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Abstract. A nonparametric wet/dry spell model is developed for resampling daily
precipitation at a site. The model considers alternating sequences of wet and dry days in a
given season of the year. All marginal, joint, and conditional probability densities of
interest (e.g., dry spell length, wet spell length, precipitation amount, and wet spell length
given prior to dry spell length) are estimated nonparametrically using at-site data and
kernel probability density estimators. Procedures for the disaggregation of wet spell
precipitation into daily precipitation and for the generation of synthetic sequences are
proffered. An application of the model for generating synthetic precipitation traces at a
site in Utah is presented.

1. Introduction
Synthetically generated sequences of daily precipitation are

often used for investigating likely scenarios for agricultural
water requirements, reservoir operation for analyses of ante-
cedent moisture conditions, and runoff generation in a water-
shed. Preserving the characteristics of multiday wet and dry
spells is often important in these applications. This paper pre-
sents a stochastic model for resampling daily precipitation
where the probability distributions functions (pdf’s) of alter-
nating wet and dry spell lengths and of rainfall amount are
estimated nonparametrically using kernel density estimators.
This procedure is equivalent to a bootstrap or sampling with
replacement of the observed data sequence of spell lengths and
precipitation amounts. It differs from the classical bootstrap in
that smoothed rather than empirical distribution functions are
used for resampling, and sequential attributes of spells may be
preserved. Necessary calibration parameters are chosen auto-
matically from the data set using measures aimed at providing
a good fit to the unknown underlying pdf.
Our particular interest was in developing a scheme for syn-

thetic simulation of daily precipitation in mountainous regions
in the western United States. Precipitation in these areas is in
the form of snow in the winter with orographic and frontal
mechanisms dominant. Convective rainfall processes occur in
other seasons. Marked differences in the storm tracks and
moisture sources over the seasons are observed. A mixture of
markedly different mechanisms (some related to the El Nino-
Southern Oscillation) leads to the precipitation process in the
western United States [Webb and Bettencourt, 1992; Cayan and
Riddle, 1992]. Recognition of such heterogeneities has led to

efforts at regime identification and modeling of rainfall condi-
tional on weather types [e.g., Katz and Parlange, 1993; Wilson
and Lettenmeier, 1993; Bogardi et al., 1993]. While this is an
attractive and necessary approach, deconvolution of mixtures
is not always easy from a finite data set and the weather type
designations used can be subjective. Traditionally, parametric
probability models (e.g., exponential distribution), whose func-
tional form is completely specified by a small set of parameters
are used to fit the relevant frequency distributions. Selecting
the best such model is tenuous [see Vogel and McMartin, 1991]
even where mixtures are not of concern.
The work presented here was motivated by the following

questions:
1. Is it possible to resample the data while preserving the

relative frequencies and conditional relative frequencies of wet
and dry spells and precipitation amounts without prior assump-
tions as to the parametric forms of the underlying probability
models?
2. What is a good way to empirically model the relevant

pdf for resampling and to guide development of statistical
models?
3. Can such a data-based assessment of probabilities or

relative frequencies be used to judge the adequacy of concep-
tual and statistical models posed for daily rainfall?
The first question is relevant not only from a conceptual

standpoint but also because organizations (e.g., U.S. Forest
Service, U.S. Department of Agriculture) specify a uniform
procedure for applications from site to site, where parametric
distributions or procedures are used, “models” that work well
in some regions/sites fail at others. In our view it is unlikely
that a robust parametric framework for model specification
and selection can be devised for uniform application given the
likely heterogeneity in precipitation generation mechanisms.
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Here we sidestep such issues by using a resampling strategy
that honors at-site data directly.
The second question is addressed in paper by B. Rajago-

palan et al. Evaluation of kernel density estimation methods
for daily precipitation resampling, submitted to Stochastic Hy-
drology and Hydraulics, 1995, hereinafter referred to as sub-
mitted manuscript, 1995) where we document our investiga-
tions into developing appropriate kernel density estimators for
resampling continuous (e.g., precipitation amount) and dis-
crete (e.g., spell length in days) random variables.
With regards to the third question, we argue that the answer

is likely to be yes, given that the relevant probability densities
can be estimated reliably from the data. However, this is an
area that we expect to research formally in the future and
discuss only generally here.
We begin with a brief review of available models for simu-

lating daily precipitation and an introduction to the central
ideas in kernel density estimation. The nonparametric, alter-
nating wet/dry spell model is presented next, and the resam-
pling/simulation strategy is indicated. Results from an applica-
tion to a Utah data set follow. The performance of the
nonparametric scheme is compared with a simple, parametric
alternative. A discussion of applicability, limitations of the
approach, and musings on pointers to related work in progress
concludes the presentation.

2. Background
Reviews of stochastic precipitation models are offered by

Waymire and Gupta [1981a, b, c], Georgakakos and Kavvas
[1987], and Foufoula-Georgiou and Georgakokas [1988]. The
reader is referred to these papers for an appreciation of the
literature and the central issues perceived in the field. While
we are aware of the need to look at the concurrent represen-
tation of the precipitation process at different timescales, our
focus here will only be on daily precipitation. Precipitation
models have two components: (1) a model for precipitation
occurrence, usually formulated as a Markov process, and (2) a
model for precipitation amount, once a precipitation event has
been generated. In the latter case, typically a parsimonious
member of the exponential family that best fits a given data set
is used. A firm basis for such a choice has yet to emerge, and
typical tests for selecting between parametric distributions,
such as the chi-square test, often lack the power to discriminate
between different candidate distributions, since most of the
mass of the pdf is concentrated near the origin. This practice is
also questionable given our earlier comments that a mix of
generating processes likely governs precipitation. A brief dis-
cussion of the attributes of some models for daily precipitation
occurrence follows.

