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1

Introduction: basic notions about Bayesian
inference

In the last decades, dynamic linear models, and more generally state-space
models, have become a focus of interest in time series analysis. Part of the
reason is due to the possibility of solving computational difficulties using mod-
ern Monte Carlo methods, in a Bayesian approach. This book introduces to
Bayesian modeling and forecasting of time series using dynamic linear models,
presenting the basic concepts and techniques, and providing an R-package for
their practical implementation.

Before getting started, this chapter briefly reviews some basic notions of
Bayesian statistics. Reference books on Bayesian statistics are Bernardo and
Smith (1994), DeGroot (1970), Berger (1985), O’Hagan (1994), Robert (2001),
Cifarelli and Muliere (1989), or Zellner (1971), Poirier (1995) and Geweke
(2005) for a more econometric viewpoint.

1.1 Introduction

In the analysis of real data, in economics, sociology, biology, engineering and
in any field, we rarely have perfect information on the phenomenon of inter-
est. Even when an accurate deterministic model describing the system under
study is available, there is always something that is not under our control,
effects of forgotten variables, measurement errors, imperfections. We always
have to deal with some uncertainty. A basic point in Bayesian statistics is
that all the uncertainty that we might have on a phenomenon should be de-
scribed by means of probability. In this viewpoint, probability has a subjective
interpretation, being a way of formalizing the incomplete information that
the researcher has about the events of interest. Probability theory prescribes
how to assign probabilities coherently, avoiding contradictions and undesirable
consequences.

The Bayesian approach to the problem of “learning from experience” on
a phenomenon moves from this crucial role recognized to probability. The
learning process is solved through the application of probability rules: one
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simply has to compute the conditional probability of the event of interest,
given the experimental information. Bayes theorem is the basic rule to be
applied to this aim. Given two events A and B, probability rules say that the
joint probability of A and B occurring is given by P (A∩B) = P (A|B)P (B) =
P (B|A)P (A), where P (A|B) is the conditional probability of A given B and
P (B) is the (marginal) probability of B. Bayes theorem, or the theorem of
inverse probability, is a simple consequence of the above equalities and says
that

P (A|B) =
P (B|A)P (A)

P (B)
.

This is an elementary result, that goes back to Thomas Bayes (who died in
1761). The importance of this theorem in Bayesian statistics is in the inter-
pretation and scope of the inputs of the two sides of the equation, and in the
role that consequently Bayes theorem assumes for formalizing the inductive
learning process. In Bayesian statistics, A represents the event of interest for
the researcher and B an experimental result which she believes can provide
information about A. Given P (A) and consequently P (Ā) = 1 − P (A), and
having assigned the conditional probabilities P (B|A) and P (B|Ā) of the ex-
perimental fact B conditionally on A or Ā, the problem of learning about A
from the “experience” B is solved by computing the conditional probability
P (A|B).

The event of interest and the experimental result depend on the problem.
In statistical inference, the experimental fact is typically the result of a sam-
pling procedure, and it is described by a random vector Y ; usually, we use a
parametric model for assigning the probability law of Y , and the quantity of
interest is the vector θ of the parameters of the model. Bayesian inference on θ
is solved by computing its conditional distribution given the sampling results.
More specifically, suppose that, based on his knowledge of the problem, the
researcher can assign a density1 f(y | θ) of Y given θ (likelihood), and a prior
density π(θ) expressing his uncertainty on the parameters θ. In this case we
can use a generalization of the elementary Bayes theorem, known as Bayes
formula, for computing the conditional density of θ given y:

π(θ | y) =
f(y | θ)π(θ)

m(y)
,

1 In general, we use the term density in its measure-theoretic sense, with respect
to some dominating measure. The reader not accustomed to measure theory can
think of a density function in the continuous case, or a probability mass function
in the discrete case. In general, to apply Bayes formula we have to assume that
the model is dominated, that is, there exists a conditional density f(y|θ) w.r.t.
one dominating measure (the same for any value of θ)
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where m(y) is the marginal density of Y 2 Thus, Bayesian inference is solved
by computing the relevant conditional distributions, and Bayes formula is a
basic tool to this aim. It has an elegant, appealing coherence and simplicity.
Differently from Bayesian procedures, frequentist statistical inference does not
have a probability distribution for the unknown parameters, and inference on
θ is based on the determination of estimators with good properties, confi-
dence intervals, hypothesis testing. The reason is that, since the value of the
parameter θ does not “vary”, θ is not interpretable as a random “variable” in
a frequentist sense, neither the probability that θ takes values in a certain in-
terval can have a frequentist interpretation. Adopting subjective probability,
instead, θ is a random quantity simply because its value is uncertain to the
researcher, who should formalize the information she has about it by means
of probability. This seems indeed quite natural. You might have experienced
that expressions such as “the probability that θ has values in an interval (a, b)
is 0.9” come generally more naturally in your mind than the notion of confi-
dence level of a frequentist confidence interval; however, they are justified only
if θ is a random variable, with a subjective probability law. We have to refer
the reader to the literature for a much deeper discussion; to the fundamental
work of Bruno de Finetti (de Finetti; 1970a,b, see) or Savage.... Lindley.....

In many applications, the main objective of a statistical analysis is fore-
casting; thus, the event of interest is the value of a future observation Y ∗.
Again, prediction of a future value Y ∗ given the data y is simply solved in
principle in the Bayesian approach, by computing the conditional density of
Y ∗ | y, which is called predictive density. In parametric models it can be
computed as

f(y∗ | y) =

∫
f(y∗, θ | y)dν(θ) =

∫
f(y∗|y, θ)π(θ|y)dν(θ).

The last expression involves again the posterior distribution of θ. In fact, apart
from controversies about frequentist or subjective probability, a difficulty with
(prior or posterior) probability distributions on model parameters is that, in
some problems, they do not have a clear physical interpretation, so that assign-
ing to them a probability law is debatable, even from a subjective viewpoint.
According to de Finetti, one can give probability only to “observable facts”;
indeed, the ultimate goal of a statistical analysis is often forecasting the fu-
ture observations rather than learning on unobservable parameters. Taking a
predictive approach, the parametric model is to be regarded just as a tool for
facilitating the task of specifying the probability law of the observable quan-
tities and, eventually, of the predictive distribution. The choice of the prior
should be suggested, in this approach, by predictive considerations, that is
taking into account its implications on the probability law of Y . We discuss
this point further in the next section.
2 If θ is continuous, m(y) =

R

f(y|θ)π(θ)dθ; if θ is discrete, m(y) =
P

θj
f(y |

θj)π(θj)). The measure-theoretic notation
R

f(y|θ)π(θ)dν(θ) covers both cases
and we will use it throughout the book.
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1.1.1 Simple dependence structures

Forecasting is one of the main tasks in time series analysis. A multivariate time
series is described probabilistically by a stochastic process (Yt; t = 1, 2, . . .),
that is, by an ordered sequence of random vectors with the index t denoting
time. For simplicity, we will think of equally spaced time points (daily data,
monthly data, and so on); for example, (Yt) might describe the daily prices of
m bonds, or monthly observations on the sales of a good, etcetera. One basic
problem is to make forecasts about the value of the next observation, Yn+1

say, having observed data up to time n, (Y1 = y1, . . . , Yn = yn). Clearly, the
first step to this aim is to formulate reasonable assumptions about the depen-
dence structure of the process (Yt; t = 1, 2, . . .). If we are able to specify the
probability law of the process (Yt), we know the joint densities f(y1, . . . , yn)
for any n ≥ 1, and Bayesian forecasting would be solved by computing the
predictive density

f(yn+1|y1, . . . , yn) =
f(y1, . . . , yn+1)

f(y1, . . . , yn)
.

In practice, specifying the densities f(y1, . . . , yn) directly is not easy, and one
finds convenient to make use of parametric models; that is, one usually finds
simpler to express the probability law of (Y1, . . . , Yn) conditionally on some
characteristics θ of the system that generates the data. The relevant charac-
teristics θ can be finite or infinite-dimensional, that is, θ can be a random
vector or, as we shall see in the case of state space models, a stochastic pro-
cess itself. The researcher often finds simpler to specify the conditional density
f(y1, . . . , yn|θ) of (Y1, . . . , Yn) given θ, and a density π(θ) on θ, then obtaining
f(y1, . . . , yn) as f(y1, . . . , yn) =

∫
f(y1, . . . , yn | θ)π(θ)dθ. As we shall see, we

will proceed in this fashion when introducing dynamic linear models for time
series analysis. But let’s first study simpler dependence structures.

Conditional independence

The simplest dependence structure is conditional independence. In particular,
in many applications it is reasonable to assume that Y1, . . . , Yn are condition-
ally independent and identically distributed (i.i.d.) given θ: f(y1, . . . , yn|θ) =∏n

i=1 f(yi|θ). For example, if the Yt’s are repeated measurements affected by
a random error, we are used to think of a model of the kind Yt = θ+ εt, where
the εt’s are independent Gaussian random errors, with mean zero and variance
σ2 depending on the precision of the measurement device. This means that,
conditionally on θ, the Yt’s are i.i.d., with Yt|θ ∼ N (θ,σ2).

Note that Y1, Y2, . . . are only conditionally independent: the observations
y1, . . . , yn provide us information about the unknown value of θ and, through
θ, on the value of the next observation Yn+1. Thus, Yn+1 depends, in a prob-
abilistic sense, on the past observations Y1, . . . , Yn. The predictive density in
this case can be computed as
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f(yn+1|y1, . . . , yn) =

∫
f(yn+1, θ|y1, . . . , yn)dν(θ) (1.1)

=

∫
f(yn+1|θ, y1, . . . , yn)π(θ|y1, . . . , yn)dν(θ)

=

∫
f(yn+1|θ)π(θ|y1, . . . , yn)dν(θ), (1.2)

the last equality following from the assumption of conditional independence,
where π(θ|y1, . . . , yn) is the posterior density of θ, conditionally on the data
(y1, . . . , yn). As we have seen, the posterior density can be computed by Bayes
formula:

π(θ|y1, . . . , yn) =
f(y1, . . . , yn|θ)π(θ)

m(y1, . . . , yn)
∝

n∏

t=1

f(yt|θ) π(θ) . (1.3)

Note that the marginal density m(y1, . . . , yn) does not depend on θ, having
the role of normalizing constant, so that the posterior is proportional to the
product of the likelihood and the prior (the symbol ∝ means ”proportional
to”).

It is interesting to note that, with the assumption of conditional indepen-
dence, the posterior distribution can be computed recursively. This means
that one does not need all the previous data to be kept in storage and repro-
cessed every time a new measurement is taken. In fact, at time (n − 1), the
information available about θ is described by the conditional density

π(θ|y1, . . . , yn−1) ∝
n−1∏

t=1

f(yt|θ)π(θ),

so that this density plays the role of prior at time n. Once the new obser-
vation yn becomes available, we have just to compute the likelihood, which
is f(yn|θ, y1, . . . , yn−1) = f(yn|θ) by the assumption of conditional indepen-
dence, and update the ”prior” π(θ|y1, . . . , yn−1) by Bayes rule, obtaining

π(θ|y1, . . . , yn−1, yn) ∝ π(θ|y1, . . . , yn−1)f(yn|θ) ∝
n−1∏

t=1

f(yt|θ)π(θ)f(yn|θ),

which is (1.3). The recursive structure of the posterior will be a crucial point
when we will study dynamic linear models and Kalman filter in the next chap-
ters.

Example. To fix ideas, let’s use a simple example. Suppose that, after a wreck
in the ocean, you landed on a small island, and let θ denote your position, the
distance from the coast say. When studying dynamic linear models, we will
consider the case when θ is subject to change over time (you are on a life boat
in the ocean and not on an island! so that you slowly move with the stream
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and the waves, being at distance θt from the coast at time t). However, for
the moment let’s consider θ as fixed. Luckily, you can see the coast at times;
you have some initial idea of your position θ, but you are clearly interested in
learning more about θ based on the measurements yt that you can take. Let’s
formalize the learning process in the Bayesian approach.

The measurements Yt can be modeled as

Yt = θ + εt , εt i.i.d ∼ N (0,σ2),

where the εt’s and θ are independent and, for simplicity, σ2 is a known con-
stant. In other words:

Y1, Y2, . . . , |θ i.i.d ∼ N (θ,σ2).

Suppose you agree to express your prior idea about θ as

θ ∼ N (m0, C0),

where the prior variance C0 might be very large if you are very uncertain
about your guess m0. Given the measurements (y1, . . . , yn), you will update
your opinion about θ computing the posterior density of θ, using the Bayes
formula. We have

π(θ|y1, . . . , yn) ∝ likelihood× prior

=
n∏

t=1

1√
2πσ

exp{− 1

2σ2
(yt − θ)2} 1√

2πC0
exp{− 1

2C0
(θ −m0)

2}

∝ exp{− 1

2σ2
(

n∑

t=1

y2
t − 2θ

n∑

t=1

yt + nθ2)− 1

2C0
(θ2 − 2θm0 + m2

0)}

∝ exp{− 1

2σ2C0
((nC0 + σ2)θ2 − 2(nC0ȳ + σ2m0)θ)}

The above expression might appear complicated, but in fact it is the kernel of
a Normal density. Note that, if θ ∼ N (m, C), then π(θ) ∝ exp{−(1/2C)(θ2−
2mθ)}; so, writing the above expression as

exp{ 1

2σ2C0/(nC0 + σ2)
(θ2 − 2

nC0ȳ + σ2m0

(nC0 + σ2)
θ)},

we recognize that
θ|y1, . . . , yn ∼ N (mn, Cn),

where

mn = E(θ|y1, . . . , yn) =
C0

C0 + σ2/n
ȳ +

σ2/n

C0 + σ2/n
m0 (1.4)

and

Cn = Var(θ|y1, . . . , yn) = (
n

σ2
+

1

C0
)−1 =

σ2C0

σ2 + nC0
. (1.5)
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The posterior precision is 1/Cn = n/σ2 + 1/C0, and it is the sum of the pre-
cision n/σ2 of the sample mean and the initial precision 1/C0. The posterior
precision is always bigger than the initial precision: even data of poor quality
provide some information. The posterior expectation mn = E(θ|y1, . . . , yn) is
a weighted average between the sample mean ȳ =

∑n
i=1 yi/n and the prior

guess m0 = E(θ), with weights depending on C0 and σ2. If the prior uncer-
tainty, represented by C0, is small w.r.t. σ2, the prior guess receives more
weight. If C0 is very large, then mn ( ȳ and Cn ( σ2/n. Figure .. shows the
prior-to-posterior updating.

As we have seen, the posterior distribution can be computed recursively.
At time n, the conditional density N (mn−1, Cn−1) of θ given the previous
data y1, . . . , yn−1 plays the role of prior; and the likelihood for the current
observation is

f(yn | θ, y1, . . . , yn−1) = f(yn | θ) = N (yn; θ,σ2).

We can update the prior N (mn−1, Cn−1) on the base of the observation yn

using formulas (1.4) and (1.5), with mn−1 and Cn−1 in place of m0 and C0.
We see that the resulting posterior density is Gaussian, with parameters

mn =
Cn−1

Cn−1 + σ2
yn+(1− Cn−1

Cn−1 + σ2
) mn−1 = mn−1+

Cn−1

Cn−1 + σ2
(yn−mn−1)

(1.6)
and variance

Cn = (
1

σ2
+

1

Cn−1
)−1 =

σ2Cn−1

σ2 + Cn−1
. (1.7)

Being Yn+1 = θ + εn+1, the predictive density of Yn+1|y1, . . . , yn is Normal,
with mean mn and variance Cn + σ2; thus, mn is the posterior expected
value of θ and also the one step-ahead ”point prediction” E(Yn+1|y1, . . . , yn).
Expression (1.6) shows that mn is obtained by correcting the previous estimate
mn−1 by a term which takes into account the forecast error en = (yn−mn−1),
weighted by

Cn−1

Cn−1 + σ2
=

C0

σ2 + nC0
(1.8)

(being, from (1.5), Cn−1 = σ2C0
σ2+(n−1)C0

). As we shall see in chapter 2, this
”prediction-error correction” structure is proper, more generally, of the for-
mulas of the Kalman filter for dynamic linear models.

Exchangeability

Exchangeability is the basic dependence structure in Bayesian analysis. Let
(Yt; t = 1, 2, . . .) be an infinite sequence of random vectors. Suppose that the
order in the sequence is not relevant, in the sense that, for any n ≥ 1, the
vector (Y1, . . . , Yn) and any of its permutations, (Yi1 , . . . , Yin

), have the same
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probability law. In this case, we say that the sequence (Yt; t = 1, 2, . . .) is
exchangeable. This is a reasonable assumption when the Yt’s represent the
results of experiments repeated under similar conditions. In the example of
the previous paragraph, it is quite natural to consider that the order in which
the measurements Yt of the distance from the coast are taken is not relevant.
There is an important result, known as de Finetti representation theorem, that
shows that the assumption of exchangeability is equivalent to the assumption
of conditional independence and identical distribution that we have discussed
in the previous paragraph. There is however an important difference. As you
can see, here we move from a quite natural assumption on the dependence
structure of the observables, that is exchangeability; we have not introduced,
up to now, parametric models or prior distributions on parameters. In fact,
the hypothetical model, that is the pair likelihood and prior, arises from the
assumption of exchangeability, as shown by the representation theorem.

Theorem 1.1. (de Finetti representation theorem). Let (Yt; t = 1, 2, . . .)
be an infinite sequence of exchangeable random vectors. Then

(a) With probability one, the sequence of empirical d.f.’s

Fn(y) = Fn(y; Y1, . . . , Yn) =
1

n

n∑

i=1

I(−∞,y](Yi)

converges weakly to a random d.f. F , as n →∞;
(b) for any n ≥ 1, the d.f. of (Y1, . . . , Yn) can be represented as

P (Y1 ≤ y1, . . . , Yn ≤ yn) =

∫ n∏

i=1

F (yi)dπ(F )

where π is the probability law of the weak limit F of the sequence of the
empirical d.f.’s.

The fascinating aspect of the representation theorem is that the hypo-
thetical model results from the assumptions on the dependence structure of
the observable variables (Yt; t = 1, 2, . . .). If we assume that the sequence
(Yt; t = 1, 2, . . .) is exchangeable, then the observations are i.i.d. conditionally
on the d.f. F , with common d.f. F . The random d.f. F is the weak limit of
the empirical d.f.’s. The prior distribution π (also called, in this context, de
Finetti measure) is a probability law on the space F of all the d.f.’s on the
sample space Y and expresses our beliefs on the limit of the empirical d.f.’s.
In many problems we can restrict the support of the prior to a parametric
class PΘ = {F (·|θ) , θ ∈ Θ} ⊂ F , where Θ ⊆ Rp; in this case the prior is said
parametric. We see that, in the case of a parametric prior, the representation
theorem implies that Y1, Y2, . . . are conditionally i.i.d., given θ, with common
d.f. F (·|θ), and θ has a prior distribution π(θ). This is the conditional i.i.d.
dependence structure that we have discussed in the previous subsection.
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Heterogeneous data

Exchangeability is the simplest dependence structure, which allows to en-
lighten the basic aspects of Bayesian inference. It is appropriate when we
believe that the data are ”homogeneous”. However, in many problems the
dependence structure is more complex. Often, it is appropriate to allow some
”heterogeneity” among the data, assuming that

Y1, . . . , Yn|θ1, . . . , θn ∼
n∏

t=1

ft(yt|θt),

that is, Y1, . . . , Yn are conditionally independent given a vector θ = (θ1, . . . , θn),
with Yt depending only on the corresponding θt. For example, Yt could be the
expense of customer t for some service, and we might assume that each cus-
tomer has a different average expense θt, introducing heterogeneity, or ”ran-
dom effects”, among customers. In other applications, t might denote time;
for example, each Yt could represent the average sales in a sample of stores,
at time t; and we might assume that Yt|θt ∼ N (θt,σ2), with θt representing
the expected sales at time t.

In these cases, the model specification is completed by assigning the prob-
ability law of the vector (θ1, . . . , θn). For modeling random effects, a common
assumption is that θ1, . . . , θn are i.i.d. according to a distribution G. If there
is uncertainty about G, we can model θ1, . . . , θn as conditionally i.i.d. given
G, with common distribution function G, and assign a prior on G.

If (Yt, t = 1, 2, . . .) is a sequence of observations over time, then the as-
sumption that the θt’s are i.i.d., or conditionally i.i.d., is generally not ap-
propriate, since we want to introduce a temporal dependence among them.
As we shall see in chapter 2, in state space models we assume a Markovian
dependence structure among the θt’s.

We will return on this problem in the next section (example 2).

