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[1] A method is introduced to generate conditioned daily precipitation and temperature
time series at multiple stations. The method resamples data from the historical record
‘‘nens’’ times for the period of interest (nens = number of ensemble members) and
reorders the ensemble members to reconstruct the observed spatial (intersite) and
temporal correlation statistics. The weather generator model is applied to 2307 stations
in the contiguous United States and is shown to reproduce the observed spatial
correlation between neighboring stations, the observed correlation between variables
(e.g., between precipitation and temperature), and the observed temporal correlation
between subsequent days in the generated weather sequence. The weather generator
model is extended to produce sequences of weather that are conditioned on
climate indices (in this case the Niño 3.4 index). Example illustrations of conditioned
weather sequences are provided for a station in Arizona (Petrified Forest, 34.8�N,
109.9�W), where El Niño and La Niña conditions have a strong effect on winter
precipitation. The conditioned weather sequences generated using the methods
described in this paper are appropriate for use as input to hydrologic models to
produce multiseason forecasts of streamflow. INDEX TERMS: 1833 Hydrology:

Hydroclimatology; 1869 Hydrology: Stochastic processes; 1894 Hydrology: Instruments and techniques;
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1. Introduction

[2] Accurate streamflow forecasts are vital for water
managers to meet the competing demands for increasingly
scarce fresh water resources. The U.S. National Weather
Service (NWS) uses the extended streamflow prediction
(ESP) procedure for streamflow forecasting [Day, 1985].
In the traditional implementation of this approach, a
hydrologic model is driven with inputs of observed
precipitation and temperature data up to the beginning
of the forecast (e.g., 1 January) and is then run using
inputs of precipitation and temperature for the same dates
over the forecast lead time from all past years in the

historical record. This provides an ensemble of possible
outcomes given the modeled hydrologic conditions (e.g.,
soil moisture, water equivalent of the accumulated snow-
pack) at the start of the forecast. Forecast accuracy is
entirely dependent on accurate specification of conditions
over the basin at the start of the forecast and the
influence of those conditions on the basin hydrologic
response. The approach works well in river systems
where significant lag times are introduced due to storage
of water in snowpack or subsurface and groundwater
reservoirs.
[3] Much effort has been devoted toward modifying the

historical sequences of precipitation and temperature used
in ESP in order to include information from meteorological
forecasts and climate outlooks. As a first step in this
direction, Hamlet and Lettenmaier [1999] modified the
ESP approach by restricting attention to years (ensemble
members) that were similar in terms of the phase of the El
Niño-Southern Oscillation (ENSO) and the phase of the
Pacific Decadal Oscillation (PDO). In most cases this
provided a set of ensembles that were more tightly
clustered, and closer to observed runoff, than the full
ensemble. However, when attention is restricted to a small
subset of years, or when some years are weighted more
heavily than others, the resultant probabilistic streamflow
forecasts may be overwhelmed by unusual conditions in
any of the selected years.
[4] The NWS Advanced Hydrologic Prediction Service

[see, e.g., Connelly et al., 1999] seeks to improve opera-
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tional streamflow forecasts in the United States. NWS
efforts to date have developed methods to use the official
Climate Prediction Center (CPC) climate outlooks to
preadjust historical precipitation and temperature time
series that are used as input to the ESP system (J. Schaake,
NWS Office of Hydrologic Development, personal com-
munication, 2002) and methods to postprocess the clima-
tological ESP traces (L. Rundquist, NWS Alaska-Pacific
River Forecast Center, personal communication, 2003).
The CPC forecasts are very conservative, and the depar-
ture from the climatological ESP forecasts are often very
small.
[5] The family of stochastic methods used to generate

synthetic sequences of weather [e.g., Wilks and Wilby,
1999, and references therein] provides an interesting
alternative to the approaches above. Such methods,
commonly known as ‘‘weather generators,’’ provide
new weather sequences that compensate for inadequacies
in the length of station records. Weather generator
models typically contain separate treatments for precipita-
tion occurrence and intensity [e.g., Gabriel and Neumann,
1962; Todorovic and Woolhiser, 1975; Foufoula-Georgiou
and Lettenmaier, 1987; Hay et al., 1991; Wilks, 1998]. For
example, Wilks [1998] used a Markov chain process to
generate the sequence of wet and dry days. Conditional
probabilities are calculated for the cases (precipitation on
day t, given no precipitation on day t � 1) and (precip-
itation on day t, given precipitation on day t � 1). In the
generated weather sequence, the transition from wet-to-dry
and dry-to-wet days is determined if a random number
pulled from a uniform distribution is less than or equal to
the appropriate conditional probability. That is, if day t is
dry, day t + 1 is modeled as a wet day if the uniform
random number is less than or equal to the conditional
probability for the case (precipitation on day t j no
precipitation on day t � 1). Wilks [1998] generated
precipitation intensities on wet days by randomly selecting
a value from a mixed distribution that is fitted for nonzero
precipitation amounts.
[6] Another set of methods generates weather by