2.1. Markov Chain Models

The most popular approach is to consider the precipitation
occurrence process to be described by a finite state (typically 2,
a day is wet W or dry D) Markov Chain (MC) of finite order
(typically 1), with seasonally (or time varying) transition prob-
abilities. The basic assumption is that the present state (wet or
dry) depends only on the immediate past. The transition prob-
abilities for transitions (i.e., WW, WD, DW, DD) between the
two states (W or D) are estimated directly from the data
through a counting process. Fourier series methods [Feyerharm
and Bark, 1965; Woolhiser et al., 1988] may be used to param-
eterize seasonal variations in the transition probabilities. The

degree of dependence in time is limited by the order of the
MC. Feyerharm and Bark [1967] and Chin [1977] suggest that
the order may need to be seasonally variable as well. Lack of
parsimony is a drawback of MC models as the order is in-
creased. A number of researchers [Hopkins and Robillard,
1964; Haan et al., 1976; Srikanthan and McMahon, 1983; Guz-
man and Torrez, 1985] have also stressed the need for multi-
state MC models that consider the dependence between tran-
sition probabilities and rainfall amount.
Chang et al. [1984] and Foufoula-Georgiou and Georgakakos

[1988] argue that Markov Chain models do not reproduce long
term persistence and event clustering very readily. Markov
Chain models can be attractive because of their largely non-
parametric nature, ease of application and interpretability, and
well-developed literature. Wilson and Lettenmeier [1993] pur-
sue a hierarchical MC model to describe the daily precipitation
process given the heterogeneous generating mechanisms prev-
alent in the western United States. While this approach ad-
dresses the heterogeneity issue, the relative lack of parsimony
and shortcomings of the MC model identified above detract
from the formulation.

2.2. Wet-Dry Spell Approach

In probabilistic terminology, this approach is also called the
alternating renewal model (ARM). The term renewal stems
from the implied independence between the dry and wet pe-
riod length, while the term alternating refers to the fact that
wet and dry states alternate. No transition to the same state is
possible. An advantage of this representation is that it allows
direct consideration of a composite precipitation event, rather
than its discontinuous truncation into arbitrary daily segments.
A geometric or a negative binomial distribution [Roldan and

Woolhiser, 1982] may be used as a model for spell length, where
a daily time step is of interest. A probability distribution for
wet spell precipitation amount also needs to be developed, as
does a procedure for the disaggregation of wet spell precipi-
tation to daily precipitation, for wet spells that are longer than
one day.
The primary difficulties cited with the wet/dry spell approach

for daily rainfall modeling are (1) the need for disaggregation
of wet spell precipitation into daily or event precipitation (this
is not an issue if independence in daily precipitation amounts
is assumed, since that is typically assumed by Markov Chain
models), (2) the justification of the independence between the
dry and wet spell lengths at short timescales, and (3) the ef-
fective reduction in the sample size by considering spells rather
than days. We also find the usual parametric specifications for
probability distributions and assumptions of independence of
spells in such models objectionable in light of the likely heter-
ogeneous nature of the data of interest to us. However, we do
find this structure plausible and address some of the difficulties
cited here in our development.

3. Model Formulation
For the nonparametric, seasonal wet/dry spell (NSS) model

presented here, the random variables of interest are the wet
spell length w (days), dry spell length d (days), daily precipi-
tation amount p (inches), and the wet spell precipitation
amount pw (inches). Note that throughout the paper, wet day
precipitation is referred to as daily precipitation. Variables w
and d are defined through the set of integers greater than 1
(and less than season length), and p and pw are defined as
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continuous, positive (actually greater than a measurement
threshold, e.g., 0.01 inches rather than 0) random variables. A
mixed set of discrete and continuous random variables is thus
considered. Appropriate season definitions are prescribed by
the model user, and model definitions that follow pertain to a
given season of the year. The natural sequence of seasons is
maintained, and spells in progress at the end of a season are
allowed to terminate in the succeeding season.
The general structure of the model is similar to that of a

wet/dry spell model. Our model differs from the traditional
wet/dry spell model in a number of ways, as illustrated in
Figure 1. The dry and wet spell lengths in a season may be
dependent. The data are allowed to indicate whether such an
assumption is necessary. Rather than fitting parametric prob-
ability densities to the data, we consider kernel estimators of
the probability mass/density function (pmf/pdf) of wet spell
length f(w), dry spell length f(d), wet day precipitation
amount f( p), wet spell precipitation amount f( pw), the joint
pmf of wet and dry spell length f(w, d), the joint pdf of wet
spell length and wet spell precipitation f(w, pw), and the
conditional pdf of wet spell length given dry spell length
f(w ud), dry spell length given wet spell length f(d uw), and wet
spell precipitation given wet spell length f( pwuw).
First, the significance of the dependence between successive

