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Adaptive Filtering and Prediction of the Southern Oscillation Index 

CHRISTIAN L. KEPPENNE 1 AND MICHAEL GHIL 2 
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Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time 
series of the Southern Oscillation index (SOD. The analysis filters out variability unrelated to the 
Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the 
quasi-biennial oscillation, from the lower-frequency 4- to 6-year E1Nifio cycle. The maximum entropy 
method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated 
autoregressive models has useful skill for 30-36 months. A 1993-1994 La Nifia event is predicted based 
on data through February 1992. 

1. INTRODUCTION 

The atmospheric Southern Oscillation (SO) has been con- 
nected with the seasonally recurring, oceanic E1 Nifio (EN) 
phenomenon [e.g., Schweigger, 1945] by Bjerknes's [1966] 
dynamic and thermodynamic considerations. The implica- 
tions of this E1 Nifio/Southern Oscillation (ENSO) coupled 
ocean-atmosphere oscillation for tropical and global climate 
have led to many studies in recent years [e.g., Deser and 
Wallace, 1987]. 

The dynamic understanding of the coupled tropical ocean- 
atmosphere system has increased dramatically [Cane, 1986; 
Philander, 1990], leading to increased hopes for its dynamic 
prediction on interannual time scales [Sarachik, 1990]. Mul- 
tivariate statistical prediction models of ENSO have been 
investigated by Graham et al. [1987a, b] and Barnett et al. 
[1988]. Their statistical models are based on extended em- 
pirical orthogonal functions (EEOFs) and canonical correla- 
tion analysis and exhibit valuable forecast skill at lead times 
of up to a year. 

The above mentioned models rely on the analysis of sea 
surface temperature and surface wind stress fields that can 
serve as multivariate indicators of ENSO variability [e.g., 
Barnett and Preisendorfer, 1978]. The present study uses a 
time domain approach based on a univariate indicator of 
ENSO, rather than a space-time approach. Its goal is not to 
precisely forecast the spatial distribution of meteorological 
variables but rather to time the occurrence of EN and La 

Nifia (LN) events, which are usually associated with recur- 
ring spatial patterns. 

The use of univariate time series in the diagnosis and 
prediction of nonlinear dynamical systems with considerable 
complexity in time and space has a solid foundation in the 
Whitney [1936] embedding lemma and the Takens theorem 
[Mat7e, 1981; Takens, 1981; Sauer et al., 1991]. Certain 
oversimplifications in the application of the univariate ap- 
proach to climatic time series have been criticized with some 
justification [Grassberger, 1986; Procaccia, 1988; Ruelle, 
1990]. However, the underlying idea of a time series from a 

complex system being able to capture the evolution of its 
collective behavior is heuristically appealing and, when 
applied with due care, quite promising [Ghil et al., 1991]. In 
fact, this is precisely why the Southern Oscillation index 
(SOI) has attracted such attention, since the classical work 
of Walker and Bliss [1937] and up to the present [Fraedrich, 
1988; Dickey et al., 1992], in describing the complex inter- 
annual variability of the coupled atmosphere-tropical ocean 
system. 

Compositing of observations [Ghil and Mo, 1991a, b] or 
of model fields [Neelin et al., 1992] with respect to the 
phases of such a well-chosen time series provides an orderly 
sequence of snapshots of the system's past evolution. It can 
be combined at a later stage with suitably tested predictions 
of the same univariate index into the future, to yield even- 
tually whole-field predictions. Thus univariate prediction is 
simply a first step in an approach that may inform and 
complement dynamical and multivariate statistical predic- 
tion [Vautard et al., 1992]. 

Univariate SOIs are generally computed from local time 
series of sea level pressure (SLP) or temperature data at two 
distinct locations along the equatorial belt, at which the 
variables under consideration tend to oscillate with mutually 
opposite phases [e.g., Walker and Bliss, 1937; Chu and Katz, 
1985]. Our study relies on the analysis of such an SOI, but, 
unlike earlier attempts at univariate ENSO prediction [Chu 
and Katz, 1985], our forecasts are based on a set of prefil- 
tered SOI time series, rather than on the raw SOI itself. 