resampling data from the historical record [e.g., Young,
1994; Rajagopalan and Lall, 1999; Buishand and
Brandsma, 2001; Yates et al., 2003]. These methods
compare a vector of weather variables for day t against
a vector of same variables from similar dates in the
historical record. The k (k =

ffiffiffi
n

p
) most similar days are

taken as the k-nearest neighbors (n is the number of
similar dates used in the comparison). One of these
neighbors is randomly selected, and the day following
the selected neighbor is taken as the next simulated day
(day t + 1).
[7] Unfortunately, many existing weather generator

methods have problems with under-prediction of precipi-
tation when they are extended to multiple sites [e.g.,
Jothityangkoon et al., 2000; Buishand and Brandsma,
2001; Yates et al., 2003]. The objectives of this paper are
twofold: (1) to introduce an approach for generating
weather that preserves the mean, standard deviation,
and skewness of the generated precipitation and temper-
ature time series, while also preserving the temporal
persistence, and intersite and intervariable correlations,
and (2) to introduce methods for conditioning the weather

generator on climate indices and probabilistic climate
forecasts.
[8] The weather generator method presented in this

paper is based on the resampling-type weather generators
[Young, 1994; Rajagopalan and Lall, 1999; Buishand
and Brandsma, 2001; Yates et al., 2003] but uses the
ensemble-member reordering method, which was recently
introduced by Clark et al. [2004] for downscaling of
numerical weather prediction model output, to reconstruct
the observed space-time variability in generated weather
sequences. The overall goal of this paper is to develop a
robust method for generating weather sequences, repre-
senting estimates of future climate conditions, that can
be used as input to hydrologic models to forecast
streamflow.

2. Data

[9] This study uses daily precipitation and maximum
and minimum temperature data from the National Weath-
er Service (NWS) cooperative network of climate ob-
serving stations across the contiguous United States
(Figure 1). These data were extracted from the National
Climatic Data Center (NCDC) ‘‘Summary of the Day’’
(TD3200) data set by Jon Eischeid, NOAA Climate
Diagnostics Center, Boulder, Colorado [Eischeid et al.,
2000]. Quality control performed by NCDC includes the
procedures described by Reek et al. [1992] that flag
questionable data based on checks for (1) extreme
values, (2) internal consistency among variables (e.g.,
maximum temperature less than minimum temperature),
(3) constant temperature (e.g., 5 or more days with the
same temperature are suspect), (4) excessive diurnal tem-
perature range, (5) invalid relations between precipitation,
snowfall, and snow depth, and (6) unusual spikes in
temperature time series. Records at most of these stations
start in 1948 and continue through to the present. Attention
is restricted to stations with less than 10% missing or
questionable data during the period 1950–1999 (2307
stations; Figure 1).

3. The Weather Generator Method

[10] The method for generating weather sequences can be
described in two main steps:
[11] 1. Data sequences from individual stations are

resampled from the historical record ‘‘nens’’ times, where
nens is the number of ensemble members. For a given
simulated day (e.g., 14 January 2004), data are selected
from days in the time series for which the Julian day is
within ±x days of the simulated day (if x = 7, data are
resampled from the period 7–21 January). Data may be
selected from all years (for the generation of climatolog-
ical weather sequences), or data may be preferentially
selected from a subset of years (for the generation of
conditioned weather sequences). Resampling of data is
not dependent on previous simulated days (as in other
weather generator methods), so it is not constrained at
this stage to preserve the temporal persistence in station
time series. Such bootstrap methods have been proven in
many instances to preserve the moments (mean, standard
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deviation, and skewness) of station time series [e.g.,
Efron, 1979].
[12] 2. For a given generated day, the ensemble members

are re-ordered so as to preserve the space-time variability in
historical time series. The major difference between this
method and other weather generator models is that the
space-time variability is not preserved intrinsically, but is
reconstructed as a post-processing step.
[13] The ensemble reordering methodology (‘‘the