wet and dry spell lengths is assessed by computing their sample
correlation for each season. The precipitation occurrence pro-
cess in a given season is described through the conditional
pmf’s f(w ud) and f(d uw) if the correlation is significant and the
marginal pmf’s f(w) and f(d) otherwise. The latter with para-
metrically specified pmf corresponds to the traditional alter-
nating renewal model. The former is a more general depen-
dence structure. Next, one estimates for each season the
autocorrelation function for precipitation amounts pi, i 5
1, z z z , w for each spell length. If these correlations are not
significant, it is assumed that there is no “statistical structure”
in the within spell precipitation, at least for daily precipitation
amounts. In this case, daily precipitation is modeled directly
through an estimate of the pdf f( p). If there is evidence for
structure in wet spell precipitation, wet spell precipitation pw
becomes the primary variable, and a disaggregation approach
that preserves the within spell structure is used to disaggregate
pw to daily precipitation amounts. In most applications using
traditional wet/dry spell models or the one presented here, the
disaggregation approach is eschewed in favor of treating daily
precipitation as an independent random variable.
The decisions on model structure as well as the relevant pdf

for each variable for each season are different and are inde-
pendently estimated. To save on notation, we have chosen not
to index any of our variables by season. In summary, the pri-
mary differences with the traditional wet/dry spell model are
the following: (1) the relevant probability functions are esti-
mated without recourse to prior assumptions as to the para-
metric form of the model, and (2) a more general conditional
dependence structure is admitted.
We stress that while we are ultimately interested in devel-

oping a nonparametric model for generating daily precipita-
tion sequences, the nonparametric density estimates generated
en route are interesting since they reveal tendencies or struc-
ture in the precipitation process. We now describe how the pdf
and pmf are estimated. The univariate cases are discussed first
followed by the bivariate/conditional cases. The disaggregation
approach is finally presented.

3.1. Nonparametric Kernel Function Estimation

Nonparametric estimation of probability and regression
functions is an emerging area in stochastic hydrology. A review
of recent applications is offered by Lall [1995]. A function
approximation method is considered nonparametric if (1) it is
capable of approximating a large number of target functions,
(2) it is “local” in that estimates of the target function at a
point use only observations located within some small neigh-
borhood of the point, and (3) no prior assumptions are made
as to the overall functional form of the target function. A
histogram is a familiar example of such a method. Such meth-
ods do have parameters (e.g., the bin width of the histogram)
that influence the estimate at a point. However, they are dif-
ferent from “parametric” methods where the entire function is
indexed by a finite set of parameters (e.g., mean and standard
deviation), and a prescribed functional form.
Kernel density estimation is a nonparametric method of

estimating a pdf from data that is related to the histogram.
Recent expository monographs that develop these ideas in-
clude [Silverman, 1986; Scott, 1992; Härdle, 1991]. Given a set
of observations x1, z z z , xn (in general x may be a scalar or a
vector), the kernel density estimate (kde) is defined as

f̂~ x! 5
1
hn O

i51

n

KS x 2 xi
h D (1)

where K( ) is a weight or kernel function and h is a bandwidth.
The idea is illustrated through Figure 2. Consider the defi-

nition of probability as a relative frequency of event occur-
rence. Now an estimate of the probability density at a point x
(refer to points x1 and x2 in Figure 1) may be obtained if we
consider a box or window of width 2h centered at x and count
the number of observations that fall in such a box. The esti-
mate f̂( x) is then (number of xi that lie within [ x 2 h,
x 1 h])/(2hn)). In this example, we have used a rectangular
kernel (K(t) 5 1/ 2 for ut u , 1, 0 else; t 5 ( x 2 xi)/h) for

Figure 1. Structure of the wet/dry spell precipitation model.
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the estimate in the locale of x. As the sample size n grows, one
could shrink the bandwidth h such that asymptotically the
underlying pdf is well approximated. Note that for a finite
sample this is much like describing a histogram, except that the
“bins” are being centered at each observation or at each point
of estimate, as desired. From the point of view of resampling,
one can treat each observation ( xi) as being equally likely to
occur in the window xi 1 h and resample it uniformly in that
interval, for this example. Clearly, one is not restricted to
rectangular kernels.
The “parameters” of this method are the kernel function or

“local density” and the bandwidth h. A valid pdf estimate is
obtained for any K( ) that is itself a valid pdf. Symmetry of
K( ) is assumed for unbounded data to ensure pointwise
unbiasedness of the estimate. For bounded data, special

boundary kernels that correspond to the interior kernels are
used in the boundary region, to assure unbiasedness. Finite
variance of K( ) is assumed to ensure that f̂( x) has finite
variance. This still leads to a wide choice of functions for
K( ). It turns out that in terms of the mean square error
(MSE) of f̂( x) the choice of K( ) is not crucial. Different
kernels can be made equivalent under rescaling by choosing
appropriate bandwidths. A Gaussian kernel with a large band-
width can give MSE of f̂( x) comparable to that using a rect-
angular kernel with a smaller bandwidth. Thus, given a kernel
function, the focus shifts to appropriate specification or esti-
mation of the bandwidth.
It is important to note that specifying a kernel function does

not have the same implications as choosing a parametric model
for the whole density because the focus remains on a good
pointwise or local approximation of the density rather than on
fitting the whole curve directly. Different choices of K( ) still
yield a local approximation of the underlying curve point by
point. One can understand this by thinking of a weighted
Taylor series approximation to f( x) at a point x . The interplay
between the h and K( ) can be thought of in terms of the
interval of approximation and a weight sequence used to lo-
calize the approximation. The length of the interval (or band-
width in this case) is more important in terms of approximation
error. However, the tail behavior of the K( ) is important in
the resampling context since it relates to the likely degree of
extrapolation of the process. Some typically used kernels are
listed in Table 1.
The sense in the statistics literature [e.g., Silverman, 1986] is

that the choice of kernel is secondary in estimating f( x), and
research has focused on choosing an appropriate bandwidth
optimally (in a likelihood or MSE sense) from the data. The
bandwidth may vary by location (i.e., value of x) being larger
where the data are sparser. Bandwidth and kernel selection
issues and the success of the kernel scheme for approximating
discrete, continuous, and bivariate pdf’s are discussed by Ra-
jagopalan et al. (submitted manuscript, 1995). Here we present
the estimators that we recommend be used for the NSS model.