1.1.2 Synthesis of conditional distributions

We have seen that Bayesian inference is simply solved, in principle, by comput-
ing the conditional probability distributions of the quantities of interest: the
posterior distribution of the parameters of the model, or the predictive distri-
bution. However, especially when the quantity of interest is multivariate, one
might want to present a summary of the posterior or predictive distribution.
Consider the case of inference on a multivariate parameter θ = (θ1, . . . , θp).
After computing the joint posterior distribution of θ, if some elements of θ
are regarded as nuisance parameters, one can integrate them out to obtain
the (marginal) posterior of the parameters of interest. For example, if p = 2,
we can marginalize the joint posterior π(θ1, θ2|y) and compute the marginal
posterior density of θ1
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π(θ1|y) =

∫
π(θ1, θ2|y)dθ2.

We can provide a graphical representation of the marginal posterior distribu-
tions, or some summary values, such as the posterior expectations E(θi|y) or
the posterior variances Var(θi|y), and so on. We can also naturally show in-
tervals (usually centered on E(θi|y)) or bands with high posterior probability.

More formally, the choice of a summary of the posterior distribution (or
of the predictive distribution) is regarded as a decision problem. In a sta-
tistical decision problem we want to choose an action in a set A, called the
action space, on the basis of the sample y. The consequences of an action a are
expressed through a loss function L(θ, a). Given the data y, the Bayesian deci-
sion rule selects an action in A (if there is one) that minimizes the conditional
expected loss, E(L(θ, a)|y) =

∫
L(θ, a)π(θ|y)dν(θ). Bayesian point estimation

is formalized as a decision problem where the action space coincides with the
parameter space Θ. The choice of the loss function depends on the problem
at hand, and of course different loss functions give rise to different Bayesian
estimates of θ. Some forms of the loss function are of particular interest.

(Quadratic loss). Let θ be a scalar. A common choice is a quadratic loss func-
tion L(θ, a) = (θ − a)2. Then the posterior expected loss is E((θ− a)2|y),
which is minimized at a = E(θ|y). So, the Bayesian estimate of θ with
quadratic loss is the posterior expected value of θ. If θ is p-dimensional,
a quadratic loss function is expressed as L(θ, a) = (θ − a)′H(θ − a), for
a positive definite matrix H . The Bayesian estimate of θ is the vector of
posterior expectations E(θ|y).

(Linear loss). If θ is scalar and

L(θ, a) =

{
c1|a− θ| a ≤ θ
c2|a− θ| a > θ,

where c1 and c2 are positive constants, then the Bayesian estimate is the
c1/(c1 + c2) quantile of the posterior distribution. If c1 = c2, the estimate
is the posterior median.

(Zero-one loss). If θ is a discrete random variable and

L(θ, a) =

{
c a /= θ
0 a = θ,

the Bayesian estimate is any mode of the posterior distribution.

Similarly, a Bayesian point forecast of Yn+1 given y1, . . . , yn is a synthesis
of the predictive density with respect to a loss function, which expresses the
forecast error in predicting Yn+1 with a value ŷ, say. With a quadratic loss
function, L(yn+1, ŷ) = (yn+1− ŷ)2, the Bayesian point forecast is the expected
value E(Yn+1|y1, . . . , yn).

Again, point estimation or forecasting is coherently treated in the Bayesian
approach, on the basis of statistical decision theory. However, in practice the
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computation of the Bayes solutions can be difficult. If θ is multivariate and the
model structure complex, posterior expectations or more generally integrals
of the kind

∫
g(θ)π(θ|y)dθ can be analytically untractable. In fact, despite

its attractive theoretical and conceptual coherence, the diffusion of Bayesian
statistics in applied fields has been hindered, in the past, by computational
difficulties, which had restricted the availability of Bayesian solutions to rather
simple problems. As we shall see in section 1.3, these difficulties can be over-
come by the use of modern simulation techniques.

Example 1. If Y1, . . . , Yn|θ are i.i.d. with Yt|θ ∼ N (θ,σ2) and θ ∼ N (m0, C0),
the posterior density is N (mn, Cn), where mn and Cn are given by (1.4) and
(1.5). The Bayesian estimate of θ with quadratic loss is E(θ|y1, . . . , yn) = mn,
a weighted average between the prior guess m0 and the sample mean ȳ. Note
that, if the sample size is large, then the weight of the prior guess decreases to
zero, and the posterior density concentrates around ȳ, which is the maximum
likelihood estimate (MLE) of θ.

This asymptotic behavior of the posterior density holds more generally.
Let Y1, Y2, . . . be conditionally i.i.d. given θ, with Yt|θ ∼ f(y|θ) and θ ∈ Rp

having prior density π(θ). Under general assumptions, it can be proved that
the posterior density π(θ|y1, . . . , yn), for n large, can be approximated by a
Normal density centered on the MLE θ̂n. This implies that, in these cases,
Bayesian and frequentist estimates tend to agree for a sufficiently large sample
size. For a more rigorous discussion of asymptotic normality of the posterior
distribution, see Bernardo and Smith (1994) (section 5.3), or Schervish.....

Example 2. A classical problem is estimating the mean of a multivariate Nor-
mal distribution. In the classical formulation, the problem is as follows. Sup-
pose that Y1, . . . , Yn are independent r.v.’s, with Yt ∼ N (θt,σ2), t = 1, . . . , n,
where σ2 is a known constant. As in section 1.1 (heterogeneous data), the Yt’s
could be sample means, in n independent experiments; but note that here
θ = (θ1, . . . , θn) is regarded as a vector of unknown constants. Thus we have

Y = (Y1, . . . , Yn)′ ∼ Nn(θ,σ2In)

and the problem is estimating the mean vector θ. The MLE of θ, which is also
the UMVUE estimator, is given by the vector of sample means: θ̂ = θ̂(Y ) = Y .
However, an important result, which had a great impact when Stein proved it
in 1956, shows that the MLE is not optimal with respect to a quadratic loss
function: L(θ, a) = (θ − a)′(θ − a) =

∑n
t=1(θt − at)2, if n ≥ 3. The overall

expected loss, or mean square error, of θ̂ is

E((θ − θ̂(Y ))′(θ − θ̂(Y ))) = E(
n∑

t=1

(θt − θ̂t(Y ))2)

where the expectation is w.r.t. the density fθ(y), i.e. the Nn(θ,σ2In). Stein
(1956) proved that, if n ≥ 3, there exists another estimator θ∗ = θ∗(Y ) which
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is more efficient than the MLE θ̂ in the sense that

E((θ − θ∗(Y ))′(θ − θ∗(Y ))) < E((θ − θ̂(Y ))′(θ − θ̂(Y ))) for all θ.

Stein estimator is given by θ∗(Y ) = (1−(n−2)/Y ′Y )Y (for σ2 = 1); it shrinks
the sample means Y = (Y1, . . . , Yn) towards zero. More generally, shrinkage
estimators shrink the sample means towards the overall mean ȳ =

∑n
t=1 yi,

or towards different values.
Note that the MLE of θt, that is θ̂t = yt, does not make use of the data

yj , for j /= t, which come from the other independent experiments. Thus,
Stein result seems quite surprising, showing that a more efficient estimator
of θt can be obtained using the information from ”independent” experiments.
Borrowing strength from different experiments is in fact quite natural in a
Bayesian approach. The vector θ is regarded as a random vector, and the Yt’s
are conditionally independent given θ = (θ1, . . . , θn), with Yt|θt ∼ N (θt,σ2),
that is

Y |θ ∼ Nn(θ,σ2In).

With a Nn(m0, C0) prior density for θ, the posterior density is Nn(mn, Cn)
where

mn = (C−1
0 + σ−2In)−1(C−1

0 m0 + σ−2Iny)

and Cn = (C−1
0 + σ−2In)−1. Thus the posterior expectation mn provides a

shrinkage estimate, shrinking the sample means towards the value m0. Clearly,
the shrinkage depends on the choice of the prior; see Lindley and Smith (1972)
....

1.1.3 Choice of the prior distribution

The explicit use of prior information, besides the information from the data,
is a basic aspect of Bayesian inference. Indeed, some prior knowledge of the
phenomenon under study is always needed: data never speak entirely by them-
selves. The Bayesian approach allows to explicitly introduce all the informa-
tion we have (from experts’ opinions, from previous studies, from the theory
and from the data) in the inferential process. However, the choice of the prior
can be a delicate point in practical applications. Here we briefly summarizes
some basic notions, but first let us underline a fundamental point, which is
clearly enlightened in the case of exchangeable data: the choice of a prior is in
fact the choice of the pair f(y|θ) and π(θ). Often, the choice of f(y|θ) is called
model specification, but in fact it is part, with the specification of π(θ), of the
subjective choices that we have to do for studying a phenomenon, based of
our prior knowledge. Anyway, given f(y|θ), the prior π(θ) should be a honest
expression of our beliefs about θ, with no mathematical restrictions on its
form.

That said, there are some practical aspects that deserve some considera-
tion. For computational convenience, it is common practice to use conjugate
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priors. A family of densities on θ is said to be conjugate to the model f(y|θ)
if, when the prior is in that family, so is the posterior. In the example in
section 1.1, we used a Gaussian prior density N (m0, C0) on θ, and the poste-
rior resulted still Gaussian, with updated parameters, N (mn, Cn); thus, the
Gaussian family is conjugate to the model f(y|θ) = N (θ,σ2) (with σ2 non
random). In general, a prior will be conjugate when it has the same analytic
form of the likelihood, regarded as a function of θ. Clearly this definition does
not determine uniquely the conjugate prior for a model f(y|θ). For the expo-
nential family, we have a more precise notion of natural conjugate prior which
is defined from the density of the sufficient statistics; see e.g. Bernardo and
Smith (1994), section 5.2; ...... It is worth noting that natural conjugate priors
for the exponential family can be quite rigid, and enriched conjugate priors
have been proposed (see.. Consonni and Veronese...Zellner......). Furthermore,
it can be proved that any prior for an exponential family parameter can be
approximated by a mixture of conjugate priors (see Dalal and Hall (1983),
Diaconis and Ylvisaker (1985)). We provide some examples below and in the
next section. Anyway, computational ease has become less stringent in recent
years, due to the availability of simulation-based approximation techniques.

In practice, people quite often use default priors or non-informative pri-
ors, for expressing a situation of ”prior ignorance” or vague prior informa-
tion.appropriately defining the idea of ”prior ignorance”, or of a prior with
”minimal effect” relative to the data on the inferential results, has a long
history and is quite delicate; see e.g. Bernardo and Smith (1994), section
5.6.2; O’Hagan (1994), section....; Robert (2001), section..... If the parameter
θ takes values in a finite set, {θ∗1 , . . . , θ∗k} say, then the classical notion of a
non-informative prior, since Bayes (1763) and Laplace (1814), is of a uniform
distribution, π(θ∗j ) = 1/k. However, even in this simple case it can be shown
that care is needed in defining the quantity of interest; see Bernardo and Smith
(1994) section 5.6.2. Anyway, extending the notion of a uniform prior when
the parameter space is infinite clearly leads to improper distributions, that
cannot be regarded as (σ-additive) probability distributions. For example, if
θ ∈ (−∞, +∞), a uniform prior would be a constant and its integral on the
real line would be infinite. Furthermore, a uniform distribution for θ implies a
non-uniform distribution for any non-linear monotone transformation of θ and
thus the Bayes-Laplace postulate is inconsistent in the sense that, intuitively,
”ignorance about θ” should also imply ”ignorance” about one-to-one trans-
formations of it. Priors based on invariance considerations are Jeffrey’s priors
(...). Widely used are also reference priors, suggested by Bernardo (...), on an
information-decisional theoretical base (see e.g. Bernardo and Smith (1994),
section 5.4). The use of improper priors is debatable, but often the posterior
density from an improper prior returns to be proper, so that improper pri-
ors are anyway widely used, also for reconstructing frequentist results in a
Bayesian framework. For example, if Yt|θ are i.i.d. N (θ,σ2), using a nonin-
formative uniform prior π(θ) = c and formally applying the Bayes formula
gives
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π(θ|y1, . . . , yn) ∝ exp{− 1

2σ2

n∑

t=1

(yt − θ)2} ∝ exp{− n

2σ2
(θ2 − 2θȳ)2},

that is, the posterior is N (ȳ,σ2/n). In this case, the Bayes point estimate with
quadratic loss corresponds to the MLE ȳ of θ. As we noted before, starting
with a proper, Gaussian prior would give a posterior density centered around
the sample mean only if the prior variance C0 is very large compared to σ2,
or if the sample size n is large.

Another common practice is to have a hierarchical specification of the
prior density. This means that θ has density π(θ|λ) conditionally on some
hyperparameter λ, and then a prior h(λ) is assigned to λ. This is often a way
for expressing a kind of uncertainty in the choice of the prior density. Clearly
it corresponds to assuming that θ ∼

∫
π(θ|λ)dh(λ).

For avoiding theoretical and computational difficulties related to the use
of improper priors, in this book we will use only proper priors. However,
we underline that it is clearly relevant to be aware of the information that
we introduce through the choice of the model and the prior density, that is,
being aware of the effect of the model specification and of the choice of prior
hyperparameters on the inferential results, possibly providing some sensitivity
analysis.

Example: Bayesian conjugate inference for univariate Gaussian models

In section 1.1 we considered conjugate Bayesian analysis for the mean of
a Gaussian population, with known variance. Let now Y1, . . . , Yn|θ,σ2 i.i.d.
∼ N (·; θ,σ2), where both θ and σ2 are unknown. It will be convenient to work
with the precision φ = 1/σ2 rather than with the variance σ2. A conjugate
prior for (θ,φ) can be obtained noting that the likelihood can be written as

f(y1, . . . , yn|θ,φ) ∝ φ(n−1)/2 exp{−1

2
φns2} φ1/2 exp{−n

2
φ(µ − ȳ)2}

(add and subtract ȳ in the squared term and note that the cross product is
zero), where ȳ is the sample mean and s2 =

∑n
t=1(yi − ȳ)2/n is the sample

variance. We see that, as a function of (θ,φ), the likelihood is proportional to
the kernel of a Gamma density in φ with parameters (n/2 + 1, ns2/2) times
the kernel of a Normal density in θ, with parameters (ȳ, (nφ)−1) (definition
and basic properties of the distributions introduced here are provided in the
Appendix). Therefore, a conjugate prior for (θ,σ2) is such that φ has a Gamma
density with parameters (a, b) and, conditionally on φ, θ has a Normal density
with parameters (m0, (n0φ)−1). The joint prior density is

π(θ,φ) = π(φ) π(θ|φ) = Ga(φ; a, b) N (θ; m0, (n0φ)−1)

∝ φa−1 exp{−bφ} φ1/2 exp{−n0

2
φ(θ −m0)

2},

and it is called Normal-Gamma, here with parameters (m0, (n0)−1, a, b). In
particular, E(θ|φ) = m0 and Var(θ|φ) = (n0φ)−1 = σ2/n0, that is, the vari-
ance of θ, given σ2, is expressed as a proportion 1/n0 of σ2. Marginally,
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E(θ) = E(E(θ|φ)) = m0 and Var(θ) = E(σ2)/n0 = (b/(a − 1))/n0 (the vari-
ance σ2 = φ−1 has an Inverse-gamma density, with E(σ2) = b/(a − 1)).
Furthermore, it can be shown that the marginal density of θ is a non-central
Student-t with parameters (m0, (n0 a/b)−1) and 2a degrees of freedom; in
symbols, θ ∼ T (θ; m0, (n0 a/b)−1, 2a).

With a conjugate Normal-Gamma prior, the posterior of (θ,φ) is still
Normal-Gamma, with updated parameters. We have to do some computa-
tions

π(θ,φ|y1, . . . , yn) ∝

φ
n
2 +a−1 exp{−1

2
φ(ns2 + 2b)} φ

1
2 exp{−1

2
φn[(θ − ȳ)2 + n0(θ0)

2]};

with some algebra and completing the square that appears in it, the last
exponential term can be written as

exp{−1

2
φ[nn0

(m0 − ȳ)2

n0 + n
+ (n0 + n)(θ − nȳ + n0m0

n0 + n
)2]}

so that
π(θ,φ|y1, . . . , yn) ∝

φ
n
2 +a−1 exp{−1

2
φ(ns2+2b+nn0

(m0 − ȳ)2

n0 + n
)} φ

1
2 exp{−1

2
φ(n0+n)(θ−mn)2}.

We see that the parameters of the posterior Normal-Gamma density are

mn =
nȳ + n0m0

n0 + n
nn = n0 + n (1.9)

an = a +
n

2

bn = b +
1

2
ns2 +

1

2

nn0

n0 + n
(ȳ −m0)

2 .

This means that
φ|y1, . . . , yn ∼ Ga(an, bn);

θ|φ, y1, . . . , yn ∼ N (mn, (nnφ)−1).

Clearly, conditionally on φ, we are back to the case of inference on the mean of
a N (θ,φ−1 = σ2) with known variance; you can check that the expressions of
E(θ|φ, y1, . . . , yn) = mn and V (θ|φ, y1, . . . , yn) = ((n0 +n)φ)−1 = σ2/(n0 +n)
given above correspond to (1.4) and (1.5), when C0 = σ2/n0. Here, n0 has a
role of ”prior sample size”. The marginal density of θ|y1, . . . , yn is obtained
by marginalizing the joint posterior of (θ,φ) and results to be a non-central
Student-t, with parameters mn, (nn an/bn)−1 and 2an degrees of freedom.

The predictive density is also Student-t:

Yn+1|y1, . . . , yn ∼ T (mn,
bn

annn
(1 + nn), 2an).
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The recursive formula to update the distribution of (θ,φ) when a new
observation yn becomes available is

mn = mn−1 +
1

nn−1 + 1
(yn −mn−1)

nn = nn−1 + 1

an = an−1 +
1

2

bn = bn−1 +
1

2

nn−1

nn−1 + 1
(yn −mn−1)

2

1.2 Bayesian inference in the linear regression model

Dynamic linear models can be regarded as a generalization of the usual linear
regression model, where the regression coefficient are allowed to change over
time. Therefore for the reader convenience we remind briefly here the basic
elements of Bayesian analysis of the static linear regression model.

The linear regression model is the most popular tool for relating the vari-
able Y to explanatory variables x. It is defined as

Yt = x′
tβ + εt, t = 1, . . . , n, εt ∼ N (0,σ2) (1.10)

where Yt is a random variable and xt and β are (p × 1) vectors. In its basic
formulation, the variables x are considered as deterministic or exogenous;
while in stochastic regression x are random variables. In the latter case, we
have in fact a random (p + 1) × 1 vector (Yt, Xt) and we have to specify its
joint distribution and derive the linear regression model from it. A way for
doing this (but more general approaches are possible) is to assume that the
joint distribution is Gaussian

(
Yt

Xt

)
|β,Σ ∼ N

((
µy

µx

)
,Σ

)
, Σ =

(
Σyy Σyx

Σxy Σxx

)
.

From the properties of the multivariate Gaussian distribution (see the Ap-
pendix), we can decompose the joint distribution into a marginal model for
Xt and a conditional model for Yt given xt:

Xt|β,Σ ∼ N (µx,Σxx),

Yt|xt,β,Σ ∼ N (x′
tβ,σ2),

where
β = Σ−1

xx Σxy,

σ2 = Σyy −ΣyxΣ−1
xx Σxy.

If the prior distribution on (β,Σ) is such that the parameters of the marginal
model and those of the conditional model are independent, then we have a cut
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in the distribution of (Yt, Xt,β,Σ); in other words, if our interest is mainly on
the variable Y , we can restrict our attention to the conditional model. In this
case the regression model describes the conditional distribution of Yt given
(β,Σ) and xt.

With the above remarks, model (1.10) gives

Y |X,β, V ∼ Nn(Xβ, V ), (1.11)

where Y = (Y1, . . . , Yn)′ and X is the (n × p) matrix with t-th row x′
t. The

covariance matrix V is usually supposed to be diagonal, V = σ2In, where In

is the n-dimensional identity matrix; this means that the Yt are conditionally
independent, with the same variance σ2. More generally, V is a symmetric
positive-definite matrix. In the Bayesian approach, the unknown parameters
of the model (the regression coefficients and/or the covariance matrix) are
regarded as random quantities, and we have to describe our uncertainty on
them through a prior distribution. Inference on the parameters of the model
is then solved by computing their posterior distribution.

We describe Bayesian inference with conjugate priors for the regression
model, for three cases: inference on the regression coefficients β, assuming
that V is known; inference on the covariance matrix V when β is known;
inference on β and V .