Schaake shuffle’’) was introduced recently by Clark et
al. [2004] and requires further explanation. For a given
simulated day, the starting point is a three-dimensional
matrix of preferentially selected historical station obser-
vations Xi,j,k, where i refers to each ensemble member,
j refers to each station, and k refers to each variable. To
correspond to the matrix X, we construct an identically
sized three-dimensional matrix Yi,j,k; also derived from
historical station observations of the respective variables,
where i refers to an index of dates in the historical time
series, and, as in X, j refers to each station and k refers to
each variable.
[14] The Y matrix is used as a base to reconstruct the

spatiotemporal variability of the preferentially selected his-
torical station observations inX. The differences between the
X andYmatrices are (1) the observations used to populate the
Y matrix are selected from all years in the historical record,
whereas the observations in the X matrix may be preferen-
tially selected from a subset of years (e.g., those reflecting
future climate conditions); (2) for a given ensemble member
i, the observations used to populate the Y matrix for the

stations j and variables k are taken from the same dates in
the historical record, whereas the observations used to
populate the j and k dimensions of the X matrix can come
from a mix of different dates; and (3) the dates used to
populate the Y matrix are persisted for subsequent
simulated days.
[15] For a given station j and variable k, the ensemble

reordering method can be formulated as follows. Let ~X be a
vector of n preferentially selected observations x and let ~c
be the sorted vector of ~X , that is,

~X ¼ x1; x2; . . . ; xnð Þ; ð1Þ

~c ¼ x 1ð Þ; x 2ð Þ; . . . ; x nð Þ
� �

; x 1ð Þ � x 2ð Þ . . . � x nð Þ: ð2Þ

Also, let ~Y be a vector of n historical observations that are
selected from all years y, and let~g be the sorted vector of ~Y ,
that is,

~Y ¼ y1; y2; . . . ; ynð Þ; ð3Þ

~g ¼ y 1ð Þ; y 2ð Þ; . . . ; y nð Þ
� �

; y 1ð Þ � y 2ð Þ . . . � y nð Þ: ð4Þ

Furthermore, let ~B be the vector of indices describing the
original observation number that corresponds to the values
in the ordered vector ~g.
[16] As an example, preferential resampling maximum

temperature for 10 ensemble members at a given station on

Figure 1. Location of stations used in this study. The squares depict stations used in the optimization
study (see section 4.2.2 for more details).
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a given date (~X ); and the corresponding selection of
historical observations from all years (~Y ), may provide
vectors of ~X , ~c, ~Y , ~g, and ~B that are

~X ¼ 15:3; 11:2; 8:8; 11:9; 7:5; 9:7; 8:3; 12:5; 10:3; 10:1ð Þ;

~c ¼ 7:5; 8:3; 8:8; 9:7; 10:1; 10:3; 11:2; 11:9; 12:5; 15:3ð Þ;

~Y ¼ 10:7; 9:3; 6:8; 11:3; 12:2; 13:6; 8:9; 9:9; 11:8; 12:9ð Þ;

~g ¼ 6:8; 8:9; 9:3; 9:9; 10:7; 11:3; 11:8; 12:2; 12:9; 13:6ð Þ;

~B ¼ 3; 7; 2; 8; 1; 4; 9; 5; 10; 6ð Þ:

In this example, data from the first date selected from the
historical record (10.7 in vector ~Y ) is ranked fifth lowest of
the 10 ensemble members, as shown in the vectors~g and ~B.
Data from the second date are ranked third lowest (9.3 in
vector ~Y ); and data from the third date selected from the
historical record are ranked lowest of all 10 ensemble
members (6.8 in vector ~Y ).
[17] Now the final step is to construct the reordered

vector ~X
SS
, which is the final reordered output:

~X
SS ¼ xss1 ; x

ss
2 ; . . . ; x

ss
n

� �
; ð5Þ

where

xssq ¼ x rð Þ; ð6Þ

q ¼ ~B r½ 	; ð7Þ

r ¼ 1; . . . ; n: ð8Þ

Recall that the subscripts in parentheses refer to the
elements in the sorted vector ~c. Following through with
the numbers from the example above provides

xss3 ¼ x 1ð Þ ¼ 7:5;

xss7 ¼ x 2ð Þ ¼ 8:3;

xss2 ¼ x 3ð Þ ¼ 8:8;

and so on. Hence, in this example,

~X
SS ¼ 10:1; 8:8; 7:5; 10:3; 11:9; 15:3; 8:3; 9:7; 11:2; 12:5ð Þ:

[18] The ensemble reordering approach is demonstrated
graphically in Figure 2 through an example. Figure 2

Figure 2. The ensemble reordering method for a hypothetical ensemble of 10 members, and for a given
variable (e.g., maximum temperature) for 14 January 2004, showing (a) the ranked ensemble of generated
weather for three stations (c), (b) a random selection of historical observations for the three stations (Y),
(c) the ranked historical observations (g), and (d) the final reordered output (XSS). See text for further
details.
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outlines example results for three stations (j = 3) and one
variable (e.g., maximum temperature) that are extracted
from the matrices X and Y that were described at the
beginning of this section. Figure 2a describes the ranked
preferentially selected observations for the three example
stations (the vectors ~c defined earlier). Figure 2b describes
the observations selected from all years in the historical
record (the vectors ~Y defined earlier), and Figure 2c shows
the ranked historical observations (the vectors ~g defined
earlier). Also in Figure 2c is the vector~B, which is the index
of the original ensemble member that corresponds to the
values in the ordered vector ~g. Figure 2d describes the final
shuffled output (the vectors ~X

SS
).