Figure 2. Example of kernel density estimate using 20 points
with an histogram, h 5 0.125. The variables x1 and x2 are
points of estimate.

Table 1. Examples of Kernel Functions

Continuous Random Variable, Univariate

Kernel
Normal K(t) 5 (2p)21/2 e2t2/2

Epanechnikov K(t) 5 0.75(1 2 t2) ut u # 1
Bisquare K(t) 5 0.9375(1 2 t2)2 ut u # 1

Discrete Random Variable,
Univariate (DK) Estimation*

Interior region (i.e., L $ h 1 1)
(quadratic)

K(t) 5 at2 1 b ut u # 1 a 5 2 3h/(1 2 4h2), b 5 3h/(1 2 4h2)

Left boundary (quadratic)
for the case 1 , L , h 1 1† K(t) 5 at2 1 b ut u # 1 a 5 2D/2h(h 1 L) [1/(E/4h3 2 CD/12h3 9h 1 L))],

b 5 [1 2 aC/6h2] 1/(h 1 L)
for the case L 5 1‡ K(t) 5 at2 1 b ut u # 1 a 5 2d/2h2 [1/(E/4h3 2 CD/12h4)],

b 5 [1 2 aC/6h2] 1/h

Note that t 5 ( x 2 xi)/h.
*Note that t 5 (L 2 j)/h, and L is the point at which density is estimated.
†Where C 5 h(h 2 1)(2h 2 1) 1 (L 2 2)(i 2 1)(2L 2 3); D 5 2h(h 2 1) 1 (L 2 2)(L 2 1); and E 5 2[h(h 2 1)]2 1

[L 2 2)(L 2 1)]2.
‡Where C 5 h(h 2 1)(2h 21); D 5 2h(h 2 1); and E 5 2[h(h 2 1)]2.
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3.2. Kernel Estimation of Continuous, Univariate pdf’s

The continuous, univariate pdf’s of interest to us are f( p),
the pdf of daily precipitation, and f( pw), the pdf of wet spell
precipitation for a season. The data set in the first case is
composed of np days of daily precipitation values, pi, for all
days with measurable precipitation, in season s for the y year
record. For pw the data set is composed of nw wet spells with
total precipitation pw , j for each spell of length w, in season s
for the y year record.
A logarithmic transform of the precipitation data prior to

density estimation is often considered. Such a transformation
is also attractive in the kde context. It can provide an automatic
degree of adaptability of the bandwidth (in real space), thus
alleviating the need to choose variable bandwidths with heavily
skewed data, and also alleviating problems that the kde has
with pdf estimates near the boundary (e.g., the origin) of the
sample space. The resulting kde can be written as

f̂~r! 5
1
n O

i51

n 1
hr KS log ~r! 2 log ~r i!

h D (2)

where h is the bandwidth of the log-transformed data, and r is
p or pw, and n is correspondingly np or nw.
The bandwidth h is chosen using a recursive method of

Sheather and Jones [1991] that minimizes the average mean
integrated square error (MISE) of f̂[log (r)]. Figures 3a and
3b provide an illustration of the kernel estimated pdf and the
underlying true pdf for two situations described in Table 2.

3.3. Kernel Estimation of Discrete Univariate pmf

In this section we present procedures for the estimation of
the discrete, univariate probability mass functions f(d) and
f(w) for each season s. This corresponds to the assumption of
independence between w and d in a traditional alternating
renewal model. We adopt the discrete kernel estimator (DKE)
developed by Rajagopalan and Lall [1995a] for pmf estimation.
The DK estimator for the pmf f̂(L), where L is either w or d,
and n is the corresponding sample size is given as

f̂~L! 5 O
j51

Lmax

KdSL 2 j
h D p̃ j (3)

where p̃ j is the sample relative frequency (nj/n) of spell length
j, nj is the number of spells of length j, Lmax is the maximum
observed spell length (note that • j51

Lmax p̃ j 5 1), Kd( ) is a
discrete kernel function, and L, j, and h are positive integers.
The kernel function Kd( ) is given as

Kd~t! 5 atj
2 1 b ut u # 1 (4)

The expressions for a and b for the interior of the domain, L .
h 1 1, and the boundary region, L , h, are given in Table 1.
The bandwidth h is estimated by minimizing a least squares

cross validation (LSCV) function given as

LSCV~h! 5 O
j51

Lmax

@ f̂~ j!#2 2 2 O
j51

Lmax

f̂2j~ j! p̃ j (5)

where, f̂2j( j) is the estimate of the pmf of spell length j ,
formed by dropping all the spells of length j from the data. This
method has been shown by Hall and Titterington [1987] to
automatically adapt the estimator to an extreme range of
sparseness types. Monte Carlo results showing the effective-

ness of the DKE with bandwidth selected by LSCV are pre-
sented by Rajagopalan and Lall [1995a]. Figures 3c and 3d
show examples of the DKE for two situations described in
Table 2.