Inference on the regression coefficients

Here we suppose that V is known and we are interested in inference about the
regression coefficients β given the data y. As briefly discussed in the previous
section, a conjugate prior for β can be obtained by looking at the likelihood
as a function of β. The likelihood for the regression model (1.11) is

f(y|β,σ2, X) = (2π)−n/2|V |−n/2 exp{−1

2
(y −Xβ)′V −1(y −Xβ)} (1.12)

∝ |V |−n/2 exp{−1

2
(y′V −1y − 2β′X ′V −1y + β′X ′V −1Xβ)}

where |V | denotes the determinant of V . Now, note that, if β ∼ N (m, C) then
π(β) ∝ exp{− 1

2 (β−m)′C−1(β−m)} ∝ exp{− 1
2 (β′C−1β−2β′C−1m)}. There-

fore, we see that the likelihood, as a function of β, is proportional to the ker-
nel of a Normal density, with parameters ((X ′V −1X)−1X ′V y, (X ′V −1X)−1).
Thus, a conjugate prior for β is the normal density, N (m0, C0) say; as usual,
m0 represent a prior guess about β; the elements on the diagonal of C0 express
prior uncertainty on the prior guess m0 and (quite relevant) the off-diagonal
elements of C0 model the dependence among the regression coefficients βt’s.

With a conjugate Gaussian prior, the posterior will be Gaussian, too, with
updated parameters. For deriving the expression of the posterior parameters,
we compute the posterior density by the Bayes formula:
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π(β|Y, X, V ) ∝ exp{−1

2
(β′X ′V −1Xβ − 2β′X ′V −1y} exp{−1

2
(β −m0)

′C−1
0 (β −m0)}

∝ exp{−1

2
(β′(X ′V −1X + C−1

0 )β − 2β′(X ′V −1y + C−1
0 m0))}.

We recognize the kernel of a p-variate Gaussian density with parameters

mn = Cn(X ′V −1y + C−1
0 β0)

Cn = (C−1
0 + X ′V −1X)−1.

The Bayesian point estimate of β, w.r.t. a quadratic loss function, is the pos-
terior expected value E(β|X, y) = mn. Note that it does not require the
assumption that (X ′V −1X)−1 exists, which is instead necessary for com-
puting the classical generalized least square estimate of β, that is β̂ =
(X ′V −1X)−1X ′V y. However, when (X ′V −1X) is non-singular, the Bayes es-
timate mn can be written as

mn = (C−1
0 + X ′V −1X)−1(X ′V −1X β̂ + C−1

0 m0),

that is, as a linear combination of the prior guess m0, with weight proportional
to the prior precision matrix C−1

0 , and of the generalized least square estimate
β̂, whose weight is proportional to the precision matrix X ′V −1X of β̂. Clearly
mn is a shrinkage estimator of the regression coefficients; see Lindley and
Smith (1972).

The posterior precision matrix is the sum of the prior precision C−1
0 and

of X ′V −1X . Of course, one can integrate the joint posterior density of β for
obtaining the marginal posterior density of one or more coefficients βj .

For the analysis that we will do in the next chapter, when studying dy-
namic linear models, it is useful to provide an alternative ”recursive” expres-
sion of the posterior parameters. It can be proved that the posterior variance
can be rewritten as

Cn = (X ′V −1X + C−1
0 )−1 = C0 − C0X

′(XC0X
′ + V )−1XC0 (1.13)

(see problem 1.1). Using the above identity, it can be shown that the posterior
expectation mn can be expressed as

mn = m0 + C0X
′(XC0X

′ + V )−1(y −Xm0) (1.14)

(see problem 1.2). Note that Xm0 = E(Y |β, X) is the prior point forecast of
Y . So, the above expression writes the Bayes estimate of β as the prior guess
m0 corrected by a term which takes into account the forecast error (y−Xm0).

Inference on the covariance matrix

Suppose now that β is known and we are interested in inference on the covari-
ance matrix V . Analogously to the case of inference on the parameters of the
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Gaussian univariate model, it is convenient to work with the precision matrix
Φ = V −1. For determining a conjugate prior for Φ, note that we can write the
likelihood (1.12) as

f(y|β,Φ, X) ∝ |Φ|n/2 exp{−1

2
(y −Xβ)′Φ(y −Xβ)}

= |Φ|n/2 exp{−1

2
tr(y −Xβ)(y −Xβ)′Φ},

where tr(A) denotes the trace of a matrix A, since (y − Xβ)′Φ(y − Xβ) =
tr((y−Xβ)′Φ(y−Xβ)) (being a scalar) and recalling that tr(AB) = tr(BA).
We see that, as a function of Φ, the likelihood is proportional to the kernel of
a Wishart density with parameters (n + 1/2, 1/2(y−Xβ)(y−Xβ)′) (see the
Appendix). So, a conjugate prior for the precision Φ is Wishart

Φ ∼ Wishart(ν0, S0).

The posterior will be Wishart with updated parameters,

Φ|Y, X,β ∼Wishart(νn, Sn)

and it can be easily checked that

νn = ν0 +
n

2

Sn =
1

2
(y −Xβ)(y −Xβ)′ + S0

Inference on (β, V )

Now let both β and V be random. We consider two cases. First, we assume
that V has the form V = σ2D, where σ2 is a random variable and the (n×n)
matrix D is known; a common assumption is D = In. We then consider the
case of a general unknown covariance matrix V .

In the case V = σ2D, let φ = σ−2. A conjugate prior for (β,φ) is a
Normal-Gamma, with parameters (β0, N

−1
0 , a, b)

π(β,φ) ∝ φa−1 exp{−bφ}φ
p
2 exp{−φ

2
(β − β0)

′N0(β − β0)}

that is

β|φ ∼ N (β0, (φN0)
−1)

φ ∼ Ga(a, b)

Note that, conditionally on φ, β has covariance matrix (φN0)−1 = σ2C̃0 where
we let C̃0 = N−1

0 , a symmetric (p×p) positive-definite matrix which ’rescales’
the observation variance σ2.
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It can be shown (see problem 1.3) that the posterior is a Normal-Gamma
with parameters

βn = β0 + C̃0X
′(XC̃0X

′ + D)−1(y −Xβ0), (1.15)

C̃n = C̃0 − C̃0X
′(XC̃0X

′ + D)−1XC̃0

an = a +
n

2

bn = b +
1

2
(β′

0C̃
−1
0 β0 + y′D−1y − β′

nC̃nβn)

Furthermore, we can simplify the expression of bn; in particular, it can be
shown that

bn = b +
1

2
(y −Xβ0)

′(D + XC̃0X
′)−1(y −Xβ0), (1.16)

(see problem 1.3). These formulas have again the estimation-error correction
structure that we have underlined in the simple Gaussian model, see (1.6),
and in the regression model with known covariance, compare with (1.14).

1.3 Simulation techniques

In Bayesian inference, it is very often the case that the posterior distribution
of the parameters, denoted here by ψ, is analytically intractable. By this we
mean that it is impossible to derive in closed form summaries of the posterior,
such as its mean and variance, or the marginal distribution of a particular
parameter. In fact, most of the time the posterior density is only known up
to a normalizing factor. To overcome this limitation, the standard practice is
to resort to simulation methods. For example, if one could draw a random
sample ψ1, . . . ,ψN (i.i.d.) from the posterior distribution π, then, using the
standard Monte Carlo method, the mean of any function g(ψ) having finite
posterior expectation can be approximated numerically by a sample average:

Eπ(g(ψ)) ≈ N−1
N∑

j=1

g(ψj) (1.17)

Unfortunately, independent samples from the posterior are not easy to ob-
tain. Luckily, however, (1.17) holds more generally for dependent samples. In
particular, it holds for certain Markov chains. Monte Carlo methods based on
simulating random variables from a Markov chain, called Markov chain Monte
Carlo (MCMC) methods, are nowadays the standard way of performing the
numerical analysis required by Bayesian data analysis. In the next subsections
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we review the main general methods that are commonly employed to simulate
a Markov chain such that (1.17) holds for a specific π. References ???

For an irreducible, aperiodic and recurrent Markov chain {ψt}t≥1, having
invariant distribution π, it can be shown that for every3 initial value ψ1, the
distribution of ψt tends to π as t increases to infinity. Therefore, for M suffi-
ciently large, ψM+1, . . . ,ψM+N are all approximately distributed according to
π and, jointly, they have statistical properties similar to those enjoyed by an
independent sample from π. In particular, the law of large numbers, expressed
by (1.17), holds in the form

Eπ(g(ψ)) ≈ N−1
N∑

j=1

g(ψM+j) (1.18)

We note, in passing, that if the Markov chain is only irreducible and recurrent,
but has period d > 1, (1.18) still holds, even if in this case the distribution of
ψt depends on where the chain started, no matter how large t is. In practice
it is important to determine how large M should be, i.e., how many iterations
of a simulated Markov chain are to be considered burn-in and discarded in
the calculation of ergodic averages (1.18).

Another issue is the assessment of the accuracy of an ergodic average as an
estimator of the corresponding expected value. When the ψj ’s are simulated
from a Markov chain, the usual formula for estimating the variance of a sample
mean in the i.i.d. case no longer holds. For simplicity, suppose that the burn-in
part of the chain has already been discarded, so that we can safely assume that
ψ1 is distributed according to π and {ψt}t≥1 is a stationary Markov chain.
Let ḡN denote the right-hand side of (1.18) It can be shown that, for N large,

Var(ḡN ) ≈ N−1Var(g(ψ1))τ(g),

where τ(g) =
∑+∞

t=−∞ ρt and ρt = corr(g(ψs), g(ψs+t)). An estimate of the
term Var(g(ψ1)) is provided by the sample variance of g(ψ1), . . . , g(ψN ). In
order to estimate τ(g), Sokal (1989) suggests to truncate the summation and
plug in empirical correlations for theoretical correlations:

τ̂n =
∑

|t|≤n

ρ̂t,

with n = min{k : k ≥ 3τ̂k}.
We now briefly present the most popular MCMC algorithms for simulating

from a given distribution π.

3 We omit here some measure-theoretic details, trying to convey only the main
ideas. For rigorous results the reader should consult the suggested references.
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1.3.1 Gibbs sampler

Suppose that the unknown parameter is multidimensional, so the posterior dis-
tribution is multivariate. In this case we can write ψ = (ψ(1),ψ(2)), where ψ(1)

and ψ(2) may be unidimensional or multidimensional. Let π(ψ) = π(ψ(1),ψ(2))
be the target density. The Gibbs sampler starts from an arbitrary point

ψ0 = (ψ(1)
0 ,ψ(2)

0 ) in the parameter space and alternates updating ψ(1) and
ψ(2) by drawing from the relevant conditional distribution, according to the
scheme in Table 1.1

0. Set j = 1.
1. Draw ψ(1)

j from π(ψ(1)|ψ(2) = ψ(2)
j−1).

2. Draw ψ(2)
j from π(ψ(2)|ψ(1) = ψ(1)

j ).
3. Set j = j + 1.
4. If j > N stop, otherwise go to 1.

Table 1.1. Gibbs sampling

1.3.2 Metropolis-Hastings algorithm

A very flexible method to generate a Markov chain having a prescribed invari-
ant distribution is provided by Metropolis-Hastings algorithm [reference ???].
The method is very general, since it allows to generate the next state of the
chain from essentially an arbitrary distribution: the invariance of the target
distribution is then enforced by an accept/reject step. Suppose that the chain
is currently at ψ. Then a proposal ψ̃ is drawn from a density q(ψ, ·). Note that
the proposal density may depend on the current state ψ. The proposal ψ̃ is
accepted as the new state of the chain with probability

α(ψ, ψ̃) = min

{

1,
π(ψ̃)q(ψ̃,ψ)

π(ψ)q(ψ, ψ̃)

}

.

If the proposal is rejected, the chain stays in the current state ψ. Table 1.2
describes in detail the steps involved in the algorithm, assuming an arbitrary
value ψ0 for the initial state of the chain.

The choice of the proposal density is an important practical issue. A pro-
posal leading to a high rejection rate will result in a “sticky” Markov chain,
in which the state will tend to stay constant for many iterations. Ergodic av-
erages like (1.18) provide in such a situation poor approximations, unless N is
extremely large. On the other hand, a high acceptance rate is not guarantee,
per sé, of a good behavior of the chain. Consider, for example, a uniform pro-
posal on (ψ− a,ψ + a), where a is a very small positive number, and ψ is the
current state. In this case q(ψ, ψ̃) is constant, and hence it cancels out in α.
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0. Set j = 1.
1. Draw ψ̃j from q(ψj−1, ·).
2. Compute α = α(ψj−1, ψ̃j).
3. Draw an independent random variable Uj ∼ Ber(α).
4. If Uj = 1 set ψj = ψ̃j , otherwise set ψj = ψj−1.
5. Set j = j + 1.
6. If j > N stop, otherwise go to 1.

Table 1.2. Metropolis-Hastings algorithm

Moreover, since the proposal ψ̃ will be close to ψ, in most cases one will have
π(ψ̃) ≈ π(ψ) and α ≈ 1. However, the resulting simulated chain will move
very slowly through its state space, exhibiting a strong positive autocorrela-
tion, which in turn implies that in order to obtain good approximations via
(1.18), one has to take N very large. Generally speaking, one shoud try to
devise a proposal that is a good approximation – possibly local, in a neigh-
borhood of the current state – to the target distribution. In the next section
we illustrate a general method to construct such a proposal.

The Gibbs sampler and Metropolis-Hastings algorithm are by no means
competing approaches to Markov chain simulation: in fact, they can be com-
bined and used together. When taking a Gibbs sampling approach, it may be
unfeasible, or simply not practical, to sample from one or more conditional
distributions. Suppose for example that π(ψ(1)|ψ(2)) does not have a standard
form and is therefore difficult to simulate from. In this case one can, instead
of drawing ψ(1) from π(ψ(1)|ψ(2)), update ψ(1) using a Metropolis-Hastings
step. It can be shown that this does not alter the invariant distribution of the
Markov chain.

1.3.3 Adaptive rejection Metropolis sampling

Rejection sampling is a simple algorithm that allows one to generate a random
variable from a target distribution π by drawing from a different proposal
distribution f and then accepting with a specific probability. Suppose that
there is a constant C such that π(ψ) ≤ Cf(ψ) for every ψ and define r(ψ) =
π(ψ)/Cf(ψ), so that 0 ≤ r(ψ) ≤ 1. Draw two independent random variables
U and V , with U uniformly distributed on (0, 1) and V ∼ f . If U ≤ r(V )
set ψ = V , otherwise repeat the process. In other words, draw V from f(ψ)
and accept V as a draw from π(ψ) with probability r(V ). In case of rejection,
restart the process. It can be shown that if the support of π is included in
the support of f , the algorithm terminates in a finite time, i.e. one eventually
generates a V that is accepted. To see that the resulting draw has the correct
distribution, consider that the proposed V is accepted only if U ≤ r(V ), so
that the distribution of an accepted V is not just f , but f conditional on the
event {U ≤ r(V )}. Denoting by Π the cumulative distribution function of the
target distribution π, one has:
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P(V ≤ v, U ≤ r(V )) =

∫ v

−∞
P(U ≤ r(V )|V = ζ)f(ζ)dζ

=

∫ v

−∞
P(U ≤ r(ζ))f(ζ)dζ =

∫ v

−∞
r(ζ)f(ζ)dζ

=

∫ v

−∞

π(ζ)

Cf(ζ)
f(ζ)dζ =

1

C
Π(v).

Letting v go to +∞, one obtains P(U ≤ r(V )) = C−1. Therefore,

P(V ≤ v|U ≤ r(V )) =
P(V ≤ v, U ≤ r(V ))

P(U ≤ r(V ))
= Π(v).

The most favorable situations, in terms of acceptance probability, are obtained
when the proposal distribution is close to the target: in this case C can be
taken close to one and the acceptance probability r(·) will also be close to one.
It is worth noting the analogy with Metropolis-Hastings algorithm. In both
methods one generates a proposal from an instrumental density, and then
accepts the proposal with a specific probability. However, while in rejection
sampling one keeps on drawing proposals until a candidate is accepted, so
that, repeating the process, one can generate a sequence of independent draws
exactly from the target distribution, in the Metropolis-Hastings algorithm
the simulated random variables are in general dependent and are distributed
according to the target only in the limit.

If π is univariate, log-concave4, and it has bounded support, it is possible
to construct a continuous piecewise linear envelope for log π, see Figure 1.1,
which corresponds to a piecewise exponential envelope for π. Appropriately

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Fig. 1.1. Target log density with a piecewise linear envelope

normalized, this results in a piecewise exponential proposal density, which is
easy to sample from using standard random number generators. Moreover,

4 A function g is concave if it is defined in an interval (a, b) and g(αx+(1−α)y) ≥
αg(x) + (1 − α)g(y) for every α ∈ (0, 1) and x, y ∈ (a, b). π is log-concave if
log π(ψ) is a concave function.
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due to the interplay between C and the normalizing constant of the piecewise
exponential density, the target density π needs only to be known up to a nor-
malizing factor. Clearly, the more points one uses in constructing the envelope
to the target log density, the closer the proposal density will be to the target,
and the sooner a proposal V will be accepted. This suggests an adaptive ver-
sion of the method, according to which every time a proposal V is rejected,
one refines the piecewise linear envelope using the point (V, log π(V )), so that
the next proposal will be drawn from a density that is closer to π. This al-
gorithm is called adaptive rejection sampling in [ref ???]. If the univariate
target π is not logconcave, one can combine adaptive rejection sampling with
the Metropolis-Hastings algorithm to obtain a Markov chain having π as in-
variant distribution. The details are given in ref ???, where the algorithm is
termed adaptive rejection Metropolis sampling (ARMS).

Within an MCMC setting, the univariate ARMS algorithm described
above can be adapted to work also for a multivariate target distribution using
the following simple device. Suppose that the chain is currently at ψ ∈ Rk.
Draw a uniformly distributed unit vector u ∈ Rk. Then apply ARMS to the
univariate density proportional to

t 1−→ π(ψ + tu).

Up to a normalizing factor, this is the conditional target density, given that
the new draw belongs to the straight line through the current ψ and having
direction u. The function arms, originally written as part of the package HI

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

Fig. 1.2. Sample from a mixture of two bivariate normal distributions.

(see Petris and Tardella; 2003) and now included in package dlm, performs
this kind of multivariate version of ARMS. The function needs the arguments
y.start, myldens, indFunc, and n.sample for the starting point, a function
that evaluates the target logdensity, a function that evaluates the support of
the density, and the number of draws to be simulated, respectively. It has also
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the additional argument ... that is passed on to myldens and indFunc. This is
useful when the logdensity and the support depend on additional parameters.
Figure 1.2 shows the plot of 500 simulated points from a mixture of two
bivariate normal densities with unit variances and independent components
and means (−3, 3), (3, 3), respectively. The code below was used to generate
the sample.

R code

> bimodal <- function(x) log(prod(dnorm(x,mean=3)) +
2 + prod(dnorm(x,mean=-3)))

> supp <- function(x) all(x>(-10)) * all(x<(10))
4 > y <- arms( c(-2,2), bimodal, supp, 500 )

Note that for this target an ordinary Gibbs sampler would very likely get stuck
in one of the two modes. This suggests that when one suspects a multivariate
posterior distribution to be multimodal, it may be wise to include ARMS in
a MCMC, and not to rely solely on a simple Gibbs sampler.

1.4 Appendix. Some useful distributions

Gamma distribution

A random variable X has a Gamma distribution, with parameters (a, b), if it
has density

Ga(x; a, b) = cxa−1 exp{−bx} I(0,∞)(x)

where c = ba/Γ (a), Γ (a) =
∫∞
0 xa−1e−xdx, and a, b are positive parameters.

We find that
E(X) =

a

b
, V (X) =

a

b2
.

If a > 1, there is a unique mode at (a−1)/b. For a = 1, the density reduces to
the (negative) exponential distribution with parameter b. For (a = k/2, b =
1/2) it is a chi-square distribution with k degrees of freedom, χ2(k).

If X ∼ Ga(a, b), the density of Y = 1/X is called Inverse-Gamma, with
parameters (a, b), and we have E(X) = b/(a − 1) if a > 1 and Var(X) =
b2/((a− 1)2(a− 2)) if a > 2.

Student-t distribution

If Z ∼ N (0, 1), U ∼ χ2(k), k > 0 and Z and U are independent, then the
random variable T = Z/

√
U/k has a (central) Student-t distribution with k

degrees of freedom, with density

f(t; k) = c (1 +
t2

k
)−

k+1
2 ,
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where c = Γ ((k + 1)/2)/(Γ (k/2)
√

π
√

k). We write T ∼ T (0, 1, k) or simply
T ∼ Tk.