[19] The dark ellipses in Figure 2 correspond to the first
ensemble member extracted from the historical record.
When this is not sorted (i.e., the vector ~Y ), the values are
10.7, 10.9, and 13.5, for stations one, two, and three,
respectively (Figure 2b). When these values are sorted with
respect to all other ensemble members, the first observed
ensemble is ranked fifth for station one, sixth for station
two, and fourth for station three (Figure 2c). For the first
ensemble member, the ranks 5, 6, and 4 are actually the
values of the index (r) for the three stations (equation (6));

values for the first ensemble member, once resorted (xq
ss =

x(r)), are 10.1 at station one (x1
ss = x(5); see Figure 2a), 9.3 at

station two (x1
ss = x(6)), and 14.5 at station three (x1

ss = x(4)).
Also consider the second ensemble in Figure 2 (the shaded
ellipses). Ensemble 2 from the historical record is ranked
third, second, and fifth for stations one, two, and three,
respectively (Figure 2c), such that the final shuffled output
for ensemble 2 is 8.8 (station one), 7.2 (station two), and
15.6 (station three).
[20] This approach works because it preserves the Spear-

man Rank correlation structure between station pairs, and
between climate variables. Consider first the correlation
between station pairs. If observed data at two neighboring
stations are similar (i.e., a high correlation between sta-
tions), then the observations at the two stations on a given
(randomly selected) day are likely to have a similar rank.
The rank of each preferentially selected observation (i.e.,
the resampled weather, in the vector ~c) at the two stations is
matched with the rank of each observation in the vector ~g,
meaning that for all ensemble members, the rank of the
resampled realizations will be similar at the two stations.
When this process is repeated for all simulated days, the
ranks of a given ensemble member will on average be

Figure 3. Comparison of the seasonal cycles of generated and observed precipitation (top row),
maximum temperature (middle row), and minimum temperature (bottom row), for an example station in
Arizona (Petrified Forest; 34.8�N, 109.9�W). The thin line with diamonds illustrates the observations,
and the box-and-whiskers illustrate the minimum, lower quartile, median, upper quartile, and maximum
of the generated weather sequences. Results are based on weather generated for the period 1950–1999.
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similar for the two stations, and the spatial correlation will
be reconstructed once the vector ~c is resorted. This reason-
ing is identical for intervariable correlations.
[21] An ordered selection of dates from the historical

record enables preservation of temporal persistence. The
random selection of dates that are used to populate the
matrix Yi,j,k are only used for the first day in the generated
sequence, and are persisted for subsequent forecast lead
times. In the example presented in Figure 2, the dates for the
next simulated day would be 9 January 1996 for the first
ensemble member, 18 January 1982 for ensemble two,
14 January 2000 for ensemble three, and so on. High
temporal persistence (e.g., as measured through lag-1
correlation statistics) means that the historical observations
for subsequent days will, on average, have a similar rank.
Because the (ranked) preferentially selected observations in
the vector ~c are matched with the rank of successive
observations in the vector ~g, the temporal persistence is
reconstructed once the ensemble output is resorted.
[22] The main assumption in this approach is that the

spatiotemporal correlation structure, as computed using all
days in the historical record, is appropriate to reconstruct the
spatiotemporal correlation structure for a subset of data. For

unconditioned simulations this method generates sequences
of weather that are similar (but not identical) to observed
sequences. For conditioned simulations the method gener-
ates unique weather sequences (i.e., sequences of weather
that have hitherto been unobserved).