The data and numerical procedures are presented in 
section 2. In section 3, singular spectrum analysis, a variant 
of principal component analysis (PCA) in the time domain, is 
applied to a SOI time series to isolate the temporal principal 
components (T-PCs) corresponding to ENSO activity from 
the remaining variability and noise. The linear predictability 
of the filtered SOI is examined in section 4 based on 

autoregressive models associated with prefiltered time series 
which isolate the variance corresponding to its four leading 
T-PCs. A summary and brief discussion of the results follow 
in section 5. 
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2. DATA AND NUMERICAL PROCEDURES 

2.1. The Data 

The data consist of time series of monthly mean SLP at 
Tahiti and Darwin, Australia, from July 1941 to February 
1992. The SOI time series is obtained here by first removing 
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Fig. 1. Time series of the Tahiti-minus-Darwin SOI index from 
July 1941 to February 1992. Tick marks on the abscissa, in this and 
subsequent figures, indicate January 15 of the year named. 

the annual cycle (this is done by subtracting from either time 
series the mean SLP value at that location for the corre- 

sponding month), dividing the monthly anomalies so ob- 
tained by the corresponding standard deviation, and then 
taking the Darwin-minus-Tahiti difference [e.g., Trenberth 
and Shea, 1987]. The resulting time series is shown in Figure 
1. 

Continuous SLP records are available at Darwin since 

1882 and at Tahiti since 1935; the continuous SLP time series 
at Darwin from January 1882 to December 1989 was ana- 
lyzed and discussed by Keppenne and Ghil [1990]. Improve- 
ments in the quality of measurements since World War II 
and problems with the stationarity of the time series revealed 
by the earlier analysis have lead us to ignore the pre-1941 
data in the present study. 

2.2. Singular Spectrum Analysis (SSA) 

SSA is the term used in a number of recent climate studies 

[e.g., Vautard and Ghil, 1989; Rasmusson et al., 1990; Ghil 
and Vautard, 1991] to refer to the univariate application of 
PCA [e.g., Preisendorfer, 1988] in the time domain. The 
method is also known as Karhunen-Lo•ve (K-L) expansion 
[e.g., Pike et al., 1984] in digital signal processing. It was 
introduced into biological oceanography by Colebrook 
[1978], into nonlinear dynamics by Broomhead and King 
[1986], and into paleoclimatology by Fraedrich [1986]. Ras- 
musson et al. [1990] also used SSA to investigate the 
quasi-biennial component of ENSO. 

SSA is algorithmically equivalent to the application of 
extended empirical orthogonal functions (EEOFs) [e.g., 
Weare and Nasstrom, 1982; Lau and Chan, 1986; Graham et 
al., 1987a, b] to a univariate time series but has special 
features and greater flexibility when applied to the analysis 
of phenomena with longer time scales and higher sampling 
rates [Mo and Ghil, 1992]. Vautard et al. [1992] provide an 
up-to-date review of SSA and of its applications to data- 
adaptive filtering and noise reduction. For brevity, we 
sketch here the method based on its relation to spatial 
empirical orthogonal function (EOF) analysis [e.g., Preisen- 
dorfer, 1988], which is of more common use in meteorology. 

Spatial EOF (S-EOF) analysis proceeds by expanding the 
history of a discrete field xi,j, where the indices i andj refer 
to the spatial and temporal directions respectively--1 _< i -< 
M, 1 -< j -< N--into the sets of its eigenvectors (EOFs) and 
principal components (PCs). In SSA, the spatial direction is 
replaced by time lags, i.e., Xi, j = Xj+i, and M becomes the 
number of lags. The algebraic formulation remains essen- 
tially the same but the T-PCs are shorter than the original 
time series by M - 1 components. Vautard and Ghil [1989] 

refer to the EOFs and PCs of SSA as T-EOFs and T-PCs to 

distinguish them from their counterparts in S-EOF analysis. 
The time scales of the dynamics addressed by SSA are 

bounded from below by the sampling interval, r, and from 
above by the window width, rw = Mr [Vautard et al., 1992]. 
The choice of M is a trade-off between the amount of 

information one wishes to retain and the degree of statistical 
significance that is required. Increasing M enhances the 
former at the expense of the latter, and vice versa. 

In contrast with standard spectral analysis in which the 
basis functions are given a priori (e.g., the sines and cosines 
of Fourier analysis), in SSA they are determined from the 
data themselves to form an orthogonal basis that is optimal 
in the statistical sense. Oscillatory modes can be identified as 
pairs of nearly equal eigenvalues, while their eigenfunctions 
(T-EOFs) and T-PCs have the same time scale of oscillation, 
as well as being nearly 90 deg out of phase [Vautard and 
Ghil, 1989; Vautard et al., 1992]. Because of this property, 
the method is particularly helpful in isolating anharmonic 
oscillations with fluctuating amplitudes from noisy data. 