It is clear from the definition that the density is positive on the whole real
line and symmetric around the origin. It can be shown that, as k increases to
infinity, the density converges to a standard Normal density at any point. It
can be shown that

E(X) = µ if k > 1

Var(X) =
k

k − 2
if k > 2

If T ∼ T (0, 1, k), then X = µ + σT has a Student-t distribution, with
parameters (µ,σ2) and k degrees of freedom; we write X ∼ T (µ,σ2, k). Clearly
E(X) = µ if k > 1 and Var(X) = σ2 k

k−2 if k > 2.

Normal-Gamma distribution

Let (X, Y ) be a bivariate random vector. If X |Y = y ∼ N (µ, (n0y)−1), and
Y ∼ Ga(a, b), then we say that (X, Y ) has a Normal-Gamma density with
parameters (µ, n−1

0 , a, b) (where of course µ ∈ R, n0, a, b ∈ R+). We write
(X, Y ) ∼ NG(µ, n−1

0 , a, b) The marginal density of X is a Student-t, X ∼
T (µ, (n0

a
b )−1, 2a).

Multivariate Normal distribution

A continuous random vector Y = (Y1, . . . , Yk)′ has a k-variate Normal distri-
bution with parameters µ = (µ1, . . . , µk)′ and Σ, where µ ∈ Rk and Σ is a
symmetric positive-definite matrix, if it has density

Nk(y; µ,Σ) = |Σ|−1/2(2π)−k/2 exp{−1

2
(y − µ)′Σ−1(y − µ)}, y ∈ Rk

where |Σ| denotes the determinant of the matrix Σ. We write

Y ∼ Nk(µ,Σ).

Clearly, if k = 1, so that Σ is a scalar, the Nk(µ,Σ) reduces to the univariate
Normal density.

We have E(Yi) = µi and, denoting by σi,j the elements of Σ, Var(Yi) = σi,i

and Cov(Yi, Yj) = σi,j . The inverse of the covariance matrix Σ, Φ = Σ−1 is
the precision matrix of Y .

Several results are of interest; their proof can be found in any multivariate
analysis textbook (see, e.g. Barra and Herbach; 1981, pp.92,96).

1. If Y ∼ Nk(µ,Σ) and X is a linear transformation of Y , that is X = AY
where A is a n× k matrix, then X ∼ Nk(Aµ, AΣA′).
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2. Let X and Y be two random vectors, with covariance matrices ΣX and
ΣY , respectively. Let ΣY X be the covariance between Y and X , i.e.
ΣY X = E((Y − E(Y ))(X − E(X))′). The covariance between X and
Y is then ΣXY = Σ′

Y X . Suppose that ΣX is nonsingular. Then it can be
proved that the joint distribution of (X, Y ) is Gaussian if and only if the
following conditions are satisfied:
(i) X has a Gaussian distribution;
(ii) the conditional distribution of Y given X = x is a Gaussian distribu-

tion whose mean is

E(Y | X = x) = E(Y ) + ΣY XΣ−1
X (x− E(X))

and whose covariance matrix is

ΣY |X = ΣY −ΣY XΣ−1
X ΣXY .

Wishart distribution

Let X be a symmetric positive-definite matrix of random variables xi,j , i, j =
1, . . . , k. The distribution of X is in fact the distribution of the k(k − 1)/2-
dimensional vector of the distinct entries of X . We say that X has a Wishart
distribution with parameters α and B (with α > (k−1)/2 and B a symmetric,
nonsingular matrix), if it has density

W (X ;α, B) = c|X |α−(k+1)/2 exp{−tr(BX)},

where c = |B|α/Γk(α),

Γk(α) = πk(k−1)/4
k∏

i=1

Γ (
2α + 1− i

2
)

is the generalized gamma function and tr(·) denotes the trace of a matrix
argument. If k = 1, so that B is a scalar, then W (α, B) reduces to the Gamma
density Ga(·;α, B).

The following properties of the Wishart distribution can be proved.

E(X) = αB−1 and E(X−1) = (α− k + 1

2
)−1B.

If (Y1, . . . , Yn), n > 1, is a random sample from a multivariate normal
distribution Nk(·; µ,Σ) and Ȳ =

∑n
i=1 Yi/n, then Ȳ ∼ Nk(·; µ,Σ/n) and

S =
n∑

i=1

(Yi − Ȳ )(Yi − Ȳ )′

is independent of Ȳ and has a Wishart distribution W (·; (n− 1)/2,Σ−1/2).
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Multivariate Student-t distribution

If Y is a p-variate random vector with Y ∼ Np(0,Σ) and U ∼ χ2(k), with Y
and U independent, then X = Y√

U/k
+µ has a p-variate Student-t distribution,

with parameters (µ,Σ) and k > 0 degrees of freedom, with density

f(x) = c [1− 1

k
(x− µ)′Σ−1(x− µ)]−(k+p)/2 , x ∈ R

p ,

where c = Γ ((k + p)/2)/(Γ (k/2)πp/2kp/2|Σ|1/2. We write X ∼ T (µ,Σ, k).
For p = 1 it reduces to the univariate Student-t distribution. We have

E(X) = µ if k > 1

Var(X) = Σ
k

k − 2
if k > 2.

Multivariate Normal-Gamma distribution

Let (X, Y ) be a random vector, with X |Y = y ∼ Nm(µ, (N0y)−1), and
Y ∼ Ga(a, b). Then we say that (X, Y ) has a Normal-Gamma density with
parameters (µ, N−1

0 , a, b), in symbols (X, Y ) ∼ NG(µ, N−1
0 , a, b).

The marginal density of X is a multivariate Student-t, X ∼ T (µ, (N0
a
b )−1, 2a),

so that E(X) = µ and Var(X) = N−1
0 b/(a− 1).
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Problems

1.1. Verify the identity (1.13).

1.2. Verify the identity (1.14).

1.3. Consider the linear regression model discussed in section 1.2, with V =
σ2D for a known matrix D. Verify that the posterior density for the param-
eters (β,φ = σ−1), with a Normal-Gamma prior, in Normal-Gamma, with
parameters given by (1.15). Then, verify the identity (1.16).

1.4. (Shrinkage estimation). Consider random variables Y1, . . . , Yn such that

Y1, . . . , Yn | θ1, . . . , θn ∼
n∏

t=1

N(yt | θt,σ
2),

where σ2 is known.

(a) Verify that, if θ1, . . . , θn are i.i.d. ∼ N(m, τ), then the Yt are independent.
Compute the posterior density p(θ1, . . . , θn | y1, . . . , yn). With quadratic
loss, the Bayesian estimate of θt is E(θt | y1, . . . , yn). Comment the expres-
sion of E(θt | y1, . . . , yn) that you found. What is the posterior variance,
V (θt | y1, . . . , yn)?

(b) Now suppose that

θ1, . . . , θn | λ i.i.d. ∼ N (λ,σ2
w)

λ ∼ N(m, τ),

where m,σ2
m, τ are known. Compute the posterior density p(θ1, . . . , θn |

y1, . . . , yn). Comment the expressions of E(θt | y1, . . . , yn) and of V (θt |
y1, . . . , yn) that you found.

1.5. (Pooling experts opinions). Let Y 1, . . . , Yn be i.i.d. random variables con-
ditionally on θ, with Yi | θ ∼ N (θ,σ2) with σ2 known. Suppose that

θ ∼
k∑

j=1

pjN (µj , τ
2
j ).

Given Y1 = y1, . . . , Yn = yn, compute the posterior distribution of θ, and the
predictive distribution of Yn+1.

1.6. ex. on sensitivity to prior specification...

1.7. Exercise on Gibbs sampling – e.g. linear model, β and V unknown...
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Dynamic linear models

In this chapter we discuss the basic notions about state-space models and
their use in time series analysis. Dynamic linear models (DLM) are presented
as a special case of general state space models, being linear and Gaussian.
For DLM, estimation and forecasting can be obtained recursively by the well
known Kalman filter.

2.1 Introduction

In the recent years there has been an increasing interest for the application of
state-space models in time series analysis; see for example West and Harrison
(1997), Harvey (1989), Durbin and Koopman (2001), the recent overviews by
Künsch (2001) and Migon et al. (2005), and the references therein. State-space
models consider a time series as the output of a dynamic system perturbed
by random disturbances. As we shall see, they allow a natural interpretation
of a time series as the result of several components, such as trend, seasonal or
regressive components. At the same time, they have an elegant and powerful
probabilistic structure, offering a flexible framework for a very wide range of
applications. Computations can be implemented by recursive algorithms. The
problems of estimation and forecasting are solved by recursively computing
the conditional distribution of the quantities of interest, given the available
information. In this sense, they are quite naturally treated from a Bayesian
approach.

State-space models can be used for modeling univariate or multivariate
time series, also in presence of non-stationarity, structural changes, irregular
patterns. They include the popular ARMA models as special cases. For having
a first idea of their potential use in time series analysis, consider for example
the data plotted in figure 2.1. This time series appears fairly predictable, since
it repeats quite regularly its behavior over time: we see a trend and a rather
regular seasonal component, with a slightly increasing variability. For data of
this kind, we would probably be happy with a fairly simple time-series model,
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Fig. 2.1. Family food expenditure, quarterly data (1996Q1 to 2005Q4). Data avail-
able from http://con.istat.it

with a trend and a seasonal component. In fact, basic time series analysis
lies on the possibility to find a reasonable regularity in the behavior of the
phenomenon under study: forecasting the future behavior is clearly easier if
the series tends to repeat a regular path over time.
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Fig. 2.2. Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of
therms.

But things get more complex for time series such as the ones plotted in
figures 2.2-2.4. Figure 2.2 shows the quarterly UK gas consumption from 1960
to 1986 (data available in R). We clearly see a nonstationary variance. But
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Fig. 2.3. Measurements of the annual flow of the river Nile at Ashwan 1871-1970.
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Fig. 2.4. Daily prices for Google Inc (GOOG)

still, an appropriate transformation of the data might succeed in stabilizing
the variance and then we might use one of the familiar time-series models.
Figure 2.3 shows a well-studied data set, the measurements of the annual flow
of the river Nile at Ashwan from 1871 to 1970. The series shows level shifts.
We know that the construction of the first dam of Ashwan started in 1898;
the second big dam was completed in 1971: if you have ever seen these huge
dams, you do understand the enormous changes that they caused on the Nile
flow and in the vast surrounding area. Thus, we begin to feel the need for
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more flexible time-series models, which do not assume a regular pattern and
stability of the underlying system, but can include change points or structural
breaks. Possibly more irregular is the series plotted in 2.4, showing daily
prices of Google1(close prices, 2004-8-19 to 2006-3-31). This series looks clearly
non-stationary and in fact quite irregular: indeed, we know how unstable the
market for the new economy has been! The analysis of non-stationary time
series with ARMA models requires at least a preliminary transformation of
the data to get stationarity; but we might feel more natural to have models
which allow to analyze more directly data which show instability in the mean
level and in the variance, structural breaks, sudden jumps. State-space models
include ARMA models as special case, but as we shall see, they can be applied
to nonstationary time series without requiring a preliminary transformation
of the data. But there is a further basic issue. When dealing with economic or
financial data, for example, a univariate time series model might appear quite
limited. An economist might want to have a more wide comprehension of the
economic system, looking for example at relevant macroeconomic variables
which influence the variable of specific interest. For the financial example of
figure 2.4, a univariate series model might be satisfying for high frequency data
(the data in figure 2.4 are daily prices). But even a flexible univariate model
(such as a stochastic volatility model, possibly with jumps, see chapter 5),
might provide a quite good description of the behavior of the series, adapting
to irregularities, structural breaks or jumps; but it will be hardly capable
of predicting sudden changes without a further effort in a deeper and wider
study of the economic, socio-political, real variables which have influence on
the markets. Even then, forecasting sudden changes is clearly not at all an
easy task! But we do feel that it is desirable to include regression terms in
our model or use multivariate time series models. Again, including regression
terms is quite natural in state space time series models. And state space
models can in general be formulated for multivariate time series.

State space models originated in the engineering in the early sixties. In
fact, the problem of forecasting has always been a fundamental and fascinat-
ing issue in the theory of stochastic processes and time series. Kolmogorov
(1941) studied this problem for discrete time stationary stochastic processes,
using a representation proposed by Wold (1938). Wiener (1949) studied con-
tinuous time stochastic processes, reducing the problem of forecasting to the
solution of the so-called Wiener-Hopf integral equation. However, the methods
for solving the Wiener problem were subject to several theoretical and practi-
cal limitations. A new look to the problem was given by Kalman (1960), using
the Bode-Shannon representation of random processes and the ”state transi-
tion” method of analsyis of dynamic systems. Kalman’s solution, known as
Kalman filter (Kalman (1960); Kalman and Bucy (1963)), applies to station-
ary and non-stationary random processes. These methods were immediately

1 Financial data can be easily downloaded in R using the function get.hist.quote
in package tseries, or the function priceIts in package its.
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widely used by control engineers, but also in an extremely large range of ap-
plied contexts, from the determination of the orbits of the Voyager spacecraft
to oceanographic problems, from agriculture to economics and speech recogni-
tion (see for instance the special issue of the IEEE Transactions on Automatic
Control (1983) dedicated to applications of Kalman filter). However, the im-
portance of these methods was recognized by statisticians only later, although
the idea of latent variables and recursive estimation can be found in the sta-
tistical literature at least as early as Plackett (1950) and Thiele, see Lauritzen
(1981). One reason for this delay is due to the fact that the work on Kalman
filter was mostly published in the engineering literature. This means not only
that the language of these works was not familiar to statisticians, but also
that some problems which are crucial in applications in statistics and time
series analysis were not sufficiently focussed yet. Kalman himself, in his 1960
paper, underlines that the problem of obtaining the transition model, which
is crucial in practical applications, was treated as a separate question and
not solved. In the engineering literature, it was common practice to assume
the structure of the dynamic system as known, except for the effects of ran-
dom disturbances, the main problem being to find an optimal estimate of the
state of the system, given the model. In time series analysis, the emphasis is
somehow different. The physical interpretation of the underlying states of the
dynamic system is often less evident than in engineering applications. What
we have is the observable process, and even if we can find convenient to think
of it as the output of a dynamic system, the problem of forecasting is often
the most relevant. In this context, the problem of model building can be more
difficult, and even when a state-space representation is obtained, there are
usually quantities or parameters in the model that are unknown.

State-space models appeared in the time series literature in the seventies
(Akaike (1974a), Harrison and Stevens (1976)) and became established during
the eighties (West and Harrison (1997), ...). In the last decades they have
become a focus of interest. This is due on one hand to the development of
models well suited to time series analysis, but also to an even wider range of
applications, including for instance molecular biology or genetics, and on the
other hand to the development of computational tools, such as modern Monte
Carlo methods, for dealing with more complex nonlinear and non-Gaussian
situations.

In the next sections we discuss the basic formulation of state-space models
and the structure of the recursive computations for estimation. Then, as a
special case, we present the Kalman filter for Gaussian linear dynamic models.

2.2 A simple example

Before presenting the general formulation of state space models, it is useful to
give an intuition of the basic ideas and of the recursive computations through
a simple, introductory example. Let’s think of the problem of determining
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the position θ of an object, based on some measurements (Y1, Y2, . . .) affected
by random errors. This problem is fairly intuitive, and dynamics can be in-
corporated into it quite naturally: in the static problem, the object does not
move over time, but it is natural to extend the discussion to the case of a
moving target. If you prefer, you might think of some economic problem, such
as forecasting the sales of a good; in short-term forecasting, the observed sales
are often modeled as measurements of the unobservable average sales’ level
plus a random error; in turn, the average sales are supposed to be constant
or randomly evolving over time (this is the so-called random walk plus noise
model, see page 42).

The static problem. We have already discussed Bayesian inference in the
static problem in chapter 1, page 5. There, you were lost at sea, on a small
island, and θ was your unknown position (univariate: distance from the coast,
say). The observations were modeled as

Yt = θ + εt , εt
i.i.d.∼ N (0,σ2),

that is, the Yt’s are conditionally i.i.d. ∼ N (θ,σ2) given θ, with a conjugate
Normal prior N (m0, C0) for θ. As we have seen in chapter 1, the posterior for
θ is still Gaussian, with updated parameters given by (1.4) and (1.5), or by
(1.6) and (1.7) if we compute them recursively, as new data become available.

To be concrete, let us suppose that your prior guess about the position θ
is m0 = 1, with variance C0 = 2; the prior density is plotted in the first panel
of figure 2.5. Note that m0 is also your point forecast for the observation:
E(Y1) = E(θ + ε1) = E(θ) = m0 = 1.
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Fig. 2.5. Recursive updating of the density of θt

At time t = 1, we take a measurement Y1 = 1.3; from (1.6) and (1.7), the
parameters of the posterior Normal density of θ are
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m1 = m0 +
C0

C0 + σ2
(Y1 −m0) = 1.24,

with precision C−1
1 = σ−2 + C−1

0 = 0.4−1. We see that m1 is obtained as
our best guess at time zero, m0, corrected by the forecast error (Y1 − m0),
weighted by a factor K1 = C0/(C0 + σ2). The more precise the observation
is, or the more rough our initial information was, the more we ”trust the
data”: in the above formula, the smaller σ2 is with respect to C0, the bigger
is the weight K1 of the data-correction term in m1. When a new observation,
Y2 = 1.2 say, becomes available at time t = 2, we can compute the density
of θ|(Y1, Y2), which is N (m2, C2), with m2 = 1.222 and C2 = 0.222, using
again (1.6) and (1.7). The second panel in figure 2.5 shows the updating from
the prior density to the posterior density of θ, given (Y1, Y2). We can proceed
recursively in this manner as new data become available.

The dynamic problem. We solved the static problem. However, suppose
we know that at time t = 2 the object starts to move, so that its position
changes between two consecutive measurements. In this case we need to make
a further assumptions on the dynamics. Let us assume a motion of a simple
form, say

θt = θt−1 + ν + wt, wt ∼ N (0,σ2
w). (2.1)

where ν is a known nominal speed and wt is a Gaussian random error with
mean zero and known variance σ2

w. 2 Let, for example, ν = 4.5 and σ2
w = 0.9.

Now we have a process (θt, t = 1, 2, . . .) which describes the unknown position
of the target at successive time points. The observation equation is now

Yt = θt + εt , εt i.i.d. ∼ N (0,σ2), (2.2)

and we assume that the sequences (θt) and (εt) are independent. For inference,
we proceed along the following steps.

Initial step By the previous results, at time t = 2 we have

θ2|Y1, Y2 ∼ N (m2 = 1.222, C2 = 0.222).

2 Equation (2.1) can be thought of as a discretization of a motion law in continuous
time, such as

dθt = νdt + dWt

where ν is the nominal speed and dWt is an error term. For simplicity, we consider
a discretization in small intervals of time (ti−1, ti), as follows:

θti − θti−1

ti − ti−1
= ν + wti ,

that is
θti = θti−1 + ν(ti − ti−1) + wti(ti − ti−1),

where we assume that the random error wti has density N (0, σ2
w). With a further

simplification, we take unitary time intervals, (ti − ti−1) = 1, so that the above
expression is rewritten as the (2.1)
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Prediction step. But now the position θt changes between two measure-
ments. At time t = 2, we predict where the object will be at time t = 3, based
on the dynamics (2.1). We easily find that

θ3|Y1, Y2 ∼ N (a3, R3),

with
a3 = E(θ2 + ν + w3|Y1, Y2) = m2 + ν = 5.722

and variance

R3 = Var(θ2 + ν + w3|Y1, Y2) = C2 + σ2
w = 1.122.

The third plot in figure 2.5 illustrates the prediction step, from the conditional
density of θ2|Y1, Y2 to the ”predictive” density of θ3|Y1, Y2. Note that even if
we were fairly confident about the position of the target at time t = 2, we
become more uncertain about its position at time t = 3, for the effect of the
random error wt in the dynamics of θt: the larger σ2

w is, the more uncertain
we are about the position at the time of the next measurement.
We can also predict the next observation Y3 given (Y1, Y2). Based on the
observation equation (2.2), we find easily that

Y3|Y1, Y2 ∼ N (f3, Q3),

where
f3 = E(θ3 + ε3|Y1, Y2) = a3 = 5.722

and
Q3 = Var(θ3 + ε3|Y1, Y2) = R3 + σ2 = 1.622.

The uncertainty about Y3 depends on the measurement error (the term σ2 in
Q3) and by the uncertainty about the position at time t = 3 (expressed by
R3).