4. Results

4.1. Summary Statistics of Generated Precipitation
and Temperature Fields

[23] A necessary quality of any weather generator method
is its capability to reproduce the summary statistics of the
observed precipitation and temperature fields. Figure 3
shows box-and-whisker plots of the generated mean (left
column), variance (middle column), and skewness (right
column) for precipitation (top row), maximum temperature
(middle row), and minimum temperature (bottom row), for
all months of the year for an example station in central
Arizona (Petrified Forest; 34.8�N, 109.9�W). The generated
distribution is based on an ensemble of 50 weather sequences
for the period 1950–1999. The observed mean, variance, and
skewness are depicted in Figure 3 as the solid line with

Figure 4. Comparison of generated and observed summary statistics for all stations in the contiguous
United States (shown in Figure 1), for the month of January. The plots show comparisons of the station
mean (left column), standard deviation (middle column), and skewness (right column), for precipitation
(top row) maximum temperature (middle row), and minimum temperature (bottom row).
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diamonds. The statistical moments at Petrified Forest are all
produced well.
[24] Generating weather for a single station, however, is

not a very robust test of the capabilities of the weather
generator model. To extend this analysis, an ensemble of
50 daily weather sequences was generated for the period
1950–1999 for each station in Figure 1 (2307 stations). The
mean, standard deviation, skewness, lag-1 correlation, and
intervariable correlations were then computed for all gener-
ated ensemble members at each station. Spatial correlations
of generated time series between station pairs were also
computed for each ensemble member, but only for cases
where the interstation separation is less than 500 km (spatial
correlations were only computed for every fifth station,
resulting in 47,105 valid station pairs). For distances greater
than 500 km, the spatial correlation is very small. The
median of the summary statistics of all ensemble members
(mean, standard deviation, skewness, lag-1 correlation, and
intervariable and intersite correlation) was computed for
each station (or valid station pair) and compared against
the observed summary statistic at that station or station pair.
[25] Figures 4 and 5 portray comparisons of the mean,

standard deviation, and skewness from the generated and
observed time series for the months of January and July,
respectively, for all stations (Figure 1) in the contiguous

United States. The top rows in Figures 4 and 5 present the
comparison of the generated and observed precipitation
time series. The mean (left column), standard deviation
(middle column), and skewness (right column) are all
adequately reproduced, although the skewness in the gen-
erated time series is lower than the corresponding statistics
in the observed time series (Figures 4 and 5). The middle
and bottom rows in Figures 4 and 5 present the comparison
for the generated and observed maximum and minimum
temperature time series. Similar to the results for Petrified
Forest, the mean, standard deviation, and skewness of the
temperature time series are all reproduced accurately.
[26] The results in Figures 3–5 are not altogether unex-

pected; unconditioned resampling of data from all years in
the historical record should preserve the statistical moments
of historical time series. A bigger challenge for the weather
generator is an adequate depiction of the observed space-time
variability in the generated precipitation and temperature
fields. Figures 6 and 7 illustrate the observed and generated
temporal (lag-1) Pearson correlations (top rows), and the
spatial Pearson correlations between valid station pairs (bot-
tom rows), for all stations in the contiguous United States.
Results are shown for the months of January (Figure 6) and
July (Figure 7). Correlations of generated precipitation
are lower than the observed correlations (left columns of

Figure 5. As in Figure 4, except for the month of July.
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Figures 6 and 7). This occurs because the ensemble reorder-
ing method has difficulties dealing with the intermittent
properties of precipitation. When the ensemble of generated
weather for a given day has less zero precipitation ensemble
members than the ensemble from the persisted observed data,
the generated ensemblemembers with zero precipitation days
are matched with observed precipitation amounts, and their
assignment to a given ensemble member is entirely random
(see Clark et al. [2004] for more details).
[27] The generated maximum and minimum temperature

time series reproduce the observed correlation structure
fairly well (middle and right columns of Figures 6 and 7),
although the generated lag-1 correlations are slightly lower
than the observed correlations. This discrepancy could be
due to bad data (e.g., when temperature sensors are ‘‘stuck’’
and the same temperature value is repeated for subsequent
days) or to the lag-1 Pearson correlations being consistently
lower than the Spearman Rank correlation (note that the
ensemble-reordering method is only guaranteed to preserve
the Spearman Rank correlation). Nevertheless, differences
between observed and generated temperature correlations
are very small.
[28] Figure 8 illustrates comparisons between generated

and observed inter-variable correlations for all stations in the
contiguous United States (shown in Figure 1), for the months
of January (top row) and July (bottom row). The left and
middle columns in Figure 8 portray correlations between
precipitation and maximum temperature, and between pre-
cipitation and minimum temperature, respectively. The neg-
ative correlations indicate a tendency for lower temperatures
on precipitation days (most pronounced for the precipitation
and maximum temperature correlations in July), and this
process is reproduced well by the weather generator model.
The right column in Figure 8 portrays (high) correlations

between maximum and minimum temperature, and these
correlations are also reproduced well.