3.4. Kernel Estimation of Bivariate and Conditional pdf

The bivariate pdf of interest to us are f(w, d) and f(w, pw).
The conditional pdf of interest are f(w ud), f(d uw), and
f( pwuw). Recall that the conditional pdf f( y ux) of a random
variable y given x is given as f( x , y)/f( x), where f( x, y) is the
joint pdf of x and y, and f( x) is the unconditional pdf of x.
Since we have discussed univariate kernel density estimation,
the key step is to show how the bivariate density may be
evaluated.
Bivariate kernel density estimators may be constructed in

much the same manner as their univariate counterparts, that is,
through the convolution of appropriate kernel functions. Two
types of bivariate kernel functions, radially symmetric and
product kernels, are popular.Wand and Jones [1992] argue that
for typical generalizations of the univariate kernels, there is
little to choose between these representations. They point out
that it is more important to choose bandwidths in each direc-
tion appropriately. We chose to use a product of univariate
kernels for the bivariate kernel to allow a natural extension of
the univariate kde presented here to discrete, bivariate, or
mixed (continuous and discrete) bivariate situations. The joint
pdf are estimated as follows:

f̂~w, d! 5
1
nsp

O
i51

nsp

KdSw 2 wi
hw

D KdS d 2 di
hd

D (6)

f̂~ pw, w! 5
1

nw pwhpw
O
i51

nw

KS log ~ pw! 2 log ~ pwi!
hpw

D
z KdSw 2 wi

hw
D (7)

where nsp is the number of consecutive wet and dry spells on
record for season s , over the y year record, nw is the number
of wet spells.
The conditional pdf are given by

f̂~w ud! 5 O
i51

nsp

KdSw 2 wi
hw

D KdS d 2 di
hd

DYO
i51

nsp

KdS d 2 di
hd

D
(8)

f̂~d uw! 5 O
i51

nsp

KdSw 2 wi
hw

D KdS d 2 di
hd

DYO
i51

nsp

KdSw 2 wi
hw

D
(9)

f̂~ pwuw! 5
1

pw hpw
O
i51

nw

KS log ~ pw! 2 log ~ pwi!
hpw

D
z KdSw 2 wi

hw
DYO

i51

nw

KdSw 2 wi
hw

D (10)

We see from (8) to (10) that the kde of the conditional pdf
represents a weighted average of the relative frequency of
values of the dependent variable that correspond to a “weight-
ed” neighborhood of the conditioning point. It will be seen in
section 3.7 that for simulation it is not necessary to compute
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the joint and conditional pdf, estimation of the bandwidths
alone is sufficient.
McLachlan [1992, pp. 306–308] discusses the simultaneous

selection of bandwidths in each coordinate versus the use of
the optimal univariate bandwidths in each direction. It is not
clear that the additional effort of simultaneous selection of the
two bandwidths is justified. Consequently, we choose the band-
widths hw, hd, and hpw by the methods described for the
univariate case.
As an illustration, a sample of size 250 is generated from a

bivariate geometric distribution Geom (0.6, 0.2) were used to
test this procedure. The surface of the observed proportions is
plotted in Figure 4a, the true density surface is shown in Figure
4b, the kernel estimated density surface is on Figure 4c and the
difference between the true and kernel estimates are plotted in
Figure 4d. The bandwidth was 3 in the x direction and 6 in the
y direction. To illustrate the conditional kde, a slice is taken
from the joint density in Figure 4c and presented in Figure 4e.
In the precipitation data sets we have investigated thus far,

the correlation between w and d is generally weak, and the
serial correlation between daily precipitation for fixed spell
length w is also weak. Thus, in most cases the univariate pdf
suffice. However, for the sake of completeness we describe a
nonparametric, kernel-based disaggregation strategy for disag-
gregating a w day precipitation pw into w daily precipitation
amounts pi.

3.5. Wet Spell Precipitation Disaggregation

We follow the approach of Aitchison and Lauder [1985] for
analyzing compositional data. A basic requirement for the dis-
aggregation process is that • i51

w pi 5 pw. Consider the rescal-
ing xi 5 pi/pw, so that 0 , xi , 1, and •xi 5 1. Recognizing
that the effective degrees of freedom are (w 2 1), we can
write xw 5 1 2 • i51

w21 xi. Aitchison and Lauder [1985] now
apply the transform

yi 5 log ~ xi/xw! i 5 1, · · · , w 2 1 (11)

The multivariate pdf f(x), where x is a vector of length (w 2
1) representing the first (w 2 1) proportions, is then esti-
mated using the kernel method with a logistic normal kernel
and nw wet spells of length w as

f̂~x! 5 O
i51

nw 1
nw
L~x, x i, y, y i, h!