The part of the time series' variability corresponding to a 
given oscillation can be isolated by restricting the K-L 
expansion to the T-EOFs and T-PCs that have been identi- 
fied as corresponding to that oscillation [Ghil and Vautard, 
1991; Vautard et al., 1992]. The reconstructed components 
(RCs) which carry the contributions of the individual 
T-EOFs and T-PCs to the variance of the data are time series 

of length N (not N - M + 1, like the T-PCs). The RCs are 
additive and their complete sum gives back the original time 
series. 

The eigenvalue associated with a T-EOF gives the vari- 
ance of the corresponding T-PC, while its square root is the 
associated singular value (SV). The SVs are standard devi- 
ations and give their name to the SSA method. 

Individual T-PCs are not pure sine waves, but have a very 
limited harmonic content. Hence autoregressive (AR) mod- 
els perform better in predicting the individual T-PCs than the 
time series itself. In section 4 an improved SOI forecast is 
obtained from the forecasts of its four leading RCs. 

2.3. Maximum Entropy: Spectral Estimation and Linear 
Prediction 

The main advantage of the maximum entropy method 
(MEM) [Yule, 1927; Walker, 1931; Burg, 1968] is its high 
spectral resolution, obtained by fitting relatively high-order 
AR models to the data. Its main drawback is the possible 
appearance of spurious peaks as the resolution, and hence 
the order, of the method is increased [Childers, 1978]. 

The basic assumption underlying MEM is that the time 
series can be modeled by an AR process. The optimal order 
of the AR process for a given time series is usually inferred 
from Akaike's information criterion (AIC) [Akaike, 1974]. 
However, the AIC often calls for a very high order if the data 
have not been prefiltered. SSA can be used to compute a 
data-adaptive prefilter by retaining only the leading, statisti- 
cally significant T-PCs of a given time series [Ghil and 
Vautard, 1991; Vautard et al., 1992]. Removal of the noise 
by SSA permits the application of a low-order MEM, which 
achieves the same resolution as a much higher-order one, 
without the introduction of spurious peaks. This two-step 
procedure for spectral estimation is discussed in detail and 
applied to synthetic examples and to time series of atmo- 
spheric angular momentum by Penland et al. [1991]. 
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Fig. 2. Reconstructed time series obtained by combining the 
variance associated with two pairs of temporal principal compo- 
nents (T-PCs): (a) 1 and 2, the low-frequency (LF) ENSO compo- 
nent; (b) 3 and 4, the high-frequency (HF) ENSO component. The 
vertical scale in this and subsequent figures is in units of the 
standardized SOI of Figure 1. 

Linear prediction (LP) using the AR coefficients provided 
by MEM is especially successful in extrapolating signals 
which are smooth and oscillatory, though not necessarily 
periodic [Press el al., 1988]. Its application to the individual 
T-PCs produced by an earlier SSA to forecast a prefiltered 
time series was introduced by Keppenne and Ghil [1990] and 
is discussed by Vautard el al. [1992]. In section 4, Burg's 
[1968] MEM algorithm is used to build AR predictors for the 
four leading RCs of the SOI data. This algorithm provides an 
efficient, recursive procedure to solve for the AR coefficients 
by exploiting the symmetric, Toeplitz-matrix structure of the 
autocovariance matrix associated with the time series [Press 
et al., 1988, pp. 447-466]. We prefer Burg's method to the 
traditional Yule-Walker approach because it does not as- 
sume any implied periodicity of the analyzed time series. 
The advantage of applying MEM to the RCs rather than to 
the original time series comes from their reduced frequency 
spectrum, in addition to their being relatively noise-free. 

3. SSA RESULTS 

SSA is applied to the SO1 data with a window width of rw 
- 60 months; here r = 1 month and M = 60. This width 
permits us to capture the low-frequency (LF) ENSO oscil- 
lations [cf. Rasmusson et al., 1990], while still providing a 
high degree of statistical significance. Two pairs of nearly- 
equal singular values (SVs), each capturing an oscillatory 
mode, are identified. These are SVs 1-2 and 3-4, which 
correspond to the LF component of ENSO and its high- 
frequency (HF) variability, including the quasi-biennial os- 
cillation (QBO) [Rasmusson et al., 1990], respectively. 