4.2. Conditioning on Climate Indices

4.2.1. Conditioning the Weather Generator on
ENSO Indices
[29] Extending the weather generator to produce condi-

tional weather sequences is fairly straightforward [e.g.,
Yates et al., 2003]. Instead of resampling data from all
years, one can rank the years (e.g., in terms of the similarity
of a climate index), from most similar (highest rank) to least
similar (lowest rank), and preferentially select certain years
(iyear) based on weighting and selection criteria:

iyear ¼ INT ul
N

a

� �
þ 1 ð9Þ

In equation (9), u � U(0, 1) is a random number selected
from a uniform distribution ranging from zero to one, l is a
weighting parameter, a is a selection parameter, N is the
number of years in the time series, and INT is the integer
operator. Values of l greater than 1 shift the uniform
random number closer to zero, meaning years higher in the
ranked list will be preferentially selected. Values of a
greater than 1 will restrict the selection of years to a subset
of years (e.g., if a = 5, attention will be restricted to the top
20% of ranked years). The selection of years is unbiased if
both l and a are equal to 1. The probability of preferentially
selecting different ranked years for selected a and l values
is illustrated graphically in Figure 9.
[30] This approach is implemented in this study as

follows: (1) Years are ranked in terms of the similarity of
the October value of the Niño 3.4 index, and (b) equation (9)
is applied by selecting iyear 100 times, and using the
selection of iyears to obtain the subset of days from which

Figure 6. Comparison of generated and observed lag-1 correlations (top row) and intersite correlations
(bottom row) for all stations in the contiguous United States (shown in Figure 1), for the month of
January. The plots show comparisons for precipitation (left column), maximum temperature (middle
column), and minimum temperature (right column).
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data are resampled. An additional random component is
introduced by using a different random selection of years
for each generated day. The Niño 3.4 index represents sea
surface temperature (SST) anomalies in the central
equatorial Pacific Ocean (5�N–5�S; 170�W–120�W);
strong positive values of the Niño 3.4 index depict El Niño
events, and strong negative values of the Niño 3.4 index
depict La Niña events. The use of October Niño 3.4
conditions to rank the years means that the generated

precipitation and temperature sequences are conditioned
with respect to SST conditions at the beginning of winter; if
the SST anomalies persist throughout winter, then they can
affect the wintertime atmospheric circulation (and surface
climate) over North America. The generated weather
sequences thus can be considered forecasts initialized in
October.
[31] Figure 10 illustrates 50 sequences of cumulative

precipitation conditioned using equation (9) for water year

Figure 7. As in Figure 6, except for the month of July.

Figure 8. Comparison of generated and observed intervariable correlations, for all stations in the
contiguous United States (shown in Figure 1). The plots show correlations between precipitation and
maximum temperature (left column), between precipitation and minimum temperature (middle column),
and between maximum temperature and minimum temperature (right column). The top plots depict
results for January, and the bottom plots depict results for July.
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1988–1989, for our example station in Arizona (Petrified
Forest; 34.8�N, 109.9�W), using different a and l values.
Dark lines in each panel depict the minimum (dashed),
lower quartile, median, upper quartile, and maximum
(dashed) cumulative precipitation, computed using all
years, and the light lines illustrate the conditioned sequences
of precipitation produced from the weather generator. The
water year 1988–1989 was intentionally selected for
this example because sea surface temperatures for the Niño
3.4 region were significantly lower than normal at this time

(La Niña conditions), conditions which tend to favor lower
than normal winter precipitation in Arizona [Redmond and
Koch, 1991; Cayan and Webb, 1992; Clark et al., 2001].
[32] Generated precipitation using a and l values of 1.0

is shown in the top left panel of Figure 10. In this case the
selection of years is unbiased, and, as expected, there is no
tendency for the generated traces to favor low or high
values. Generated precipitation using an a value of 1.0
and a l value of 2.5 is shown in the upper right panel of
Figure 10. These a and l values mean that all years can be
selected (a = 1.0), but the years in which the October value
of the Niño 3.4 index is most similar to the value for
October 1988 will be preferentially selected. The generated
traces in the upper right panel are indeed biased on the low
side. The bottom two panels of Figure 10 illustrate gener-
ated traces for the a value of 5.0 where the selection of
years is restricted to the top 20% of ranked years. The low
bias in precipitation is more strongly apparent, especially
for the l value of 2.5 (bottom right panel of Figure 10)
when more weight is given to years higher up in the ranked
list.
[33] The generated ensembles in Figure 10 can be used to