5 O
i51

nw exp@20.5~y 2 y i!TSy
21~y 2 y i!/h2#

nw~2p!~w21!/ 2h ~w21! det ~Sy!1/ 2 P j51
w xji

(12)

where i is a spell index, y is a vector of length (w 2 1) as
defined in (12), xji represents the value of the jth component
of x for the ith spell, L(x, xi, y, yi, h) is the logistic normal
kernel, h is a bandwidth, and Sy is the sample covariance

matrix of y, estimated using a robust method [see Huber, 1981].
The bandwidth h is selected using maximum likelihood cross
validation, that is, choosing h to maximize ) i51

nw f2i(xi), where
f2i(xi) is the estimate of f(x) at xi obtained by dropping the ith
point. Aitchison and Lauder [1985] demonstrated that perfor-
mance of this algorithm is comparable to parametric alterna-
tives with sample sizes ranging from 23 to 95 for 2–10 compo-
nents.
The use of the sample covariance matrix Sy of y as the

covariance matrix for the kernel function for y leads to some
degree of preservation of the covariance structure of the com-
ponents of y and hence of the disaggregated daily precipitation
amounts pi. It also mitigates the effect of choosing xw, rather
than say x1 as the normalizing variable in the transformation of
(12).
Using (13), one can evaluate the pdf of the first (w 2 1)

ratios xi of daily precipitation to wet spell precipitation. A
stochastic realization of these ratios can then be generated.
The last ratio xw is obtained by noting that all the ratios have
to sum to one. Daily precipitation values are then obtained by
multiplying xi by pw. This disaggregation procedure general-
izes the logistic normal based disaggregation procedure
through the use of the kernel method and admits multimodal-
ity and heterogeneity in the pdf of daily rainfall in a wet spell.
A problem with any wet/dry spell model is that as w increases,
nw typically decreases. Consequently, this disaggregation
scheme may not be practical for large w unless long records are
available. Also, it fails to “borrow” information from spells of
length other than the one generated. However, that can be a
problem even for the usual parametric schemes.

3.6. Generation of Synthetic Sequences

Since our goal here is to generate random samples that are
similar to the observed sequence, a “raw” bootstrap or resam-
pling of the data with replacement from the observed data
sequence could be considered as an alternative to sampling
from the kde. Such a strategy would be equivalent to sampling
from the empirical distribution function of the data. The kde
can be thought of as a smoothed (moving average) estimate of
the derivative of the empirical distribution function. Sampling
from the kde can lead to a reduced variance of the Monte
Carlo design [Silverman, 1986, p. 145]. It also avoids the prob-
lem with the bootstrap where a number of the historical values
are repeated in a generated sample and provides an ability to
fill in and extrapolate to a limited extent beyond the observed
values.
Synthetic precipitation sequences at a site are generated

continuously from season to season. A dry spell is first gener-
ated using f̂(d). Following the strategy indicated in Figure 1, a
wet spell is generated using f̂(w) or f̂(w ud). Precipitation for
each of w days is then generated using f̂( p) or f̂( pwuw) fol-
lowed by f̂( piupw). A dry spell is then generated using f̂(d) or

Table 2. Statistics of Known Distributions From Which a Sample of Size 250 was Taken to Test k.d.e. Methods

Figure Parent Method
Sample
Mean

Sample Standard
Deviation

Kernel
Bandwidth

3a {0.5N(22, 1) 1 0.5N(2, 1)} Epanechnikov kernel, SJ bandwidth 20.00 2.26 1.22
3b Exp (0.15) Log transform, Epanechnikov kernel, SJ bandwidth 0.16 0.18 0.94
3c Geom (0.2) Quadratic kernel, DK estimator, LSCV bandwidth 5.11 4.19 6
3d {0.3 Geom (0.9) 1 0.7 Geom (0.2)} Quadratic kernel, DK estimator, LSCV bandwidth 3.92 4.02 2
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f̂(d uw), and the process repeats. If a season boundary is
crossed, the pdf used switch to those for the new season.
For the univariate continuous case ( f̂(r)), the random vari-

ate (r) of interest can be generated readily from the kernel
density following a two-step procedure [Devroye, 1986, p. 765].
Consider the original sample (ri, i 5 1, z z z , n) from which
the kernel density (that depends on r, ri, and h) was con-
structed using a Kernel function K( ). To generate a random
number r that follows the estimated distribution, first sample a
random integer j uniformly between 1 and n, that is, identify
the historical data point to perturb. Now generate a random
variate U from the probability density corresponding to the
kernel function K( ), (e.g., K(u) 5 3/4(1 2 u2) for the
Epanechnikov kernel). The random variate r is then given by
(rj 1 Uh). This reinforces the notion that the kernel density
estimator is formed as a convolution of local densities centered
at each observation and that the generated sequence will con-
stitute a smoothed bootstrap of the data. Any of a number of
standard procedures (e.g., based on order statistics or rejec-
tion) for sampling from a density may be used to generate U
from the density K( ). Devroye [1986, p. 765] provides exam-
ples for the Epanechnikov kernel. The discrete random vari-
ables (w and d) are generated directly from the estimated
cumulative mass function.
A similar strategy is possible for sampling from the condi-

tional pdf as well. Consider two continuous variables x and y.
The conditional kernel density f̂( y ux) is given by

f̂~ y ux! 5
1
hy

O
i51

n

KS y 2 yi
hy

D KS x 2 xi
hx

DYO
i51

n

KS x 2 xi
hx

D

5
1
hy

O
i51

n

wti KS y 2 yi
hy

D (13)

where wti 5 K( x 2 xi/hx)/• i51
n K( x 2 xi/hx). Now note that

• i51
n wti is equal to 1, and hence we can view the wti values as
providing the probability metric with which the ith point

should be selected. Define F as the set of probabilities wti.
Sample an integer j [ [1, n] using F. Now sample a variate U
from the density corresponding to the kernel function for y .
The variate of interest is then y 5 Uh 1 yj. The discrete
variate case follows as before.