Estimation step (filtering). At time t = 3, the new observation Y3 = 5
becomes available. Our point forecast of Y3 was f3 = a3 = 5.722, so we have a
forecast error et = Yt−ft = −0.722. Intuitively, we have overestimated θ3 and
consequently Y3; thus, our new estimate E(θ3|Y1, Y2, Y3) of θ3 will be smaller
than a3 = E(θ3|Y1, Y2). For computing the posterior density of θ3|Y1, Y2, Y3,
we use the Bayes formula, where the role of the prior is played by the density
N (a3, R3) of θ3 given (Y1, Y2), and the likelihood is the density of Y3 given
(θ3, Y1, Y2). Note that (2.2) implies that Y3 is independent form the past ob-
servations given θ3 (assuming independence among the error sequences) with

Y3|θ3 ∼ N (θ3,σ
2).

Thus, by Bayes formula (see (1.6) and (1.7)), we obtain

θ3|Y1, Y2, Y3 ∼ N (m3, C3),
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where

m3 = a3 +
R3

R3 + σ2
(Y3 − f3) = 5.568

and

C3 =
σ2R3

σ2 + R3
= R3 −

R3

R3 + σ2
R3 = 0.346.

We see again the estimation-correction structure of the updating mechanism.
Our best estimate of θ3 given the data (Y1, Y2, Y3) is computed as our previous
best estimate a3, corrected by the forecast error e3 = (Y3 − f3), which has
weight K3 = R3/(R3 + σ2). This weight is bigger the more uncertain we are
about our forecast a3 of θ3 (that is, the larger R3 is, which in turn depends
on C2 and σ2

w) and the more precise the observation Y3 is (i.e., the smaller σ2

is). From these results we see that a crucial role in determining the effect of
the data on estimation and forecasting is played by the relative magnitude of
the observation variance σ2 and of the system variance σ2

w. The last plot in
figure 2.5 illustrates this estimation step.
We can proceed repeating recursively the previous steps for updating our es-
timates and forecasts as new observations become available.

This simple example illustrates the basic aspects of dynamic linear mod-
els:
- the observable process (Yt; t = 1, 2, . . .) is thought of as determined by a
latent process (θt; t = 1, 2, . . .), up to Gaussian random errors. If we knew the
position of the object at successive time points, the Yt’s would be indepen-
dent: what remain are only unpredictable measurement errors. Furthermore,
the observation Yt depends only on the position θt of the target at time t;
- the latent process (θt) has a fairly simple dynamics: θt does not depend on
the entire past trajectory but only on the previous position θt−1, through a
linear relationship, up to Gaussian random errors;
- estimation and forecasting can be obtained sequentially, as new data become
available. The example illustrates the role played by the modeling assump-
tions (in particular by the observational variance and system variance) in the
updating mechanism.

The assumption of linearity and Gaussianity is specific of DLMs, but the
dependence structure of the process (Yt) is what we assume in general state
space models.

2.3 State space models

Consider a time series (Yt, t = 1, 2, . . .), where Yt is an observable (m × 1)
random vector; for example, Yt = (Y1,t, . . . , Ym,t)′ are the prices of m bonds
in a portfolio at time t. For making inference on the time series, in particular
for predicting the next value Yt+1 given the observations (Y1, . . . , Yt), we need
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to specify the probability law of the process (Yt), which means giving the
dependence structure among the Yt’s variables.

θ0 −→ θ1 −→ θ2 −→ · · · −→ θt−1 −→ θt −→ θt+1 −→ · · ·
↓ ↓ ↓ ↓ ↓
Y1 Y2 Yt−1 Yt Yt+1

Fig. 2.6. Dependence structure for a state space model

State-space models are based on the idea that the time series (Yt) is
an incomplete and noisy function of some underlying unobservable process
(θt, t = 1, 2, . . .), called the state process. In engineering applications, θt usu-
ally describes the state of a physical system which produces the output Yt, up
to random disturbances. More generally, we might think of (θt) as an auxiliary
random process which facilitates the task of specifying the probability law of
the time series: the observable process (Yt) depends on the latent state pro-
cess (θt), which has a simpler, Markovian dynamics, and we can reasonably
assume that the observation Yt only depends on the state of the system at
the time the measurement is taken, θt. Figure 2.6 represents graphically the
dependences among variables that we are assuming.

More formally, the assumptions of a state space model are

A.1(θt, t = 0, 1, . . .) is a Markov chain; that is, θt depends on the past values
(θ0, θ1, . . . , θt−1) only through θt−1. Thus, the probability law of the pro-
cess (θt, t = 0, 1, . . .) is specified by assigning the initial density 3 p0(θ0) of
θ0 and the transition densities p(θt|θt−1) of θt conditionally on θt−1.

A.2 Conditionally on (θt, t = 0, 1, . . .), the Yt’s are independent and Yt de-
pends on θt only. It follows that, for any n ≥ 1, (Y1, . . . , Yn)|θ1, . . . , θn

have joint conditional density
∏n

t=1 f(yt|θt).

The term state-space model is used when the state variables are continuous.
When they are discrete, one usually calls this model a hidden Markov model.
The assumptions (A1)-(A2) and the specification of the relevant densities al-
low to write the probability law of the joint random process ((θt, Yt), t =
1, 2, . . .), from which we can deduce all the dependences among the variables.
The graph in Figure 2.6 may be used to deduce useful conditional indepen-
dence properties of the random variables occurring in a state space model. In
fact, two sets of random variables, A and B, can be shown to be conditionally

3 As in chapter 1, we mean a density w.r.t. some dominating measure. It can be
a probability density function (density w.r.t. Lebesgue measure) or a probability
mass function (density w.r.t. the counting measure). Also, in general we shall use
the sloppy but convenient notation p(u|v) for the conditional density of a random
vector U given another random vector V = v. Here we assume that the relevant
densities exist.
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independent given a third set of variables, C, if and only if C separates A and
B, i.e., if any path connecting one variable in A to one in B passes through
C. Note that in the previous statement the arrows in Figure 2.6 have to be
considered as undirected edges of the graph that can be transversed in both
directions. For a proof, see Cowell et al. (1999, Section 5.3). With the help of
the graph for understanding the conditional independence relations implied
by the model, we find that, for any n ≥ 1,

(θ0, θ1, . . . , θn, Y1, . . . , Yn) ∼ p0(θ0)
n∏

t=1

p(θt, Yt|θ0, θ1, . . . , θt−1, Y1, . . . , Yt−1)

= p0(θ0)
n∏

t=1

f(Yt|θ0, . . . , θt, Y1, . . . , Yt−1) p(θt|θ0, . . . , θt−1, Y1, . . . , Yt−1)

= p0(θ0)
n∏

t=1

f(Yt|θt)p(θt|θt−1)

(2.3)

In particular, we see that the process ((θt, Yt), t = 1, 2, . . .) is Markovian.
The density of (Y1, . . . , Yn) can be obtained by integrating out all the θ-
variables from the joint density (2.3). As we shall see, computations are fairly
simple in Gaussian linear state space models; however, in general the density
of (Y1, . . . , Yn) is not available in close form and the observable process (Yt) is
not Markovian. However, we can see an important property: Yt is conditionally
independent from the past observations (Y1, . . . , Yt−1) given the value of θt.
This gives us an appealing interpretation of the state θt: it represents some
quantitative information which summarizes the past history of the observable
process and suffices for predicting its future behavior.

2.3.1 Dynamic linear models.

The first, important class of state-space models is given by Gaussian linear
state-space models, also called dynamic linear models (DLM). These models
are specified by means of two equations

Yt = Ftθt + vt, vt ∼ Nm(0, Vt),
θt = Gtθt−1 + wt, wt ∼ Np(0, Wt),

(2.4)

where Gt and Ft are known matrices and the (vt) and (wt) are two independent
white noise sequences (i.e., they are independent, both between them and
within each of them), with mean zero and known covariance matrices Vt and
Wt respectively. The first equation above is called the observation equation,
the second state equation or system equation. Furthermore, it is assumed that
θ0 has a Gaussian distribution,

θ0 ∼ Np(m0, C0), (2.5)
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for some non-random vector m0 and matrix C0, and it is independent on
(vt) and (wt). One can show that the DLM satisfies the assumptions (A.1)
and (A.2) of the previous section, with Yt|θt ∼ N (Ftθt, Vt) and θt|θt−1 ∼
N (Gtθt−1, Wt) (see problems 2.1 and 2.2).

In contrast to (2.4), the general state space model can be written in the
form

Yt = ht(θt, vt)

θt = gt(θt−1, wt)

with arbitrary functions gt and ht. It is thus more flexible. Linear state space
models specify gt and ht as linear functions, and Gaussian linear models add
the assumptions of Gaussian distributions. The assumption of Normality is
sensible in many applications, and it can be justified by central limit theo-
rem arguments. However, there are many important extensions, such as heavy
tailed errors for modeling outliers, or generalized DLM for treating discrete
time series. The price to be paid when removing the assumption of Normality
are additional computational difficulties. We will briefly mention some exten-
sions in the following section and in chapter 5.

Example 1. Simple DLM for time series analysis

We introduce here some examples of DLM for time series analysis, which will
be treated more extensively in chapter 3. The simplest model for a univariate
time series (Yt, t = 1, 2, . . .) is the so-called random walk plus noise model,
defined by

Yt = µt + vt, vt ∼ N(0, V )

µt = µt−1 + wt, wt ∼ N(0, W ), (2.6)

where the error sequences (vt) and (wt) are independent, both within them
and between them. This is a DLM with m = p = 1, θt = µt and Ft = Gt = 1.
It is the model used in the introductory example in section 2.2 of chapter 2,
when there is no speed in the dynamics (ν = 0 in the state equation (2.1)).
Intuitively, it is appropriate for time series showing no clear trend or seasonal
variation: the observations (Yt) are modeled as random fluctuations around
a level (µt); in turn, the level can evolve randomly over time (described by a
random walk). This is why the model is also called local level model; if W = 0,
we are back to the constant mean model. Note that Yt is modeled as a noisy
observation of the random walk µt, which is non-stationary. Indeed, DLM can
be used for modeling non-stationary time series. On the contrary, the usual
ARMA models require a preliminary transformation of the data for getting
stationarity.

A slightly more elaborated model is the linear growth, or local linear trend
model, which has the same observation equation as the local level model, but
includes a time-varying slope in the dynamics for µt
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Yt = µt + vt, vt ∼ N(0, V )

µt = µt−1 + βt−1 + w1,t, w1,t ∼ N(0,σ2
w1

)

βt = βt−1 + w2,t, w2,t ∼ N(0,σ2
w2

), (2.7)

with uncorrelated errors. This is a DLM with

θt =

(
µt

βt

)
, G =

(
1 1
0 1

)
, W =

(
σ2

w1
0

0 σ2
w2

)
, F =

(
1 0
)
.

The system variances σ2
wi

are allowed to be zero. We have used this model
in the introductory example of section 2.2; there, we had a constant nominal
speed in the dynamics, that is σ2

w2
= 0.

Note that in these examples the matrices Gt and Ft and the covariance
matrices Vt and Wt are constant; in this case the model is said time invariant.
We will see other examples in chapter 3. In particular, we shall see that the
popular Gaussian ARMA models can be obtained as particular cases of DLM;
in fact, it can be shown that Gaussian ARMA and DLM models are equivalent
in the time-invariant case (see Hannan and Deistler; 1988).

Example 2. Simple dynamic regression

DLM can be regarded as a generalization of the linear regression model, allow-
ing for time varying regression coefficients. The simple, static linear regression
model describes the relationship between a variable y and a nonrandom ex-
planatory variable x as

Yt = θ1 + θ2xt + εt , εt i.i.d ∼ N (0,σ2);

here we think of (Yt, xt), t = 1, 2, . . . as observed through time. Allowing
for time varying regression parameters, one can model non-linearity of the
functional relationship between x and y, structural changes in the process
under study, omission of some variables. A simple dynamic linear regression
model assumes

Yt = θ1,t + θ2,txt + εt , εt ∼ N (0,σ2
t ),

with a further equation for describing the system evolution

θt = Gtθt−1 + wt, wt ∼ N2(0, Wt).

This is a DLM with Ft = (1, xt) and states θt = (θ1,t, θ2,t)′. If Gt = I, the
identity matrix, σ2

t = σ2 and wt = 0 for any t, we are back to the simple
static linear regression model.
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Creating DLM in R

DLM are represented in package dlm as lists with a class attribute, which
makes them into objects of class "dlm". The required components of a dlm
object are m0, C0, FF, V, GG, W, which correspond to the vector/matrices
m0, C0, Ft, Vt, Gt, Wt in (2.5) and (2.4), assuming that Ft, Vt, Gt, Wt do not
vary with t. For such a constant DLM, this information is enough to com-
pletely specify the model. The dlm function creates a dlm object from its
components, performing some sanity checks on the input, such as testing the
dimensions of the matrices for consistency. The input may be given as a list
with named arguments or as individual arguments. Here is how to use dlm to
create dlm objects corresponding to the random walk plus noise model and
to the linear growth model introduced on page 42. We assume that V = 1.4
and σ2 = 0.2.

R code

> rw <- dlm(m0 = 0, C0 = 10, FF = 1, V = 1.4, GG = 1, W = 0.2)
2 > unlist(rw)

m0 C0 FF V GG W
4 0.0 10.0 1.0 1.4 1.0 0.2

> lg <- dlm(m0 = rep(0,2), C0 = 10 * diag(2), FF = matrix(c(1,0),nr=1),
6 + V = 1.4, GG = matrix(c(1,0,1,1),nr=2), W = diag(c(0,0.2)))

> lg
8 $FF

[,1] [,2]
10 [1,] 1 0

12 $V
[,1]

14 [1,] 1.4

16 $GG
[,1] [,2]

18 [1,] 1 1
[2,] 0 1

20

....
22

> is.dlm(lg)
24 [1] TRUE

Let us turn now on time-varying DLM and how they are represented in R.
Most often, in a time-invariant DLM, only a few entries (possibly none) of each
matrix will change over time, while the remaining will be constant. Therefore,
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instead of storing the entire matrices Ft, Vt, Gt, Wt for all values of t that
one wish to consider, we opted to store a template of each of them, and save
the time-varying entries in a separate matrix. This is defined as argument X.
Taking this approach, one also needs to know to which entry of which matrix
each column of X corresponds. To this aim one has to specify the arguments
JFF, JV, JGG, and JW. Let us focus on the first one, JFF. This should be a
matrix of the same dimension of FF, with integer entries: if JFF[i,j] is k, a
positive integer, that means that the value of FF[i,j] at time s will be set to
X[s,k]. If JFF[i,j] is zero then FF[i,j] is taken to be constant in time. JV,
JGG, and JW are used in the same way, for V, GG, and W, respectively. Consider,
for example, the dynamic regression model introduced on page 43. The only
time-varying element is the (1, 2)-entry of Ft, therefore X will be a one-column
matrix (although X is allowed to have extra, unused, columns). The following
code shows how a dynamic regression model can be defined in R.

R code

> x <- rnorm(100) # covariates
2 > dlr <- dlm(m0 = rep(0,2), C0 = 10 * diag(2), FF = matrix(c(1,0),nr=1),

+ V = 1.3, GG = diag(2), W = diag(c(0.4,0.2)),
4 + JFF = matrix(c(0,1),nr=1), X = as.matrix(x))

> dlr
6 $FF

[,1] [,2]
8 [1,] 1 0

10 $V
[,1]

12 [1,] 1.3

14 $GG
[,1] [,2]

16 [1,] 1 0
[2,] 0 1

18

$W
20 [,1] [,2]

[1,] 0.4 0.0
22 [2,] 0.0 0.2

24 $JFF
[,1] [,2]

26 [1,] 0 1

28 $X
[,1]
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30 [1,] -0.5865
[2,] 0.2031

32 [3,] ...

34 $m0
[1] 0 0

36

$C0
38 [,1] [,2]

[1,] 10 0
40 [2,] 0 10

Note that the dots on line 32 of the display above were produced by the print
method function for objects of class "dlm". If you want the entire X component
to be printed, you need to use print.default or extract it as dlr$X.

We have illustrated the usage of the function dlm to create a general (con-
stant or time-varying) object of class "dlm". As a matter of fact, the dynamic
regression model, as well as the random walk plus noise and the linear growth
model, are so common that simplified functions to create them are provided,
as we will see in Chapter 3.

2.3.2 Examples of non-linear and non-Gaussian state space models

Specification and estimation of DLM for time series analysis will be treated
in chapters 3 and 4. In chapter 5 we will discuss some important classes of
non-linear and non-Gaussian state space models, which are briefly introduced
here.

Exponential family state space models

Dynamic linear models can be generalized by removing the assumption of
Gaussian distributions. This generalization is required for modeling discrete
time series; for example, if Yt represents the presence/absence of a character-
istic in the problem under study over time, we would use a Bernoulli distri-
bution; if Yt are counts, we might use a Poisson model, etc. Generalized DLM
assume that the conditional distribution f(Yt|θt) of Yt given θt is a member of
the exponential family, with natural parameter ηt = Ftθt. The state equation
is as for Gaussian linear models, θt = Gtθt−1+wt. As we shall see in chapter 5,
generalized linear models arise computational difficulties, which can however
be solved by MCMC techniques.

Hidden Markov models

State space models where the state θt is discrete are usually referred as hidden
Markov models. Hidden Markov models are used extensively in speech recog-
nition (see e.g. Rabiner and Juang (1993)); in economics and finance, they are
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often used for modeling a time series with structural breaks. The dynamics
of the series and the change points are thought as determined by a latent
Markov chain (θt), with state space {θ∗1 , . . . , θ∗k} and transition probabilities

p(i|j) = P (θt = θ∗i |θt−1 = θ∗j ).

Consequently, Yt can be in different regimes depending on the state of the
chain at time t, in the sense that

Yt|θt = θ∗j ∼ f(Yt|θ∗j ) , j = 1, . . . , k.

Although state-space models and hidden Markov models have evolved as sep-
arate subjects, it is worth noting that the basic assumptions and recursive
computations are closely related. MCMC methods for hidden Markov models
have been developed, see Rydén and Titterington (1998), Cappé et al. (2005)
and the references therein.

Stochastic volatility models

Stochastic volatility models are widely used in financial applications. Let Yt

be the log-return of an asset at time t (i.e., Yt = log Pt/Pt−1, where Pt is
the asset price at time t). Under the assumption of efficient markets, the
log-returns have null conditional mean: E(Yt+1|Y1, . . . , Yt) = 0. However, the
conditional variance, called volatility, varies over time. There are two main
classes of models for analyzing volatility of returns. The popular ARCH and
GARCH models describe the volatility as a function of the past values of the
returns (see .......). Stochastic volatility models, instead, consider the volatility
as an exogenous random process. This leads to a state space model where the
volatility is (part of) the state vector; see e.g. Shephard (1996). The simplest
stochastic volatility model has the following form

Yt = exp{1

2
θt}wt

θt = η + φθt−1 + vt

that is, θt is an autoregressive model of order one. These models are non-linear
and non-Gaussian and computations are usually more demanding than for
ARCH and GARCH models; however, MCMC approximations are available
(Jacquier et al. (1994)). On the other hand, stochastic volatility models seem
easier to generalize to the case of returns of a collection of assets, while for
multivariate ARCH and GARCH models the number of parameters becomes
too large. Let Yt = (Y1,t, . . . , Ym,t) be the log-returns for m assets. A simple
multivariate stochastic volatility model might assume that

Yi,t = exp{zt + xi,t}vi,t, i = 1, . . . , m,

where zt describes a common market volatility factor and the xi,t’s are indi-
vidual volatilities. The state vector is θt = (zt, x1,t, . . . , xm,t)′ and a simple
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state equation might assume that the components of θt are independent AR(1)
processes.

We will discuss ARCH and stochastic volatility models in Chapter 5.

2.4 State estimation and forecasting

The great flexibility of state-space models is one reason for their extensive
application in an enormous range of applied problems. Of course, as in any
statistical application, a crucial and often difficult step is a careful model
specification. In many problems, the statistician and the experts together can
build a state-space model where the states have an intuitive meaning, and
expert knowledge can be used for specifying the transition probabilities in
the state equation, determine the dimension of the state-space, etc. However,
often the model building can be a major difficulty: there might be no clear
identification of physically interpretable states, or the state-space representa-
tion could be non-unique, or the state-space is too big and poorly identifiable,
or the model is too complicated. We will discuss some issues about model
building for time series analysis with DLM in chapter 3. Here, to get started,
we consider the model as given, that is we assume that the densities f(yt|θt)
and p(θt|θt−1) have been specified, and we present the basic recursions for
estimation and forecasting. In chapter 4, we will let these densities depend on
unknown parameters ψ and we will discuss their estimation.

For a given state-space model, the main tasks are to make inference on
the unobserved states or predict future observations based on a part of the
observation sequence. Estimation and forecasting are solved by computing the
conditional distributions of the quantities of interest, given the available in-
formation.