produce probabilistic forecasts of total winter precipitation.
Figure 11 plots the cumulative probability, as computed
from the generated traces in Figure 10, against the total
winter precipitation (1 October through 31 March). The top
panel in Figure 11 illustrates results for a = 1.0, and the
bottom panel in Figure 11 illustrates results for a = 5.0 (the
dark line (light line) in both plots illustrates results for l =
1.0 (l = 2.5)). The cumulative probability of total winter
precipitation, the light line with diamonds, is shown for
reference. As is expected from Figure 10, the cumulative
probability distribution for a and l values of 1.0 mirrors the
cumulative probability distribution computed using all
years; the cumulative probability distribution for a = 1.0
and l = 2.5 is biased slightly on the low side, and the
cumulative probability distribution for a = 5.0 is signifi-
cantly drier than the climatological cumulative probability
distribution. Figures 10 and 11 illustrate results for example
values of the a and l parameters; the next section will
formalize the choice of these parameters.
4.2.2. Estimating the A and L Parameters
[34] The values of the a and l parameters can be

specified a priori, but it may be possible to increase the
probabilistic skill of the seasonal forecasts if the a and l
parameters are optimized. Figure 12 illustrates the ranked
probability skill score (RPSS) for forecasts of total winter
precipitation at Petrified Forest (the same station used in
Figures 10 and 11), for different values of a and l (more
details on the RPSS are provided by Wilks [1995] and Clark
et al. [2004]). In this experiment, the a and l values were
randomly selected within the range 1.0–10.0 (a) and 1.0–
5.0 (l), and conditioned sequences of weather were
generated using these a and l values. The top plot in
Figure 12 illustrates the RPSS computed using all years, and
the bottom plot illustrates the RPSS when computed for
only ENSO years, defined as when the October Niño 3.4
anomalies were greater than 1.0�C or less than �1.0�C.
Results show that situations where the closest analog year is
preferentially selected (high values of both a and l)
actually produce negative skill at Petrified Forest (the
squares in the top right corner of Figures 12a and 12b).

Figure 9. Cumulative probability of selecting years in a
ranked list, based on different a and l parameters. The top
plot depicts probabilities for a = 1, and the bottom plot
illustrates results for a = 5. In both plots the dark line (the
light line) depicts probabilities for l = 1.0 (l = 2.5).
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Positive skill occurs in situations in which the weighting
function is relaxed (Figure 12b). The shuffled complex
evolution (SCE) method of Duan et al. [1992, 1993, 1994]
was used to optimize the a and l parameters by maximizing
the RPSS (restricting attention to ENSO years). The SCE
optimization provided parameter values of a = 5.550 and
l = 1.106 (RPSS = 0.365).
[35] Attention is now directed to optimizing a and l

parameters for forecast applications. Figure 12 illustrates
the dependence of probabilistic forecast skill on the
strength of ENSO conditions; RPSS values are much
higher when attention is restricted to ENSO years (El Niño
plus La Niña). This is fairly intuitive. In years where there

is weak ENSO forcing, assigning more weight to years that
have similar values of the Niño 3.4 index is unlikely to
result in an increase in probabilistic forecast skill. In other
words, the a and l parameters should depend on the
strength of the Niño 3.4 index. The a and l parameters
should therefore be optimized locally, using years where
the value of the Niño 3.4 index is similar to the year being
forecast.
[36] The SCE optimization program [Duan et al., 1992,

1993, 1994] was configured to maximize the RPSS value
for the 10 years in which values of the Niño 3.4 index are
most similar to the year being forecast. For a given water
year, a function evaluation for a given a and l parameter set

Figure 10. Fifty generated ensemble members of cumulative precipitation for water year 1988–1989,
for the example station in Arizona used for Figure 3 (Petrified Forest; 34.8�N, 109.9�W), for different
a and l parameters.
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involves (1) generating probabilistic forecasts of total winter
precipitation, based on an ensemble of 50 generated weather
sequences (1 October through 31 March) for each of the
10 years that have the most similar Niño 3.4 conditions, and
(2) calculating the RPSS value for these 10 probabilistic
forecasts. Function evaluations are repeated until the global
optimal RPSS value is identified, or after 200 function
evaluations, whichever occurs first. Results are cross
validated; that is, data for a given water year are not used
to estimate the a and l parameters that are used to produce
the optimized generated weather sequence for that water
year. The optimization program has a high computational

Figure 12. Topology of the ranked probability skill score
(RPSS) score, using different a and l parameters, for the
Petrified Forest station in Arizona (34.8�N, 109.9�W). The
top plot depicts RPSS values computed using all years;
the bottom plot depicts RPSS values computed using El
Niño-Southern Oscillation (ENSO) years (defined as when
the October value of the Niño 3.4 index was >1.0�C or
<�1.0�C).