The LF and HF components of ENSO are isolated by 
summing the contributions of T-PCs 1 and 2 and T-PCs 3 and 
4 respectively, using the reconstruction method justified 
rigorously by Vautard et al. [1992, equation (2.17)]. The 
resulting time series are shown in Figures 2a and 2b. The 

total variance associated with ENSO combines the LF and 

HF components of Figures 2a and 2b. This combined ENSO 
time series is shown in Figure 3 (solid) where it is compared 
with a 5-month running mean of the original SOI time series 
(dotted). The 5-month running mean is routinely used at the 
U.S. National Meteorological Center (NMC) for noise re- 
duction and enhancement of the ENSO cycle; the correla- 
tion between the SSA-filtered and 5-month running mean 
SOI is 0.817. The solid arrows indicate the minor warm 

episodes of 1941, 1946, 1951, 1953, 1957, 1965, 1969, 1977, 
and 1987, and the major ones of 1972, 1982, and 1992. The 
open arrows point to the cold events of 1950, 1956, 1971, 
1974, 1976, and 1988. This labeling of cold and warm events 
is broadly accepted [e.g., Rasmusson and Carpenter, 1982; 
Deser and Wallace, 1987]. The additional smoothness of the 
SSA-filtered SOI is obtained without significant loss of 
resolution. This smoothness, which reflects that of the 
underlying T-PCs, is crucial to the success of the MEM 
forecasts of section 4. 

The eigenvectors associated with SVs 1-4, i.e., with 
ENSO variability, represent 21.7% of the total variance; that 
is, the solid curve in Figure 3 has 21.7% of the variance of 
the curve in Figure 1. The LF component associated with 
SVs 1 and 2 carries 11.4% of the variability (Figure 2a) and 
the remaining 10.3% are carried by the HF component 
associated with SVs 3 and 4 (Figure 2b). The HF and LF 
components of ENSO are thus of comparable magnitude, as 
noted by Rasmusson et al. [1990], based on surface wind 
data. 

SVs 5-8 carry variability in the 1-2 year frequency band. 
The remaining SVs are close to or within the noise floor, as 
evidenced by a break in the slope of the singular spectrum 
[Vautard and Ghil, 1989] after SV 8. They correspond to the 
part of the variance that is unlikely to be explained by a 
deterministic model (64% of total variance). 

4. PRED1CTABILHY 

In this section we discuss how the predictability of the SOl 
can be improved by fitting an AR predictor to RCs 1-4. The 
idea is that the narrow harmonic content of these time series 

makes them more predictable by MEM than the original SOI 
time series. ENSO forecasts are obtained by summing the 
forecasts corresponding to the four prefiltered time series. 

Figure 4a illustrates the forecast skill of our method. It 
compares the last 10 years of the SSA-filtered SOI (solid) 
and 5-month running mean SOI (dotted), with the 36-month 
lead forecasts (crosses) obtained as follows. The last 10 
years of data are removed from the unfiltered SOI time 
series, and SSA is applied to the remaining data. The 
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Fig. 4. Comparison of the last l0 years of the SSA-filtered (solid) and 5-month running mean (dotted) SOI of Figure 
3, with the 36-month forecasts (crosses) obtained by (a) applying autoregression (AR) to the reconstructed components 
(RCs) which isolate the variability carried by each of T-PCs 1-4, and combining the resulting forecasts and (b) by 
applying AR directly to the 5-month averaged SOI. The arrows point to the last E1 Nifio and La Nifia events and to the 
La Nifia event forecasted by the present method for 1993-1994. 

resulting T-EOFs 1-4 and T-PCs 1-4 are used to separate the 
variability associated with each of the four first SVs using 
Vautard et al.'s [1992] reconstruction formula (e•tuation 
(2.17) there). MEM is applied to the four resulting RCs with 
a window width of 60 months [Burg, 1968; Penland et al., 
1991]. 

The AR predictors so obtained are applied separately to 
the four prefiltered time series to issue a 36-month forecast 
for each of them. The corresponding ENSO forecast (left- 
most cross in Figure 4a) is obtained by summing these four 
forecasts. One more raw SOI value is then added to the 

unfiltered data, and the T-PCs and corresponding prefiltered 
time series are recomputed. MEM is applied again to the 
latter and another 36-month forecast is made (second cross 
from the left in Figure 4a). The entire procedure is repeated 
100 times to issue the 100 36-month ENSO forecasts for July 
1984 to February 1995 shown in Figure 4a (crosses). It is 
important to notice that no "look-ahead" is involved in the 
procedure, i.e., no information past the date from which a 
prediction is issued has been used, in either the hindcasting 
(validation dates prior to February 1992) or the forecasting 
(no validation available as yet) mode. 