4. Model Application
The model described was applied to daily rainfall data from

the Silver Lake station in Utah. Forty-four years of daily rain-
fall data were available from 1948 to 1992. For this application
we have divided the year into four seasons: season 1 (January–
March), season 2 (April–June), season 3 (July–September),
season 4 (October–December). Alternate season definitions as
well as variable season lengths could be used. The demarcation
of precipitation seasons can be based on the kernel smoothing
procedures described by Rajagopalan and Lall [1995b]. Silver
Lake is one of the higher-elevation stations in Utah, situated at
408369N latitude, 1118359W longitude, and at an elevation of
8740 feet (2664 m). Most of the precipitation comes in the
form of winter snow and season 4 rainfall. We see from Table
3 that season 4 (fall) has the highest mean wet day precipita-
tion and maximum wet day precipitation, while season 1 (win-
ter) has the highest percentage of yearly precipitation. Season
1 (winter) has the highest average wet spell length and the
longest wet spell length. For the dry spells, season 3 (summer)
has the highest average dry spell length and the longest dry
spell length.
The successive wet-dry spell and dry-wet spell length corre-

lations for the data from Silver Lake, Utah, were all near zero
for each season. We present a representative scatterplot of the
length of successive wet and dry spells for season 1 in Figure 5;
the line in Figure 5 is the locally weighted regression (LOESS)
smooth [Cleveland, 1979]. There is little evidence of even non-
linear structure in the relationship. The correlations between
daily precipitation amount on successive days within a spell
were also found to be near 0. Consequently, we simulated the
wet and dry spells alternately using the unconditional densities

Figure 4. (continued)
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( f̂(w) and f̂(d)), and used f̂( p) to describe the daily precipi-
tation process. We also performed conditional simulations us-
ing the densities f̂(w ud) and f̂(d uw) for each season. The re-
sults of these simulations were very similar in terms of the
performance measures (see section 4.1 below) to those from
the unconditional simulations. As is to be expected, the con-
ditional simulations exhibit slightly greater variability. Results
for the conditional simulations are not presented here for the
sake of brevity. They are available electronically by e-mail from
the authors.
We first list some measures of performance that were used

to compare the historical record and the model simulated
record, and then outline the experimental design. As empha-
sized earlier in the manuscript our goal is to reproduce the
frequency structure (i.e., the underlying pdf). One would then
expect that the usual statistics are reproduced.

4.1. Performance Measures

The seven performance measures are as follows: (1) proba-
bility distribution function of wet spell length, dry spell length,
and wet day precipitation in each season; (2) mean of wet spell
length, dry spell length, and wet day precipitation in each
season; (3) standard deviation of wet spell length, dry spell
length, and wet day precipitation in each season; (4) length of
longest wet spell and dry spell in each season; (5) maximum
wet day precipitation in each season; (6) percentage of yearly
precipitation in each season; and (7) fraction of wet and dry
days in each season.

4.2. Experiment Design

The resampling process proceeded as follows:
1. Wet and dry spells for each season are determined from

the daily precipitation data. Spells that cross seasonal bound-

Figure 5. Scatterplot of preceding dry spell length and following wet spell length in season 1, along with the
locally weighted regression (LOESS) smooth (solid line).

Table 3. Statistics From the Historical Precipitation Record, Silver Lake, Utah, 1948–1992

Statistic

Season

1* 2† 3‡ 4§

Average wet spell length, days 2.6 2.2 1.85 2.5
Standard deviation of wet spell length, days 2.2 1.7 1.2 1.9
Fraction of wet days 0.62 0.44 0.36 0.55
Longest wet spell length, days 21 11 10 18
Average dry spell length, days 3.0 5.1 6.0 4.0
Standard deviation of dry spell length, days 2.80 6.0 6.0 4.0
Fraction of dry days 0.38 0.56 0.64 0.45
Longest dry spell length, days 19 42 45 24
Average wet day precipitation, inches, cm 0.37, 0.94 0.33, 0.84 0.26, 0.66 0.40, 1.02
Standard deviation of wet day precipitation, inches, cm 0.37, 0.94 0.33, 0.84 0.30, 0.76 0.42, 1.07
Fraction of yearly precipitation 0.35 0.20 0.12 0.30
Maximum wet day precipitation, inches, cm 3.7, 9.4 3.0, 7.6 1.90, 4.8 3.5, 8.9

*January–March.
†April–June.
‡July–September.
§October–December.
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aries are truncated at the season boundary and included in the
appropriate seasons. We recognize that this could have the
effect of introducing a small bias in the spell characteristics for
a given season. Missing data are skipped, and the spell count is
restarted with the next event.
2. Probability density/mass functions are fitted for the wet

day precipitation, wet spell lengths, and dry spell lengths for
each season using the kernel estimators recommended in sec-
tion 3.
3. Twenty-five synthetic records of 44 years each (i.e., the

historical record length) are simulated.
4. The statistics of interest are computed for each simu-

lated record and for each season and compared to statistics of
the historical record using boxplots.