For estimating the state vector we compute the conditional densities
p(θs|y1, . . . , yt). We distinguish between problems of filtering (when s = t),
state prediction (s > t) and smoothing (s < t). It is worth to underline the
difference between filtering and smoothing. In the filtering problem, the data
are supposed to arrive sequentially in time. This is the case in many applied
problems: think for example of the problem of tracking a moving object, or of
financial applications where one has to estimate, day by day, the term struc-
ture of interest rates, updating the current estimates as new data are observed
on the markets the following day, etc. In these cases, we want a procedure for
estimating the current value of the state vector, based on the observations
up to time t (“now”), and for updating our estimates and forecasts as new
data become available at time t + 1. For solving the filtering problem, we
compute the conditional density p(θt|y1, . . . , yt). In DLM, the Kalman filter
provides the formulas for updating our current inference on the state vector
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as new data become available, that is for passing from the filtering density
p(θt|y1, . . . , yt) to p(θt+1|y1, . . . , yt+1).

The problem of smoothing, or retrospective analysis, consists instead in
estimating the state sequence at times 1, . . . , t, given the data y1, . . . , yt. In
many applications, one has observations on a time series for a certain period,
and wants to retrospectively study the behavior of the system underlying the
observations; for example, in economic studies, the researcher might have the
time series of consumption, or of the gross domestic product of a country, for a
certain number of years, and she might be interested in retrospectively under-
standing the socio-economic behavior of the system. The smoothing problem is
solved by computing the conditional distribution of θ1, . . . , θt given Y1, . . . , Yt;
again, this can be done by a recursive algorithm.

In fact, in time series analysis forecasting is often the main task; the state
estimation is then just a step for predicting the value of future observations.
For one-step-ahead forecasting, that is predicting the next observation Yt+1

based on the data y1, . . . , yt, one first estimates the next value θt+1 of the
state vector, and then, based on this estimates, one computes the forecast for
Yt+1. The one-step-ahead state predictive density is p(θt+1|y1, . . . , yt) and, as
we shall see, it is based on the filtering density of θt. From this, one obtains
the one-step-ahead predictive density f(yt+1|y1, . . . , yt).

One might be interested in looking a bit further ahead, estimating the
evolution of the system, i.e. the state vector θt+k for some k ≥ 1, and making
k-steps-ahead forecasts for Yt+k. The state-prediction is solved by computing
the k-steps-ahead state predictive density p(θt+k|y1, . . . , yt); based on this den-
sity, one can compute the k-steps-ahead predictive density f(yt+k|y1, . . . , yt)
for the future observation at time t + k. Of course, forecasts become more
and more uncertain as the time horizon t + k gets far away in the future
(think of weather forecasts!); but note that we can anyway quantify the un-
certainty through a probability density, namely the predictive density of Yt+1

given (Y1, . . . , Yt). We will show how to compute the predictive densities in
a recursive fashion. In particular, the conditional mean E(Yt+1 | Y1, . . . , Yt)
provides an optimal one-step-ahead point forecast of the value of Yt+1, min-
imizing the conditional expected square prediction error. As a function of k,
E(Yt+k | Y1, . . . , Yt) is usually called the forecast function.

2.4.1 Filtering

We first describe the recursive steps for computing the filtering densities
p(θt|Y1, . . . , Yt) in general state space models. Even if we will not make ex-
tensive use of these formulae until chapter 5, it is useful to look now at the
general recursions for better understanding the role of the conditional inde-
pendence assumptions that have been introduced. Then we move to the case
of DLM for which the filtering problem is solved by the well-known Kalman
filter.
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Let us denote with Dt the information provided by the first t observations,
Y1, . . . , Yt. One of the advantages of state space models is that, due to the
Markovian structure of the state dynamics (A.1) and the assumptions on
conditional independence for the observables (A.2), the filtered and predictive
densities can be computed by a recursive algorithm. As we have seen in the
introductory example of section 2.2, starting from θ0 ∼ p0(θ0) = p(θ0|D0) one
can recursively compute, for t = 1, 2, . . .:

(i) the one-step-ahead predictive density for θt given Dt−1, based on the
filtering density p(θt−1|Dt−1) and the transition model;

(ii) the one-step-ahead predictive density for the next observation;
(iii) the filtering density p(θt|Dt) using Bayes rule with p(θt|Dt−1) as the

prior density and the likelihood f(yt|θt).
More formally, the filtering recursions are as follows.

Proposition 2.1. (Filtering recursions).

(i) The one-step-ahead predictive density for the states can be computed from
the filtered density p(θt−1|Dt−1) according to

p(θt|Dt−1) =

∫
p(θt|θt−1)p(θt−1|Dt−1)dν(θt−1).

(ii)The one-step-ahead predictive density for the observations can be computed
from the predictive density for the states as

f(yt|Dt−1) =

∫
f(yt|θt)p(θt|Dt−1)dν(θt).

(iii)The filtering density can be computed from the above densities as

p(θt|Dt) =
f(yt|θt)p(θt|Dt−1)

f(yt|Dt−1)
.

Proof. What is interesting to understand is the role played by the assumptions
of conditional independence. The graph in figure 2.6 can help again.

(i) Note that θt+1 2 (Y1, . . . , Yt)|θt. Therefore

p(θt|Dt−1) =

∫
p(θt−1, θt|Dt−1)dν(θt−1) =

∫
p(θt|θt−1,Dt−1)p(θt−1|Dt−1)dν(θt−1)

=

∫
p(θt|θt−1)p(θt−1|Dt−1)dν(θt−1).

(ii) From the conditional independence Yt 2 (Y1, . . . , Yt−1)|θt, we have

f(yt|Dt−1) =

∫
f(yt, θt|Dt−1)dν(θt) =

∫
f(yt|θt,Dt−1)p(θt|Dt−1)dν(θt)

=

∫
f(yt|θt)p(θt|Dt−1)dν(θt).
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(iii) Using the Bayes rule:

p(θt|Dt) =
p(θt|Dt−1) f(yt|θt,Dt−1)

f(yt|Dt−1)
=

p(θt|Dt−1) f(yt|θt)

f(yt|Dt−1)
,

by the conditional independence Yt 2 (Y1, . . . , Yt−1)|θt. 34

The above results can be used for recursively computing the k-steps ahead
predictive densities, starting from k = 1:

p(θt+k|Dt) =

∫
p(θt+k|θt+k−1) p(θt+k−1|Dt)dν(θt+k−1)

and

f(yt+k|Dt) =

∫
f(yt+k|θt+k) p(θt+k|Dt)dν(θt+k).

Note that p(θt+k|Dt) summarizes the information contained in the past ob-
servation Dt which is sufficient for predicting Yt+k.

2.4.2 The Kalman filter for DLM

The previous results solve in principle the filtering and the forecasting prob-
lems, however in general the actual computation of the relevant conditional
densities is not at all an easy task. Dynamic linear models are one relevant case
where the general recursions simplify considerably. In this case, using stan-
dard results about the multivariate Gaussian distribution, it is easily proved
that the random vector (θ0, θ1, . . . , θt, Y1, . . . , Yt) has a Gaussian distribution
for any t ≥ 1. It follows that the marginal and conditional distributions are
also Gaussian. Since all the relevant distributions are Gaussian, it suffices to
compute their means and covariances. The solution of the filtering problem is
given by the famous Kalman filter.

Theorem 2.2 (Kalman filter). For the DLM (2.4), if

θt−1|Dt−1 ∼ N (mt−1, Ct−1),

where t ≥ 1, then

(i) the one-step-ahead state predictive density of θt, given Dt−1 is Gaussian,
with parameters

at = E(θt|Dt−1) = Gtmt−1

Rt = Var(θt|Dt−1) = GtCt−1G
′
t + Wt;

(b) the one-step-ahead predictive density of Yt given Dt−1 is Gaussian, with
parameters

ft = E(Yt|Dt−1) = Ftat

Qt = Var(Yt|Dt−1) = FtRtF
′
t + Vt;



52 2 Dynamic linear models

(c) the filtering density of θt given Dt is Gaussian, with

mt = E(θt|Dt) = at + RtF
′
tQ

−1
t et

Ct = Var(θt|Dt) = Rt −RtF
′
tQ

−1
t FtRt,

where et = Yt − ft is the forecast error.

Proof. The random vector (θ0, θ1, . . . , θt, Y1, . . . , Yt) has joint density given
by (2.3), where the marginal and conditional densities involved are Gaussian.
From standard results on the multivariate Normal distribution (see property
(2) reported in the appendix of chapter 1, page 27), it follows that the joint
density of (θ0, θ1, . . . , θt, Y1, . . . , Yt) is Gaussian, for any t ≥ 1. Consequently,
the distribution of any subvector is also Gaussian, as is the conditional dis-
tribution of some components given some other components. Therefore the
predictive densities and the filtering densities are Gaussian, and it suffices to
compute their means and variances. If θt−1 ∼ N (mt−1, Ct−1), then we have
the following results.

(i) From the state equation, θt|Dt−1 ∼ N (at, Rt), with 4

at = E(θt|Dt−1) = E(E(θt|θt−1,Dt−1)|Dt−1) = E(Gtθt−1|Dt) = Gtmt−1;

Rt = Var(θt|Dt−1) = E(Var(θt|θt−1,Dt−1)|Dt−1) + Var(E(θt|θt−1,Dt−1)|Dt−1)

= Wt + GtCt−1G
′
t.

(ii) From the observation equation, Yt|Dt−1 ∼ N (ft, Qt) with

ft = E(Yt|Dt−1) = E(E(Yt|θt,Dt−1)|Dt−1) = E(Ftθt|Dt−1) = Ftat;

Qt = Var(Yt|Dt−1) = E(Var(Yt|θt,Dt−1)|Dt−1) + Var(E(Yt|θt,Dt−1)|Dt−1)

= Vt + FtRtF
′
t .

(iii) As shown in (iii) of the previous proposition, we use the Bayes formula
for computing the conditional density of θt|Dt, with the density N (at, Rt) of
θt|Dt−1 as the prior, and the density N (Ftθt, Vt) of Yt|θt as the likelihood
(remind that Yt 2 Dt−1|θt). Note that this problem is the same as Bayesian
inference for a linear model

Yt = Ftθt + vt , vt ∼ N (0, Vt)

4 Alternatively, you might exploit the independence properties of the error se-
quences (see problem 2.1) and use the state equation directly:

E(θt|Dt−1) = E(Gtθt−1 + wt|Dt−1) = Gtmt−1

Var(θt|Dt−1) = Var(Gtθt−1 + wt|Dt−1) = GtCt−1G
′
t + Wt.

Analogously for (ii).
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where the regression parameters θt have a conjugate Gaussian prior N (at, Rt)
and Vt is known. From the results in section 1.2, we have that

θt|Dt ∼ N (mt, Ct),

where, from (1.14),

mt = at + RtF
′
tQ

−1
t (Yt − Ftat)

and, from (1.13),
Ct = Rt + RtF

′
tQ

−1
t FtRt.

34

The Kalman filter allows to compute the predictive and filtering densities
recursively, starting from θ0|D0 ∼ N (m0, C0) then computing p(θ1|D1) and
proceeding recursively as new data information becomes available.

The conditional density of θt|Dt solves the filtering problem. However, in
many cases one is interested in a point estimate. As we have discussed in chap-
ter 1, section 1.1.2, the Bayesian point estimate of θt given the information
Dt, with respect to a quadratic loss function L(θt, a) = (θt − a)′H(θt − a),
is the conditional expected value mt = E(θt|Dt); this is the optimal estimate
since it minimizes the conditional expected loss E((θt − a)′H(θt − a)|Dt−1).
The minimum expected loss corresponds to the conditional covariance ma-
trix Var(θt|Dt−1) if H = Ip. As we noted in the introductory example in
section 2.2, the expression of mt has the intuitive estimation-correction form
”filter mean equal to the prediction mean at plus a correction depending on
how much the new observation differs from its prediction”. The weight of the
correction term is given by the gain matrix

Kt = RtF
′
tQ

−1
t .

Thus the weight of current information Yt depends on the observation co-
variance matrix Vt (through Qt) and on Rt = Var(θt|Dt−1) = GtCt−1G′

t+Wt.

Example. For the local level model (2.6), the Kalman filter gives

µt|Dt−1 ∼ N (mt−1, Rt = Ct−1 + W ),

Yt|Dt−1 ∼ N (ft = mt−1, Qt = Rt + V ),

µt|Dt ∼ N (mt = mt−1 + Ktet, Ct = KtV ),

where Kt = Rt/Qt and et = Yt−ft. It is worth to underline that the behavior
of the process (Yt) is greatly influenced by the ratio between the two error
variances, r = W/V , which is usually called the signal-to-noise ratio (a good
exercise for seeing this is to simulate some trajectories of (Yt), for different val-
ues of V and W ). This is reflected in the structure of the estimation and fore-
casting mechanism. Note that mt = KtYt +(1−Kt)mt−1, a weighted average
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of Yt and mt−1. The weight Kt = Rt/Qt = (Ct−1+W )/(Ct−1+W )+V ) of the
current observation Yt is also called adaptive coefficient, and it is 0 < Kt < 1.
Given C0, if the signal-to-noise r is small, Kt is small and Yt receives little
weight; if V = 0, we have Kt = 1 and mt = Yt, that is, the one-step-ahead
forecast is given by the most recent data point. A practical illustration of
how different relative magnitudes of W and V affect the mean of the filtered
distribution and the one-step-ahead forecasts is given on pages 55 and 62.

The evaluation of the posterior variances Ct (and consequently also of Rt

and Qt) using the iterative updating formulae contained in Theorem 2.2, as
simple as it may appear, suffers from numerical instability that may lead to
nonsymmetric and even negative definite calculated variance matrices. Alter-
native, stabler, algorithms have been developed to overcome this issue. Appar-
ently, the most widely used, at least in the Statistics literature, is the square
root filter, which provides formulae for the sequential update of a square root5

of Ct. References for the square root filter are Morf and Kailath (1975) and
Anderson and Moore (1979, Ch. 6)

In our work we have found that occasionally, in particular when the ob-
servational noise has a small variance, even the square root filter incurs in nu-
merical stability problems, leading to negative definite calculated variances. A
more robust algorithm is the one based on sequentially updating the singular
value decomposition6 (SVD) of Ct. The details of the algorithm can be found
in Oshman and Bar-Itzhack (1986) and Wang et al. (1992). Strictly speaking,
the SVD-based filter can be seen as a square root filter: in fact if A = UD2U ′

is the SVD of a variance matrix, then UD is a square root of A. However,
compared to the standard square root filtering algorithms, the SVD-based one
is typically more stable (see the references for further discussion).

Kalman filter can be performed in R using the function dlmFilter. The
arguments are the data, y, in the form of a numerical vector, matrix, or time
series, and the model, mod, an object of class "dlm" or a list that can be
coherced to a dlm object. For the reasons of numerical stability mentioned
above, the calculations are performed on the SVD of the variance matrices Ct

and Rt. Accordingly, the output provides, for each t, an orthogonal matrix
UC,t and a vector DC,t such that Ct = UC,tdiag(D2

C,t)U
′
C,t, and similarly for

Rt.
The output produced by dlmFilter, a list with class attribute "dlmFiltered",

includes, in addition to the original data and the model, y and mod, the means
of the predictive and filtered densities in a and m, and the SVD of the vari-
ances of the predictive and filtered densities, in U.R, D.R, U.C, and D.C. For
convenience, the component f of the output list provides the user with one-

5 A square root of a matrix A is any matrix N such that A = NN ′.
6 The SVD of a symmetric nonnegative definite matrix A consists in an orthog-

onal matrix U and a diagonal matrix D with nonnegative entries such that
A = UD2U ′.



2.4 State estimation and forecasting 55

step-ahead forecasts. The component U.C is a list of matrices, the UC,t above,
while D.C is a matrix containing, stored by row, the DC,t vectors of the SVD
of the Ct. Similarly for U.R and D.R. The function dlmSvd2var can be used
to reconstruct the variances from their SVD. In the display below we used a
random walk plus noise model with the Nile data (figure 2.3). The variances
V = 15100 and W = 1468 are the maximum likelihood estimates. To set up
the model we use, instead of dlm, the more convenient dlmModPoly, which will
be discussed in Chapter 3.

R code

> mod <- dlmModPoly(order = 1, dV = 15100, dW = 1468)
2 > unlist(mod)

m0 C0 FF V GG W
4 0 10000000 1 15100 1 1468

> modFilt <- dlmFilter(Nile, mod)
6 > str(modFilt,1)

List of 9
8 $ y : Time-Series [1:100] from 1871 to 1970: 1120 1160 963 1210 1160 1160 813 1230 1370

$ mod:List of 10
10 ..- attr(*, "class")= chr "dlm"

$ m : Time-Series [1:101] from 1870 to 1970: 0 1118 1140 1072 1117 ...
12 $ U.C:List of 101

$ D.C: num [1:101, 1] 3162.3 122.8 88.9 76.0 70.0 ...
14 $ a : Time-Series [1:100] from 1871 to 1970: 0 1118 1140 1072 1117 ...

$ U.R:List of 100
16 $ D.R: num [1:100, 1] 3162.5 128.6 96.8 85.1 79.8 ...

$ f : Time-Series [1:100] from 1871 to 1970: 0 1118 1140 1072 1117 ...
18 - attr(*, "class")= chr "dlmFiltered"

> with(modFilt, dlmSvd2var(U.C[[101]], D.C[101,]))
20 [,1]

[1,] 4031.035

The last number in the display is the variance of the filtering distribution
of the 100-th state vector. Note that m0 and C0 are included in the output,
which is the reason why U.C has one element more than U.R, and m and U.D
one row more than a and D.R.

As we already noted on page 53, the relative magnitude of W and V is an
important factor that enters the gain matrix which, in turn, determines how
sensitive the state prior-to-posterior updating is to unexpected observations.
To illustrate the role of the signal-to-noise ratio W/V in the local level model,
we use here two models, with a significantly different signal-to-noise ratio, to
estimate the true level of the Nile river. The filtered values for the two models
can then be compared.

R code
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Fig. 2.7. Filtered values of the Nile river level for two different signal-to-noise ratios

> mod1 <- dlmModPoly(order = 1, dV = 15100, dW = 0.5 * 1468)
2 > nileFilt1 <- dlmFilter(Nile, mod1)

> plot(window(cbind(Nile,nileFilt1$m[-1]),start=start(Nile)+1), plot.type=’s’,
4 + type=’o’, col=c("grey","green"), lty=c(1,2), xlab="", ylab="Level")

> mod2 <- dlmModPoly(order = 1, dV = 15100, dW = 5 * 1468)
6 > nileFilt2 <- dlmFilter(Nile, mod2)

> lines(window(nileFilt2$m,start=start(Nile)+1), type=’o’, col="red", lty=4)
8 > legend("bottomleft", legend=c("data", "filtered level - model 1",

+ "filtered level - model 2"),
10 + col=c("grey", "green", "red"), lty=c(1,2,4), pch=1, bty=’n’)

Figure 2.7 displays the filtered levels resulting from the two models. It is
appearent that for model 2, which has a signal-to-noise ratio ten times larger
than model 1, the filtered values tend to follow more closely the data.

2.4.3 Smoothing

One of the attractive features of state-space models is that estimation and fore-
casting can be developed sequentially, as new data become available. However,
in time series analysis one often has observations on Yt for a certain period,
t = 1, . . . , T and wants to retrospectively reconstruct the behavior of the
system, for studying the socio-economic construct or physical phenomenon
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underlying the observations. Again, one has a backward-recursive algorithm
for computing the conditional densities of θt|DT , for t < T , starting from the
filtering density p(θT |DT ) and estimating backward all the states’ history.

Proposition 2.3. (Smoothing recursion). (i) Conditional on DT , the state
sequence (θ0, . . . , θT ) has backward transition probabilities given by

p(θt|θt+1,DT ) =
p(θt+1|θt)p(θt|Dt)

p(θt+1|Dt)
.

(ii) The smoothing densities of θt given DT can be computed according to
the following backward recursion in t (starting from p(θT |DT )):

p(θt|DT ) = p(θt|Dt)

∫
p(θt+1|θt)

p(θt+1|Dt)
p(θt+1|DT )dµ(θt+1).

Proof. (i) Note that θt+1 2 (θ0, . . . , θt−1)|θt,DT and θt 2 (Yt+1, . . . , YT )|θt+1

(you might use the properties of the DAG in Figure 2.6 to show this). Using
the Bayes formula

p(θt|θt+1,DT ) = p(θt|θt+1,Dt) =
p(θt|Dt)p(θt+1|θt,Dt)

p(θt+1|Dt)
=

p(θt|Dt)p(θt+1|θt)

p(θt+1|Dt)
.