The Pearson product-moment correlation [Press et al., 
1988] between the overlapping portions of the time series of 
36-month forecasts (Figure 4a, crosses) and of the SSA- 
filtered SOI (Figure 4a, solid) is 0.966. It is 0.772 for the 
hindcast of the 5-month running mean SOI (Figure 4a, 
dotted). The result of applying MEM directly to the 5-month 
running mean SOI is shown in Figure 4b, where the time 

series of 36-month forecasts so obtained (crosses) is com- 
pared to the SSA-filtered (solid) and 5-month running mean 
SOI (dotted). The Pearson correlations between these direct 
AR forecasts and the latter two time series, again over their 
overlapping portions, are 0.494 and 0.559, respectively. The 
dramatic improvement in forecast skill obtained by applying 
the AR predictors to the four leading RCs, rather than 
directly to the 5-month running mean SOI, stems from the 
SSA-filtered time series having simpler power spectra, and 
hence more robust low-order AR coefficients. 

The first two arrows in Figure 4a point to the extrema of 
the SSA-filtered SOI which correspond to the 1988-1989 LN 
and 1991-1992 EN events. The 5-month running mean SOI 
also peaked in January 1989 during the last LN. It is still too 
early at the time of writing to know whether its minimum 
corresponding to the current EN will also coincide with the 
minimum of the SSA-filtered SOI in February 1992. The SOI 
maximum in December 1993 (third arrow), if correctly 
predicted, could correspond to the next LN. This event 
could be associated with a drought over the continental 
United States during the second half of 1993, comparable to 
the 1988 drought, which has been plausibly associated with 
the 1988-1989 LN [Mo et al., 1991; Trenberth and Arkin, 
1988]. Finally, an extension of the forecasts based on the 
entire data set through February 1992 also predicts an EN 
for 1996-1997 [Keppenne and Ghil, 1992], but the method's 
forecast skill at these long leads is considerably less than at 
36 months. 

At the time of writing, we have at our disposal the April 
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1992 issue of the Climate Diagnostics Bulletin [Kousky, 
1992]. The 5-month running mean SOI plotted in the bulletin 
is less smooth than the SOI used in this paper, making it 
difficult to identify a preferential trend, and the March 
observations [Kousky, p. 5] do not give a clear indication as 
to whether the 1991-1992 EN event has begun to weaken. 
The composite forecast from the statistical model of Barnett 
et al. [1988] and the dynamical model of Cane et al. [1986] 
show a cooling trend in the NINO3 sea surface temperature 
anomalies [Cane et al., 1986, p. 46], in agreement with our 
forecast. 

5. SUMMARY AND DISCUSSION 

The time series of the Southern Oscillation index (SOD 
computed from the Darwin and Tahiti monthly mean sea 
level pressure records (Figure 1) was decomposed in terms 
of its temporal principal components and empirical orthog- 
onal functions (T-PCs and T-EOFs) in order to separate the 
deterministic oscillations from noise [Vautard and Ghil, 
1989]. The ENSO-related variability (Figure 3) corresponds 
to 21.7% of the total variance of the SOI. It can be separated 
into a 4- 6-year low-frequency component (Figure 2a), 
associated with T-PCs 1 and 2, and a 2- 3-year high- 
frequency component (Figure 2b), whose variance is carried 
by T-PCs 3 and 4. 

T-PCs 1-4 are combined to provide a SSA-filtered SOI 
time series. This SOI is smoother than the 5-month averaged 
conventional SOI and can single out warm and cold events 
as well as the latter (Figure 3). Its smoothness provides it 
with the added advantage of being easier to forecast by a 
time series approach when the four reconstructed compo- 
nents (RCs), which isolate the variance associated with each 
of the four leading T-PCs, are forecasted individually (Figure 
4). The autoregressive (AR) coefficients of the leading RCs 
are used for this purpose. 

The SSA-filtered SOI has high predictability at leads of up 
to 36 months: the Pearson product-moment correlation be- 
tween the 36-month forecasts and the validating time series 
is 0.966, with no look-ahead involved. The application of the 
forecast method to the entire SOI data set, using data until 
February 1992, results in the prediction of a La Nifia event 
for the 1993-1994 winter. The latter, if correctly predicted, 
could be associated with a late-1993 drought over the conti- 
nental United States, comparable to the late-1988 drought 
which has been associated with the 1988-1989 La Nifia [Mo 
et al., 1991; Trenberth and Arkin, 1988]. The results are 
compared with the latest observations and model forecasts 
published by the Climate Analysis Center [Kousky, 1992]. 
The two models, statistical [Barnett et al., 1988] and dynam- 
ical [Cane et al., 1986], agree with each other and with our 
AR results for the second half of 1992. 
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