5. Results
In this section we present comparative results (using the

performance measures listed in section 4.1) of the NSS model
for the Silver Lake data. The statistics (pdfs) of the simulated
records are compared with those for the historical record using
boxplots. A box in the boxplots (e.g., Figure 7) indicates the
interquartile range of the statistic computed from 25 simula-
tions, the line in the middle of the box indicates the median
simulated value. The solid lines correspond to the statistic of
the historical record. The boxplots show the range of variation
in the statistics from the simulations and also show the capa-
bility of the simulations to reproduce historical statistics. The
plots of the pdf are truncated to show a common range across
seasons and to highlight differences near the origin (mode).

5.1. Wet Day Precipitation

Figure 6 shows that the fitted kernel densities for wet day
precipitation amount are similar to the histogram of the re-
corded data in all four seasons. They differ from the fitted
exponential and gamma distribution, particularly in seasons 3
(summer) and 4 (fall). The kernel estimated pdf’s of the sim-
ulated data reproduce the pdf of the historical data quite well,
as can be seen in Figure 7. The other statistics are reproduced
well by the model, as can be seen from the boxplots in Figure 8.

5.2. Wet Spell Length

Figure 9 shows that the pmf’s of wet spell length estimated
by DKE and the fitted geometric distribution are very close
(except perhaps for season 1 (winter)). In this case one could
argue for using the geometric distribution rather than DKE.
However, the “loss” in using DKE is small and for uniform
application across sites, DKE may still be a better choice. The
pmf of wet spell length from the simulations reproduce the
historical pdf very well in all the seasons as can be noted from
Figure 10, suggesting that the model is performing well in
reproducing the underlying frequency structure. Figure 11
shows that the mean, standard deviation, fraction of wet days,
and longest wet spell length are all well reproduced by the
model.

5.3. Dry Spell Length

Figure 12 shows that the dry spell length pmf estimated by
DKE and the fitted geometric distribution are generally similar
with the most difference in season 3 (summer), which we noted
as being the most “active” with regard to dry spell length
extremes. Observationally, we know that there are dry sum-
mers with little rainfall activity and other summers with inter-

mittent, stagnating precipitation systems in this area. Thus we
would expect a mixture of mechanisms generating dry spells to
show up in this season.
The pmf of wet spell length from the simulations reproduce

the historical pdf very well in all the seasons as can be noted
from Figure 13, suggesting that the model is performing well in
reproducing the underlying frequency structure. Figure 14
shows that the statistics of the dry spell length are also well
reproduced.
The reader may be tempted to suggest formal tests to check

for a mixture of the geometric distributions in this case as an
alternative to the kernel density estimate. While this may be a
fruitful activity (we did consider it), it gets harder to perform
and/or justify as we consider arbitrary, finite component mix-
tures. An advantage of the DKE employed here is that it
readily admits such mixtures without requiring that they be
hypothesized or formally identified. We feel that this provides
a more direct and parsimonious representation of this sort of
structure if present in the data.

6. Summary and Conclusions
A nonparametric methodology for simulating daily precipi-

tation is presented in this paper. The traditional wet/dry spell
model is extended to (1) consider heterogeneity in the pdf of
precipitation or wet/dry spell length and (2) consider depen-
dence between wet/dry spell length, and between wet spell
length and spell precipitation. The latter may or may not be
important for rainfall data. All functions of interest are esti-
mated nonparametrically. The primary intended use of the
model is as a simulator that is faithful to the historical data
sequence. The pdf’s evaluated are also likely to be of use for
justifying the use of other formal, parametric models of the
underlying process.
While a rather flexible framework is provided by the model

proposed, it is not without a price. Sample sizes needed for
estimating the pdf of interest are likely to be larger than for
parametric estimation. However, the nonparametric specifica-
tion of the pdf leads to robustness with respect to the mis-
specification of the parametric model which may be valuable if
the use of a particular model is to be legislated across a variety
of sites and regions with different attributes. Only a crude
treatment for seasonal nonstationarity is offered. This is some-
thing we expect to address in the future.
A number of issues of interest to stochastic precipitation

modelers were not discussed here. The foremost is the behav-
ior of the proposed model at different timescales. We view our
developments as “operational” and relevant to the timescale of
the data, which was daily. Spell definitions are tenuous at best
at finer timescales and sample sizes drop rapidly as longer
timescales (e.g., monthly or annual) are considered. Thus,
while the scaling issue is of theoretical and practical interest, it
is difficult to formally assess how such a model may fit in. It is
an issue we expect to explore in due course. A second issue is
the need to incorporate climatic or precipitation “types” [e.g.,
Bogardi et al., 1993; Wilson and Lattenmaier, 1993] into the
daily precipitation model. We feel that implicit consideration
of some of these factors is provided by our model by admitting
an arbitrary mixture of generating mechanisms. Transitions
between generating mechanisms are not explicitly modeled.
However, their relative frequencies ought to be reproduced.
Given limited data sets and the potentially large number of
generating mechanisms this may be all that is reliably feasible

LALL ET AL.: NONPARAMETRIC WET/DRY SPELL MODEL2814
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in a number of cases. Finally, there is the question of region-
alization and/or portability of the method. The nonparametric
approach clearly enjoys broader applicability than its paramet-
ric competitors. On the other hand, it may be less amenable to
direct regionalization as is sometimes done in terms of the
parameters of a parametric distribution. It is meaningless to
talk of a regional bandwidth. It may be more fruitful to develop
a space-time nonparametric precipitation model with a non-
homogeneous point process structure that is inferred from the
data.
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