(ii) Marginalizing p(θt, θt+1|DT ) we get

p(θt|DT ) =

∫
p(θt, θt+1|DT )dθt+1 =

∫
p(θt+1|DT )p(θt|θt+1,DT )dθt+1

=

∫
p(θt+1|DT )p(θt|θt+1,Dt)dθt+1

=

∫
p(θt+1|DT )

p(θt+1|θt,Dt)p(θt|Dt)

p(θt+1|Dt)
dθt+1 , using Bayes rule

= p(θt|Dt)

∫
p(θt+1|θt)

p(θt+1|DT )

p(θt+1|Dt)
dθt+1.

34

For the DLM the above formulae reduce to the following.

Proposition 2.4. (Smoothing recursion for the DLM). For the DLM 2.4, if
θt+1|DT ∼ N (st+1, St+1), then θt|DT ∼ N (st, St), where

st = mt + CtG
′
t+1R

−1
t+1(st+1 − at+1)

St = Ct + CtG
′
t+1R

−1
t+1(St+1 −Rt+1)R

−1
t+1Gt+1Ct.

Proof. From the properties of the multivariate Gaussian distribution, one finds
easily that the conditional density of θt given DT is Gaussian, thus it suffices
to compute its expected value and covariance matrix. We have
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st = E(θt|DT ) = E(E(θt|θt+1,DT )|DT )

and

St = Var(θt|DT ) = Var(E(θt|θt+1,DT )|DT ) + E(Var(θt|θt+1,DT )|DT ).

Now observe that, as from part (i) of the previous proposition, θt2(Yt+1, . . . , YT )|θt+1

so that p(θt|θt+1,DT ) = p(θt|θt+1,Dt) and we can use Bayes formula for com-
puting it. Here, p(θt+1|θt,Dt) = p(θt+1|θt) is described by the state equation

θt+1 = Gt+1θt + wt+1, wt+1 ∼ N(0, Wt+1)

that is θt+1|θt ∼ N (Gt+1θt, Wt+1). The role of prior is played by p(θt|Dt)
which is N (mt, Ct). Using (1.14) and (1.13), we find that

E(θt|θt+1,Dt) = mt + CtG
′
t+1(Gt+1CtG

′
t+1 + Wt+1)

−1(θt+1 −Gt+1mt)

= mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1)

Var(θt|θt+1,Dt) = Ct − CtG
′
t+1R

−1
t+1Gt+1Ct,

from which

st = E(E(θt|θt+1,Dt)|DT ) = mt + CtG
′
t+1R

−1
t+1(st+1 − at+1)

St = Var(E(θt|θt+1,Dt)|DT ) + E(Var(θt|θt+1,Dt)|DT )

= Ct − CtG
′
t+1R

−1
t+1Gt+1Ct + CtG

′
t+1R

−1
t+1St+1R

−1
t+1Gt+1Ct

= Ct + CtG
′
t+1R

−1
t+1(St+1 −Rt+1)R

−1
t+1Gt+1Ct,

being E(θt+1|DT ) = st+1 and Var(θt+1|DT ) = St+1 by assumption. 34

The Kalman smoother allows to compute the densities of θt|DT , starting from
t = T−1, in which case θT |DT ∼ N (sT = mT , ST = CT ), and then proceeding
backward for computing the densities of θt|DT for t = T−2, t = T−3, etcetera.

About the numerical stability of the smoothing algorithm, the same caveat
holds as for the filtering recursions. The formulae of Proposition 2.4 are sub-
ject to numerical instability, and more robust square root and SVD-based
smoothers are available (see Zhang and Li; 1996). The function dlmSmooth
performs the calculations in R, starting from an object of class "dlmFiltered".
The output is a list with components s, the means of the smoothing distribu-
tions, and U.S, D.S, their variances, given in terms of their SVD. The following
display illustrates the use of dlmSmooth on the Nile data.

R code

> modSmooth <- dlmSmooth(modFilt)
2 > str(modSmooth,1)

List of 3
4 $ s : Time-Series [1:101] from 1870 to 1970: 1111 1111 1111 1105 1113 ...
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$ U.S:List of 101
6 $ D.S: num [1:101, 1] 74.1 63.5 56.9 53.1 50.9 ...

> with(modSmooth, drop(dlmSvd2var(U.S[[101]], D.S[101,])))
8 [1] 4031.035

> with(modFilt, drop(dlmSvd2var(U.C[[51]], D.C[51,])))
10 [1] 4031.035

> with(modSmooth, drop(dlmSvd2var(U.S[[51]], D.S[51,])))
12 [1] 2325.985

Note, in the above display, how filtering and smoothing variances at time 100,
the time of the last observation, are equal, but the smoothing variance at time
50 is much smaller than the filtering variance at the same time. This is due
to the fact that in the filtering distribution at time 50 one is conditioning
on the first fifty observations only, while in the smoothing distribution the
conditioning is with respect to all the one hundred observations available. As
the display below illustrates, the variance of the smoothing distribution can
be used to construct pointwise probability intervals for the state components7

– only one in this example. The plot produced by the code below is shown in
Figure 2.8

R code

> hwid <- qnorm((1-0.95) / 2) *
2 + sqrt(with(modSmooth, unlist(dlmSvd2var(U.S, D.S))))

> smooth <- cbind(modSmooth$s, as.vector(modSmooth$s) + hwid %o% c(1,-1))
4 > plot(cbind(Nile, window(smooth, start=start(Nile))), plot.type=’s’,

+ col=c("grey", "magenta", "cyan", "cyan"), lty=c(1, 2, 3, 3), type=’o’,
6 + ylab="Level", xlab="")

> legend("bottomleft", legend=c("data", "smoothed level", "95% probability limits"),
8 + col=c("grey", "magenta", "cyan"), lty=1:3, pch=1, bty=’n’)

Here is another example. The data consist of a quartely time series of
quarterly consumer expenditure on durable goods in UK, in 1958 pounds, from
the first quarter of 1957 to the last quarter of 19678. A DLM including a local
level plus a quarterly seasonal component was fitted to the data, giving the
parameter estimates that we use here to illustrate filtering and smoothing in R.
In this model the state vector is 4-dimensional. Two of its components have a
particularly relevant interpretation: the first one can be thought of as the true,
deseasonalized, level of the series; the second is a dynamic seasonal component.
The series is obtained, according to the model, by adding observational noise
to the sum of the first and second component of the state vector, as can be
deduced from the FF matrix. Figure 2.9 shows the data, together with the

7 At the time of writing the package does not have functions returning directly
probability intervals. This may change in future releases.

8 Data taken from http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
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Fig. 2.8. Smoothed values of the Nile river level, with 95% probability limits
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filtered and smoothed level. These values are just the first components of the
series of filtered and smoothed state vectors. In addition to the deseasonalized
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Fig. 2.10. Quarterly expenditure on durable goods: smoothed seasonal component

level of the series, one can also estimate the seasonal component, which is just
the second component of the smoothed or filtered state vector. Figure 2.10
shows the smoothed seasonal component. It is worth stressing that the model
is dynamic, hence the seasonal component is allowed to vary as time goes
by. This is clearly the case in the present example: from an alternating of
positive and negative values at the beginning of the observation period, the
series moves to a two-positive two-negative pattern in the second half. The
display below shows how filtered and smoothed values have been obtained in
R, as well as how the plots were created (up to 1967 – the predicted level
is explained in the next subsection). The function bdiag is a handy function
that creates a block diagonal matrix from the individual blocks, or from a list
containing the blocks.

R code

> expd <- ts(read.table("Datasets/qconsum.dat", skip = 4,
2 + colClasses = "numeric")[,1],

+ start = c(1957,1), frequency = 4)
4 > mod <- dlm(m0 = rep(0,4), C0 = 1e-8 * diag(4),

+ FF = matrix(c(1,1,0,0), nr=1),
6 + V = 1e-3,

+ GG = bdiag(matrix(1),
8 + matrix(c(-1,-1,-1,1,0,0,0,1,0),nr=3,byrow=TRUE)),

+ W = diag(c(771.35, 86.48, 0, 0), nr=4))
10 > modFilt <- dlmFilter(expd, mod)
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> modSmooth <- dlmSmooth(modFilt)
12 > plot(expd, type=’o’, xlim=c(1957, 1970), ylim=c(210, 725), ylab="Expenditure")

> lines(modFilt$m[,1], col=’green’, type=’o’)
14 > lines(modSmooth$s[,1], col=’red’, type=’o’)

> plot(modSmooth$s[,2], type=’o’, ylab="Expenditure - Seasonal component")
16 > abline(h=0)

2.5 Forecasting

With Dt at hand, one can be interested in forecasting future values of the
observations, Yt+k, or of the state vectors, θt+k. For DLM, the recursive form
of computations makes it natural to compute the one-step-ahead forecasts and
to update them sequentially, as new data become available. This is clearly of
interest in applied problems where the data do arrive sequentially, such as in
day-by-day forecasting the price of a stock, or in tracking a moving target;
but one-step-ahead forecasts are often also computed “in-sample”, as a tool
for checking the performance of the model.

The one-step-ahead predictive densities, for states and observations, are
obtained as a byproduct of the Kalman filter, as presented in Theorem 2.2.

In R, the one-step-ahead forecasts ft = E(Yt|Dt) are provided in the output
of the function dlmFilter. Since for each t the one-step-ahead forecast of the
observation, ft, is a linear function of the filtering mean mt−1, the magnitude
of the gain matrix plays the same role in determining how sensitive ft is
to an unexpected observation Yt−1 as it did for mt−1. In the case of the
random walk plus noise model this is particularly evident, since in this case
ft = mt−1. Figure 2.11, produced with the code below, contains the one-step-
ahead forecasts obtained from the local level models with different signal-to-
noise ratio defined in the display on page 55.

R code

> plot(window(cbind(Nile, nileFilt1$f, nileFilt2$f), start=1880, end=1920),
2 + plot.type=’s’, type=’o’, col=c("grey", "green", "red"), lty=c(1,2,4),

+ xlab="", ylab="Level")
4 > legend("bottomleft", legend=c("data", paste("one-step-ahead forecast - model", 1:2)),

+ col=c("grey", "green", "red"), lty=c(1,2,4), pch=1, bty=’n’)

To elaborate more on the same example, we note that the signal-to-noise ratio
need not be constant in time. The construction of the Ashwan dam in 1898,
for instance, can be expected to produce a major change in the level of the
Nile river. A simple way to incorporate this expected level shift in the model is
to assume a system evolution variance Wt larger than usual for that year and
the following one. In this way the estimated true level of the river will adapt
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Fig. 2.11. One-step-ahead forecasts for the Nile level using different signal-to-noise
ratios

faster to the new regime, leading in turn to more accurate one-step-ahead
forecasts. The code below illustrates this idea.

R code

> mod0 <- dlmModPoly(order = 1, dV = 15100, dW = 1468)
2 > X <- ts(matrix(mod0$W, nc=1, nr=length(Nile)), start=start(Nile))

> window(X, 1898, 1899) <- 12 * mod0$W
4 > modDam <- mod0

> modDam$X <- X
6 > modDam$JW <- matrix(1,1,1)

> damFilt <- dlmFilter(Nile, modDam)
8 > mod0Filt <- dlmFilter(Nile, mod0)

> plot(window(cbind(Nile, mod0Filt$f, damFilt$f), start=1880, end=1920),
10 + plot.type=’s’, type=’o’, col=c("grey", "green", "red"),

+ lty=c(1,2,4), xlab="", ylab="Level")
12 > abline(v=1898, lty=2)

> legend("bottomleft", col=c("grey", "red", "green"), lty=c(1,4,2), pch=1, bty=’n’,
14 + legend=c("data", paste("one-step-ahead forecast -", c("modDam", "mod0"))))

Note in Figure 2.12 how, using the modified model modDam, the forecast for
the level of the river in 1900 is already around what is the new river level,
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Fig. 2.12. One-step-ahead forecasts of Nile river level with and without change
point

while for the other model this happens only around 1907.

In many applications one is interested in looking a bit further in the future,
and provide possible scenarios of the behavior of the series for k steps ahead.
We present here the recursive formulae for the means and variances of the
conditional distributions of states and observations at a future time t + k,
given the data up to time t. In view of the Markovian nature of the model,
the filtering distribution at time t acts like an initial distribution for the future
evolution of the model. To be more precise, the joint distribution of present
and future states (θt+k)k≥0, and future observations (Yt+k)k≥1 is that of a
DLM having the relevant system/observation matrices and variances, and
initial distribution p(θt | Dt). The information about the future provided by
the data is all contained in this distribution. In particular, since the data are
only used to obtain mt, the mean of p(θt | Dt), it follows that mt provides a
summary of the data which is sufficient for predictive purposes.

θt −→ θt+1 −→ · · · −→ θt+k

| |
(Y1, . . . , Yt) Yt+k

Fig. 2.13. Flow of information from (Y1, . . . , Yt) to Yt+k



2.5 Forecasting 65

You can have a further intuition about that looking at the DAG represent-
ing the dependence structure among the variables (figure 2.6). We see that
the path from (Y1, . . . , Yt) to Yt+k is as in figure 2.13, showing that the data
(Y1, . . . , Yt) provide information on θt, which gives information about the fu-
ture state evolution up to θt+k and consequently on Yt+k. Of course, as k gets
larger, more uncertainty enters in the picture, and the forecasts will be less
and less precise.

Proposition 2.5 provides recursive formulae to compute first and second
moments of the predictive distributions. We need first some notation. For
k ≥ 1, define

at(k) = E(θt+k | Dt), (2.8a)

Rt(k) = Var(θt+k | Dt), (2.8b)

ft(k) = E(Yt+k | Dt), (2.8c)

Qt(k) = Var(Yt+k | Dt). (2.8d)

Proposition 2.5. Set at(0) = mt and Rt(0) = Ct. Then, for k ≥ 1, the
following hold:

1. the distribution of θt+k given Dt is Gaussian, with

at(k) = Gt+kat,k−1,

Rt(k) = Gt+kRt,k−1G
′
t+k + Wt+k;

2. the distribution of Yt+k given Dt is Gaussian, with

ft(k) = Ft+kat(k),

Qt(k) = Ft+kRt(k)F ′
t+k + Vt.

Proof. As we have already noted, all conditional distributions are Gaussian.
Therefore, we only need to prove the formulae giving the means and variances.
We proceed by induction. The result holds for k = 1 in view of Theorem 2.2.
For k > 1, 9

9 Again, you can alternatively exploit the independence properties of the error
sequences (see problem 2.1) and use the state equation directly:

at(k) = E(θt+k | Dt) = E(Gt+kθt+k−1 + wt+k | Dt) = Gt+kat,k−1,

Rt(k) = Var(θt+k | Dt) = Var(Gt+kθt+k−1 + wt+k | Dt) = Gt+kRt,k−1G
′
t+k + Wt+k

and analogously, from the observation equation:

ft(k) = E(Yt+k | Dt) = E(Ft+kθt+k + vt+k | Dt) = Ft+kat(k),

Qt(k) = Var(Yt+k | Dt) = Var(Ft+kθt+k + vt+k | Dt) = Ft+kRt(k)F ′
t+k + Vt+k.
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at(k) = E(θt+k | Dt) = E(E(θt+k | Dt, θt+k−1) | Dt)

= E(Gt+kθt+k−1 | Dt) = Gt+kat,k−1,

Rt(k) = Var(θt+k | Dt) = Var(E(θt+k | Dt, θt+k−1) | Dt)

+ E(Var(θt+k | Dt, θt+k−1) | Dt)

= Gt+kRt,k−1G
′
t+k + Wt+k,

ft(k) = E(Yt+k | Dt) = E(E(Yt+k | Dt, θt+k) | Dt)

= E(Ft+kθt+k | Dt) = Ft+kat(k),

Qt(k) = Var(Yt+k | Dt) = Var(E(Yt+k | Dt, θt+k) | Dt)

+ E(Var(Yt+k | Dt, θt+k) | Dt)

= Ft+kRt(k)F ′
t+k + Vt+k,

34

Note that the data only enter the predictive distributions through the
mean of the filtering distribution at the time the last observation was taken.
The function dlmForecast computes the means and variances of the predic-
tive distributions of the observations and the states. Optionally, it can be used
to draw a sample of future states and observations. The principal argument of
dlmForecast is a dlmFiltered object. Alternatively, it can be a dlm object
(or a list with the appropriate named components), where the components m0
and C0 are interpreted as being the mean and variance of the state vector at
the end of the observation period, given the data, i.e., they are the mean and
variance of the last (most recent) filtering distribution. The code below shows
how to obtain predicted values of the series for the two years following the
last observation, together with a sample from their distribution (dashed lines
in Figure 2.9).

R code

> fore <- dlmForecast(modFuture, nAhead = 8, sampleNew = 10)
2 > invisible(lapply(fore$newObs, function(x) lines(x, col=’grey’, lty=2)))

> lines(fore$f, col="magenta", type=’o’)

The innovation process

As we have seen, for DLM the Kalman filter provides the filtering estimate
mt, given the information Dt, as the previous estimate mt−1 corrected by a
term which depends on the forecast error

et = Yt − E(Yt|Dt−1) = Yt − ft.

The forecast errors can alternatively be written in terms of the estimation
errors as follows:
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et = Yt − Ftat = Ftθt + vt − Ftat

= Ft(θt − at) + vt = Ft(θt −Gtmt−1) + vt

For the sequence (et, t ≥ 1), some interesting properties hold.

(i) The expected value of et is zero, since E(et) = E(E(et | Dt−1)) = 0.
(ii) The random vector et is uncorrelated with any function of Y1, . . . , Yt−1.

In particular, if s < t, then et and Ys are uncorrelated. Let Z =
g(Y1, . . . , Yt−1). Then

Cov(et, Z) = E(etZ) = E(E(etZ | Dt−1))

= E(E(Yt − ft | Dt−1)Z) = 0.

In more abstract terms, this amounts to saying that E(Yt | Dt−1) is the
orthogonal projection of Yt on the linear vector space of random variables
that are functions of Y1, . . . , Yt−1.

(iii) For s /= t, es and et are uncorrelated. This follows from 2 since, if s < t,
each component of es is a function of Y1, . . . , Yt−1.

(iv) et is a linear function of Y1, . . . , Yt−1. Since Y1, . . . , Yt−1 have a joint Gaus-
sian distribution, E(Yt | Dt−1) is a linear function of Y1, . . . , Yt−1.

(v) (et, t ≥ 1) is a Gaussian process. From 4 it follows that, for every t,
(e1, . . . , et) is a linear function of (Y1, . . . , Yt) and therefore have a Gaus-
sian distribution. As a consequence, since the et’s are uncorrelated by 3,
they are also independent. Moreover, since Yt | Dt−1 ∼ Nm(ft, Qt), one
has that et | Dt−1 ∼ Nm(0, Qt). But Qt does not depend on the data
Y1, . . . , Yt−1, and so neither does the conditional distribution Nm(0, Qt),
which must therefore be also the unconditional distribution of et:

et ∼ Nm(0, Qt), t = 1, 2, . . . .

The forecast errors et are also called innovations. The representation Yt =
ft + et justifies this terminology, since one can think of Yt as the sum of
a component which is predictable from past observations, ft, and another
component, et, which is independent of the past and therefore contains the
real new information carried by the observation Yt.

For a DLM, one sometimes works with the so-called innovation form of
the model. This is obtained by choosing as new state variables the vectors
at = E(θt|Dt−1). Then the observation equation is derived from et = Yt−ft =
Yt − Ftat:

Yt = Ftat + et (2.9)

and, being at = Gtmt−1, where mt−1 is given by the Kalman filter :

at = Gtmt−1 = Gtat−1 + GtRt−1F
′
t−1Q

−1
t−1et,

so that the new state equation is

at = Gtat−1 + w∗
t , (2.10)
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with w∗
t = GtRt−1F ′

t−1Q
−1
t−1et. The system (2.9) and (2.10) is the innovation

form of the DLM. Note that, in this form, the observation errors and the
system errors are no longer independent, that is the dynamics of the states is
no longer independent from the observations. The main advantage is that in
the innovation form all components of the state vector on which we cannot
obtain any information from the observations are automatically removed. It
is thus in some sense a minimal model.

