 2.5 x 101! Pa
K, 2.5 x 101! Pa
dr 45°
Pp 20°
Gr, 100 N/m
G[[F 1,000 N/Hl
v 0.3
UD, 1w 1x1072 m
S1 0.1724 x 10° | Pa
wy 1.08 x 107* | m
c1 0.25 x 105 | Pa
cw, 75x 107 | m

Table 4: Interface Element Material Properties

3.4 Analysis

The analysis was performed with the Merlin code. The only source of nonlinearity
was the rock concrete interface and the uplift pressure.

Whereas the organizers specified a uniform cracked zone along which the full
uplift was to be applied, a different approach was followed in our code.

First the entire rock-concrete contact zone was modeled by interface elements.
Then the analysis proceeded incrementally, in terms of pool elevation (the first in-
crement corresponding to the dam self weight which deflection was then subtracted
from subsequent analyses). At each pool elevation, a full uplift based on that partic-
ular elevation was specified if the interface was to open up. Hence, should the code
detect a crack opening, then and only then would the full uplift pressure be applied
(Merlin’s option to apply a drop in uplift pressure along the uncracked ligament was
not activated), Fig. 9.

Finally, it should be noted that each incremental load being specified in terms of
its pool elevation, Merlin internally determined both the magnitude of the (triangu-
lar) hydrostatic distribution to be applied on all the elements on the upstream face,
as well as the magnitude of the full uplift to be applied on the appropriate inter-
face elements, in terms of the spatial coordinates (that is the difference in elevation
between Gauss points and pool elevation).

Saouma, Hansen € Rajagopalan 14
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Figure 9: Uplift Modelling

Five analysis were performed:

1. High interface tensile strength 6.894 MPa, no uplift
2. Low interface tensile strength 0.6894 MPA no uplift
3. Low interface tensile strength 0.6894 MPA with uplift

4. Low interface tensile strength 0.6894 MPA no uplift, creep simulated by re-
ducing the concrete’s eleastic modulus by a factor of 2.

5. Low interface tensile strength 0.6894 MPA, uplift and “creep”

The final mesh, Fig. 7 consisted in 4,800 nodes, 19,902 linear tetrahedron elements,
and 290 interface elements. The input file was 1.8 Mb, the ASCII output file 7.2
Mb, and the .pst file for the graphical postprocessor was 347 Mb.

Analyses were performed on a PC, Pentium IV, 1.7 GHz, 264 MB of RAM, took
41 minutes and 15 seconds.

Fig. 10 summarizes the crest displacement relationship in terms of water eleva-
tions. Note that the recorded displacement is the radial one of the crest with respect
to the (ICOLD) specified reference point.

Fig. 11 illustrates the overall dam/foundation displacements, Fig. 12 shows the
interface elements between the dam and the foundation in their deformed shape
and contour lines of normal stresses. Note that we are looking into the “lips” of
the 3D interface elements opening up and subjected to the uplift pressure. Fig.
13 illustrates the same interface elements, but in their undeformed state, with the
normal stresses. Finally, Fig. 14 highlights the dam’s deformed shape.

4 Observations, Predictions and Conclusions

Based on the preceding analyses, the following can be drawn:

1. Advanced statistical analysis may indeed provide reasonable predictions to
future pendulum displacements, albeit with a lack of physical understanding
of the dam response.
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Figure 10: Crest Displacement vs Pool Elevation

2. Our prediction for pendulum displacement, based on statistical analysis is
shown in Fig. 3. Because of the nature of the technique adopted, it is impos-
sible to determine a closed-form analytical expression.

3. We successfully obtained a finite element mesh based on the analytical de-
scription of the dam. Tools such as Mathematica were of great help in such
task.

4. We exploited the conical nature of the arches, and the availability of rational
Bezier curves in our mesh generator in order to generate the finite element
mesh.

5. There is no known reasons for which a tetrahedron based mesh should be
inferior to one based on brick elements.

6. Because of time constraint, the finite element analysis restricted itself to vari-
ations of the pool elevation.

7. Interface elements were placed between the dam and the foundation.

8. Uplift was correctly measured as taking place only if the foundation has
cracked.

9. The effect of uplift is minimal.

10. An incremental analysis was performed to determine the radial crest displace-
ment in terms of pool elevation. Predictions are shown in Fig. 10.
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Figure 14: Dam, Deformed Mesh, Contour Lines of Maximum Principal Stresses

11. Creep was addressed by simply reducing the concrete’s elastic modulus by 50%.
Whereas a creep coeflicient of 2.0 is not particularly high, the resulting crest
displacements were much higher than the measured ones. Hence, preliminary
indications are that creep may not be a major concern for this dam.

12. Because of the nature of the analyses, it is practically impossible to compare
predictions based on statistical analysis or on finite element analysis.

13. The recently developed software for mesh generation (KumoNoSu), finite ele-
ment analysis (Merlin), and graphical post-processor (Spider) appear to have
been able to efficiently handle the analysis of arch dams.
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