Figure 11. Probabilistic forecasts of total winter precipita-
tion (1 October through 31 March) for water year 1988–
1989, for Petrified Forest (34.8�N, 109.9�W), for different
a and l parameters. See text for further details.
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burden, which was reduced by limiting the maximum
number of function evaluations to 200, by restricting
analysis to ENSO years, and by restricting attention to the
stations in the contiguous United States where the
correlation between the October value of the Niño 3.4
index and total 1 October through 31 March precipitation
exceeds 0.5 (92 stations).
[37] Figure 13 compares the RPSS values using opti-

mized a and l parameters against RPSS values for the
default a and l parameters used in previous figures.
Recall that analysis is restricted to ENSO years. Each
symbol in Figure 13 illustrates the probabilistic forecast
skill for a station in the contiguous United States that
meets the selection criteria defined above. On the whole,
the optimized a and l parameters provide generated
weather sequences with higher probabilistic skill than the
default parameters of a = 1.0 and l = 2.5 (top plot in
Figure 13). However, the default parameters of a = 5.0
and l = 1.0 and a = 5.0 and l = 2.5 (middle and bottom
plots in Figure 13) provide generated weather sequences
with equivalent probabilistic forecast skill to the optimized
a and l parameters. The lower optimized RPSS values
can be interpreted as arising from situations where the
sample size is insufficient to provide stable a and l
estimates. Results suggest parameters of a = 5.0 and l =
2.5 can be effectively used to condition the weather
generator on ENSO indices.

5. Summary and Discussion

[38] A new approach for generating weather has been
introduced that preserves the mean, standard deviation, and
skewness of the generated precipitation and temperature
sequences, while also preserving the temporal persistence
and intersite and intervariable correlations. The method
resamples data from the historical record ‘‘nens’’ times
(nens is the number of ensemble members), and reorders
the ensemble members to reconstruct the observed space-
time variability in precipitation and temperature fields. The
weather generator method has been applied to 2307
stations in the contiguous Unites States. When generated
sequences are examined for all of these stations, results
show that the weather generator reproduces the summary
statistics (mean, standard deviation, skewness) very well.
Intersite correlations from the weather generator are slightly
lower than observed intersite correlations, due to difficul-
ties in accurately reproducing the intermittent properties of
precipitation [see also Clark et al., 2004]. Intersite
correlations for temperature are preserved very well. In
summary, the weather generator reproduces the statistical
moments at individual stations well and acceptably

Figure 13. Comparison of the RPSS when weather
sequences are generated using optimized a and l
parameters, and when weather sequences are generated
using default a and l parameters. The plots illustrate results
for the parameters a = 1.0 and l = 2.5, a = 5.0 and l = 1.0,
and a = 5.0 and l = 2.5, for the top, middle, and bottom
plots, respectively. Results are shown for the 92 stations in
the contiguous United States where the correlation between
the October value of the Niño 3.4 index and total winter
precipitation exceeds 0.5.
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duplicates the observed lag-1, intersite, and intervariable
correlations.
[39] Methods are introduced to extend the weather

generator model to generate weather sequences that reflect
El Niño and La Niña conditions. Instead of resampling
data from all years in the historical record, data are
preferentially resampled from a set of years that are similar
in terms of values of the Niño 3.4 index. The resultant set
of years are identified using weighting and selection
parameters. The weighting parameter gives more weight
to years higher up in the ranked list, and the selection
parameter restricts attention to a subset of years (e.g., the
top 20% of years in the ranked list). The weighting and
selection parameters are optimized, and default parameters
are suggested for future studies. Example forecasts are
provided for a station in Arizona (Petrified Forest; 34.8�N,
109.9�W) where El Niño and La Niña conditions have a
strong effect on winter precipitation. The conditioned
weather sequences generated using the methods described
in this paper are appropriate for use as input to hydrologic
models to produce multiseason forecasts of streamflow.
Future work will assess the skill of multiseason hydrologic
forecasts in numerous small river basins in the contiguous
Unites States.
[40] It is possible to use the a and l parameters

discussed in this paper to produce climate change scenar-
ios (e.g., by ranking years from warmest to coldest, as

done by Yates et al. [2003]). However, it is recommended
that this be done cautiously. When conditioning is based on
a list of years that are ranked from warmest to coldest, the a
and l parameters will alter not only the mean of the
distribution, but the standard deviation and skewness as
well. This may not be desired. For example, Figure 14
shows the interannual standard deviation of January
maximum temperature at Petrified Forest, constructed using
different a and l values. As expected, the standard
deviation decreases when the selection of data is biased
toward warm years. If the standard deviation and skewness
are important attributes for the construction of climate
change scenarios, then alternative methods for conditioning
the weather generator must be developed and used. More
research is needed in this area.
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