2.5.1 Model checking

When the observations are univariate, the standardized innovations, defined
by ẽt = et/

√
Qt, are a Gaussian white noise, i.e. a sequence of independent

identically distributed zero-mean normal random variables. This property can
be exploited to check the model assumptions: if the model is correct, the se-
quence ẽ1, . . . , ẽt computed from the data should look like a sample of size t
from a standard normal distribution. Many statistical tests, several of them
readily available in R, can be carried out on the standardized innovations.
They fall into two broad categories: those aimed at checking if the distribu-
tion of the ẽt’s is standard normal, and those aimed at checking whether the
ẽt’s are uncorrelated. We will illustrate the use of some of these tests in Chap-
ter 3. However, most of the time we take a more informal approach to model
checking, based on the subjective assessment of selected diagnostic plots. The
most illuminating are, in the authors’ opinion, a QQ-plot and a plot of the em-
pirical autocorrelation function of the standardized innovations. The former
is used to assess normality, while the latter reveals departures from uncorre-
latedness. A time series plot of the standardized innovations may prove useful
in detecting outliers, change points and other unexpected patterns.

For multivariate observations we usually apply the same univariate graph-
ical diagnostic tools component-wise to the innovation sequence. A further

step would be to adopt the vector standardization ẽt = Q−1/2
t et. This makes

the components of ẽt independent and identically distributed according to
a standard normal distribution. Using this standardization, the sequence
ẽ1,1, ẽ1,2 . . . , ẽ1,p, . . . , ẽt,p should look like a sample of size tp from a univariate
standard normal distribution. This approach, however, is not very popular in
applied work and it will not be used in this book.

2.6 Limiting behavior

xxx Stability, observability, controllability... xxx
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Problems

2.1. Show that

(i) wt and (Y1, . . . , Yt−1) are independent;
(ii) wt and (θ1, . . . , θt−1) are independent;
(iii) vt and (Y1, . . . , Yt) are independent;
(iv) vt and (θ1, . . . , θt) are independent.

2.2. Show that the DLM satisfies the conditional independence assumptions
A.1 and A.2 of state space models.

2.3. Plot the following data:
(Yt, t = 1, . . . , 10) = (17, 16.6, 16.3, 16.1, 17.1, 16.9, 16.8, 17.4, 17.1, 17).

Consider the random walk plus noise model

Yt = µt + vt , vt ∼ N(0, 0.25)

µt = µt−1 + wt , wt ∼ N(0, 25)

with V = 0.25, W = 25, and µ0 ∼ N(17, 1).
(a) Compute the filtering states estimates.
(b)Compute the one-step ahead forecasts ft, t = 1, . . . , 10 and plot them,
together with the observations. Comment briefly.
(c) What is the effect of the observation variance V and of the system variance
W on the forecasts? Repeat the exercise with different choices of V and W .
(d) Compute the smoothing state estimates and plot them.

2.4. This requires maximum likelihood estimates (see chapter 4). For the data
and model of exercise 2.3, compute the maximum likelihood estimates of the
variances V and W (since these must be positive, write them as V = exp(u1),
W = exp(u2) and compute the MLE of the parameters (u1, u2)). Then repeat
exercise 2.3, using the MLE of V and W .

2.5. Repeat the exercise 2.4 with the following data....

using again a random walk plus noise model. Discuss the effects of the
choice of the initial distribution.

2.6. Let Rt,h,k = Cov(θt+h, θt+k | Dt) and Qt,h,k = Cov(Yt+h, Yt+k | Dt) for
h, k > 0, so that Rt,k,k = Rt(k) and Qt,k,k = Qt(k), according to definition
(2.8b) and (2.8d).

(i) Show that Rt,h,k can be computed recursively via the formula:

Rt,h,k = Gt+hRt,h−1,k, h > k.

(ii) Show that Qt,h,k is equal to Ft+hRt,h,kF ′
t+k.



70 2 Dynamic linear models

(iii) Find explicit formulas for Rt,h,k and Qt,h,k for the random walk plus noise
model.

2.7. Derive the filter formulae for the DLM with intercepts:

vt ∼ N (δt, Vt), wt ∼ N (λt, Wt).
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Model specification

This chapter is devoted to the description of specific classes of dynamic linear
models that, alone or in combinations, are most often used to model uni-
variate or multivariate time series. The additive structure of dynamic linear
models makes it easy, as we will show in more detail, to think of the observed
series as originating from the sum of different components, a long term trend
and a seasonal component for example, possibly subject to an observational
error. The basic models introduced in this chapter are in this view elementary
building blocks in the hands of the modeller, that has to combine them in an
appropriate way to analyze any specific data set. The focus of the chapter is
the description of the basic models together with their properties; estimation
of unknown parameters will be treated in the following chapter. For complete-
ness we include in Section 3.1 a brief review of some traditional methods used
for time series analysis. As we will see, those methods can be cast in a natural
way in the dynamic linear model framework.

3.1 Classical tools for time series analysis

3.1.1 Empirical methods

Exponentially weighted moving average

Exponentially weighted moving average (EWMA) is a traditional method used
to forecast a time series. It used to be very popular for forecasting sales and
inventory level. Suppose one has observations Y1, . . . , Yt and she is interested
in predicting Yt+1. If the series is non-seasonal and shows no systematic trend,
a reasonable predictor can be obtained as a linear combination of the past
observations in the following form:

ŷt+1|t = λ
t−1∑

j=0

(1− λ)jYt−j (0 ≤ λ < 1). (3.1)
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For t large, the weights (1 − λ)λj sum approximately to one. From an oper-
ational point of view, (3.1) implies the following updating of the forecast at
time t− 1 when the new data point Yt becomes available:

ŷt+1|t = λYt + (1− λ)ŷt|t−1,

starting from ŷ2|1 = Y1. This is also known as exponential smoothing or Holt
point predictor. It can be rewritten as

ŷt+1|t = ŷt|t−1 + λ(Yt − ŷt|t−1), (3.2)

enlightening its “forecast-error correction” structure: the point forecast for
Yt+1 is equal to the previous forecast ŷt|t−1, corrected by the forecast error
et = (Yt − ŷt|t−1) once we observe Yt. Notice the similarity between (3.2) and
the state estimate updating recursion given by the Kalman filter for the local
level model (see page 65). At time t, forecasts of future observations are taken
to be equal to the forecast of Yt+1; in other words, ŷt+k|t = ŷt+1|t, k = 1, 2, . . . ,
and the forecast function is constant.

Extensions of EWMA exist that allow for a linear forecast function. For
example, the popular Holt-Winters point predictor for non-seasonal time series
includes a trend component, decomposing Yt as the sum of a local level and
a local trend: Yt = Lt + Tt. Point forecasts are then obtained by combining
exponential smoothing forecasts of the level and the trend:

ŷt+1|t = (L̂t+1|t + T̂t+1|t),

where

L̂t+1|t = λYt + (1− λ)ŷt|t−1 = λYt + (1 − λ)(L̂t|t−1 + T̂t|t−1)

T̂t+1|t = γ(L̂t+1|t − L̂t|t−1) + (1 − γ)T̂t|t−1.

The above recursive formulae can be rewritten as

L̂t+1|t = ŷt|t−1 + λet (3.3)

T̂t+1|t = T̂t|t−1 + λγet, (3.4)

where et = Yt − ŷt|t−1 is the forecast error. Further extensions to include a
seasonal component are possible, see e.g. Chatfield (2004).

Although of some practical utility, the empirical methods described in this
subsection are not based on a probabilistic or statistical model for the observed
series, which makes it impossible to assess uncertainty (about the forecasts,
for example) using standard measures like confidence or probability intervals.
As they stand, these methods can be used as exploratory tools. They can also
be derived from an underlying dynamic linear model, which can in this case
be used to provide a theoretical justification for the method and to derive
probability intervals.
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3.1.2 ARIMA models

Among the most widely used models for time series analysis is the class of au-
toregressive moving average (ARMA) models, popularized by Box and Jenkins
(see Box et al.; 1994). For nonnegative integers p and q, a univariate stationary
ARMA(p,q) model is defined by the relation

Yt = µ +
p∑

j=1

φj(Yt−j − µ) +
q∑

j=1

ψjεt−j + εt, (3.5)

where (εt) is Gaussian white noise with variance σ2
ε and the parameters

φ1, . . . ,φp satisfy a stationarity condition. To simplify the notation, we as-
sume in what follows that µ = 0. When the data appear to be nonstationary,
one usually takes differences until stationarity is achieved, and then proceeds
fitting an ARMA model to the differenced data. A model for a process whose
d-th difference follows an ARMA(p,q) model is called an ARIMA(p,d,q). The
orders p, q can be chosen informally by looking at empirical autocorrelations
and partial autocorrelations, or using a more formal model selection criterion
like AIC or BIC. Univariate ARIMA models can be fit in R using the function
arima (see Venables and Ripley (2002) for details on ARMA analysis in R).

ARMA models for m-dimensional vector observations are formally defined
by the same formula 3.5, taking (εt) to be m-dimensional Gaussian white
noise with variance Σ2

ε and the parameters φ1, . . . ,φp and ψ1, . . . ,ψq to be
m by m matrices satisfying appropriate stationarity restrictions. Although
in principle as simple to define as for univariate data, multivariate ARMA
models are much harder to deal with than their univariate counterpart, in
particular for what concerns identifiability issues and fitting procedures. The
interested reader can find a thorough treatment of multivariate ARMA models
in Reinsel (1997). Functions for the analysis of multivariate ARMA models in
R can be found in the contributed package dse1.

It is possible to represent an ARIMA model, univariate or multivariate, as
a DLM, as we will show in 3.2.4 and 3.3.8. This may be useful for the evalua-
tion of the likelihood function. However, in spite of the fact that formally an
ARIMA model can be considered a DLM, the philosophy underlying the two
classes of models is quite different: on the one hand, ARIMA models provide a
black-box approach to data analysis, offering the possibility of forecasting fu-
ture observations, but with a very limited interpretability of the fitted model;
on the other hand, the DLM framework encourages the analyst to think in
terms of easily interpretable, albeit unobservable, processes – such as trend
and seasonal components – that drive the observed time series. Forecasting
the individul underlying components of the process, in addition to the obser-
vations, is also possible – and useful in many applications – within the DLM
framework.
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3.2 Univariate DLM for time series analysis

As we have discussed in Chapter 2, the Kalman filter provides the formulae
for estimation and prediction for a completely specified DLM, that is, a DLM
where the matrices Ft, Gt and the covariance matrices Vt and Wt are known.
In practice, however, specifying a model can be a difficult task. A general
approach that works well in practice is to imagine a time series as obtained
by combining simple elementary components, each one capturing a different
feature of the series, such as trend, seasonality, and dependence on covari-
ates (regression). Each component is represented by an individual DLM and
the different components are then combined together in a unique DLM, pro-
ducing a model for the given time series. To be precise, the components are
combined in an additive fashion; series for which a multiplicative decomposi-
tion is more appropriate can be modeled using an additive decomposition after
a log transformation. We detail below the additive decomposition technique in
the univariate case, although the same approach carries over to multivariate
time series with obvious modifications.

Consider a univariate series (Yt). One may assume that the series can be
written as the sum of independent components

Yt = Y1,t + · · · + Yh,t, (3.6)

where Yi,t might represent a trend component, Y2,t a seasonal component, and
so on. The i-th component Yi,t, i = 1, . . . , h, might be described by a DLM as
follows

Yi,t = Fi,tθi,t + vi,t, vi,t ∼ N (0, Vi,t),

θi,t = Gi,tθi,t−1 + wi,t, wi,t ∼ N (0, Wi,t),

where the (pi×1) state vectors θi,t are distinct and (Yi,t, θi,t) and (Yj,t, θj,t) are
mutually independent for all i /= j. The component DLM’s are then combined
for obtaining the DLM for (Yt). By the assumption of independence of the

components, it is easy to show that Yt =
∑h

i=1 Yi,t is described by the DLM

Yt = Ftθt + vt, vt ∼ N (0, Vt),

θt = Gtθt−1 + wt, wt ∼ N (0, Wt),

where

θt =






θ1,t
...

θh,t




 , Ft = (F1,t| · · · |Fh,t) ,

Gt and Wt are the block diagonal matrices

Gt =






G1,t

. . .
Gh,t




 , Wt =






W1,t

. . .
Wh,t




 ,
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and Vt =
∑j

i=1 Vi,t. In all this section, we assume that the covariance matrices
are known, but the analysis can be extended to the case of unknown Vt and
Wt (see Chapter 4).

In R, dlm objects are created by the functions of the family dlmMod*, or
by the general function dlm. DLMs having a common dimension of the obser-
vation vectors can be added together to produce another DLM. For example,
dlmModPoly(2) + dlmModSeas(4) adds together a linear trend and a quar-
terly seasonal component. More detailed examples will be given later in this
chapter, especially in 3.2.5. We start by introducing the families of DLM that
are commonly used as basic building blocks in the representation (3.6). In
particular, Sections 3.2.1 and 3.2.2 cover trend and seasonal models, respec-
tively. These two component models can be used to carry over to the DLM
setting the classical decomposition “trend + seasonal component + noise” of
a time series.

3.2.1 Trend models

Polynomial DLM are the models most commonly used for describing the trend
of a time series, where the trend is viewed as a smooth development of the
series over time. At time t, the expected trend of the time series can be thought
of as the expected behavior of Yt+k for k ≥ 1, given the information up to
time t; in other words, the expected trend is the forecast function ft(k) =
E(Yt+k|Dt). A polynomial model of order n is a DLM with constant matrices
Ft = F and Gt = G, known covariance matrices Vt and Wt, and a forecast
function of the form

ft(k) = E(Yt+k|Dt) = at,0 + at,1k + · · · + at,n−1k
n−1, k ≥ 0 , (3.7)

where at,0, . . . , at,n−1 are linear functions of mt = E(θt|Dt) and are indepen-
dent of k. Thus, the forecast function is a polynomial of order (n − 1) in k
(in fact, as we will see, n is the dimension of the state vector and not the
degree of the polynomial). Roughly speaking, any reasonable shape of the
forecast function can be described or closely approximated by a polynomial,
by choosing n sufficiently large. However, one usually thinks of the trend as a
fairly smooth function of time, so that in practice small values of n are used.
The most popular polynomial models are the random walk plus noise model,
which is a polynomial model of order n = 1, and the linear growth model,
that is a polynomial model of order n = 2.

The local level model

The random walk plus noise, or local level model, is defined by the two equa-
tions (2.6) of the previous chapter. As noted there, the behavior of the process
(Yt) is greatly influenced by the signal-to-noise ratio r = W/V , the ratio be-
tween the two error variances. Figure 3.2.1 shows some simulated trajectories
of (Yt) and (µt) for varying values of the ratio r (see Problem 3.1).
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Fig. 3.1. Trajectories of the random walk plus noise, for varying values of the
signal-to-noise ratio r = W/V (red µt; black Yt).

The k-steps-ahead predictive distribution for this simple model is

Yt+k|Dt ∼ N(mt, Qt(k)) , k ≥ 1 , (3.8)

where Qt(k) = Ct+
∑k

j=1 Wt+j+Vt+k = Ct+kW +V . We see that the forecast
function ft(k) = E(Yt,k|Dt) = mt is constant (as a function of k). For this
reason this model is also referred to as the steady model. The uncertainty on
the future observations is summarized by the variance Qt(k) = Ct + kW + V ,
and we clearly see that it increases as the time horizon t + k gets farer away.

The random walk plus noise model has an interesting behavior for t →
∞. Note that Kt = (Ct−1 + W )Q−1

t does not depend on the value of the
observations Y1, . . . , Yt but only on t; therefore, exploiting also the fact that
V and W are constant, one can study the limit of Kt as t → ∞. It can be
proved that

lim
t→∞

Kt =
r

2

(√

1 +
4

r
− 1

)

= K (3.9)

(see West and Harrison; 1997, Theorem 2.3). A first implication of this result
is that, for t large enough, Ct ≈ KV . This gives an upper bound to the
precision attainable in estimating the current value of µt.

Furthermore, we obtain a limit form of the one-step ahead forecasts. From
(3.8),

ft+1 = E(Yt+1|Dt) = mt = mt−1 + Kt(Yt −mt−1) = mt−1 + Ktet .

For large t, Kt ≈ K so that, asymptotically, the one-step-ahead forecast is
given by

ft+1 = mt−1 + Ket. (3.10)
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A forecast function of the kind (3.10) is used in many popular models for time
series. It corresponds to Holt point predictor, see equation (3.2).

In can be shown that Holt point predictor is optimal if (Yt) is an
ARIMA(0, 1, 1) process. In fact, the steady model has connections with the
popular ARIMA(0,1,1) model. It can be shown (problem 3.3) that, if Yt is a
random walk plus noise, then the first differences Zt = Yt−Yt−1 are stationary,
and have the same autocorrelation function as an MA(1) model. Furthermore,
being et = Yt −mt−1 and mt = mt−1 + Ktet, we have

Yt − Yt−1 = et + mt−1 − et−1 −mt−2

= et + mt−1 − et−1 −mt−1 + Kt−1et−1

= et − (1 + Kt−1)et−1 .

If t is large, so that Kt−1 ≈ K,

Yt − Yt−1 ≈ et − (1−K)et−1 ,

where the forecast errors are a white noise sequence (see Chapter 2, page 66).
Therefore, (Yt) is asymptotically an ARIMA(0,1,1) process.

Example — Annual precipitation at Lake Superior
Figure 3.2 shows annual precipitation in inches at Lake Superior, from

1900 to 19861. The series shows random fluctuations about a changing level
over time, with no remarkable trend behavior; thus, a random walk plus noise
model could be tentatively entertained. We suppose here that the evolution
variance W and the observational variance V are known and we assume that
W is much smaller (0.121) than V (9.465) (so r = 0.0128). In R a local
level model can be set up using the function dlmModPoly with first argument
order=1.

Figure 3.3(a) shows the filtering estimates mt of the underlying level of
the series and figure 3.3(b) shows the square root of the variances Ct. Recall
that for the local level model Ct has a limiting value as t approaches infinity.
The smoothed states st and square root of the variances St are plotted in
figures 3.3(c) and 3.3(d). The U -shaped behavior of the sequence of variances
St reflects the intuitive fact that the states around the middle of the time
interval spanned by the data are those that can be estimated more accurately.

The one-step ahead forecasts, for the local level model, are ft = mt−1.
The standardized one-step-ahead forecast errors, or standardized innovations,
can be computed in R with a call to the residuals function, which has a
method for dlmFiltered objects. The residuals can be inspected graphically
(Figure 3.4(a)) to check for unusually large values or unexpected patterns
– recall that the standardized innovation process has the distribution of a

1 Source: http://www-personal.buseco.monash.edu.au/~hyndman/TSDL or Hipel
and Mcleod (1994)
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Fig. 3.3. (a): Filtered state estimates mt with 90% confidence intervals; (b): Square
root of filtering variances Ct (c): Smoothed state estimates st with 90% confidence
intervals;(d): Square root of smoothing variances St

Gaussian white noise. Two additional very useful graphical tools to detect
departures from the model assumptions are the plot of the empirical autocor-
relation function (ACF) of the standardized innovations (Figure 3.4(b)) and
their normal QQ-plot (Figure 3.4(c)). These can be drawn using the standard
R functions acf and qqnorm. By looking at the plots, there does not seem to
be any meaningful departure from the model assumptions.

Formal statistical tests may also be employed to assess model assumptions
via the implied properties of the innovations. For example, Shapiro-Wilk test
can be used to test the standardized innovations for normality. It is avail-
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Fig. 3.4. (a): Standardized one-step-ahead forecast errors; (b): ACF of one-step-
ahead forecast errors (c): Normal probability plot of standardized one-step-ahead
forecast errors

able in R as shapiro.test. For the standardized innovations from the Lake
Superior precipitation data, the p-value is 0.403, so the null hypothesis of nor-
mally distributed standardized innovations cannot be rejected. Shapiro-Wilk
normality test is commonly preferred to Kolmogorov-Smirnov test, which is
also available in R as ks.test, as being more powerful against a broad range
of alternatives. R functions that perform other normality tests are available
in contributed packages fBasics and nortest. For a thorough treatment of nor-
mality tests the reader is referred to D’Agostino and Stephens (1986). To test
for lack of serial correlation one can use Ljung and Box test (Ljung and Box;
1978), which is based on the first k sample autocorrelations, for a prespecified
value of k. The test statistic is

Q(k) = n(n + 2)
k∑

j=1

ρ̂2(j)/(n− j),

where n is the sample size and ρ̂(j) is the sample autocorrelation at lag j,
defined by

ρ̂(j) =
n−j∑

t=1

(ẽt − ¯̃e)(ẽt+j − ¯̃e)
/ n∑

t=1

(ẽt − ¯̃e)2, j = 1, 2, . . . .

What Ljung-Box test effectively does is testing for the absence of serial cor-
relation up to lag k. Using k = 20, the p-value of Ljung-Box test for the
standardized innovations of the example is 0.813, confirming that the stan-
dardized innovations are uncorrelated. It is also common to compute the p-
value of Ljung-Box test for all the values of k up to a maximum, say 10 or
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20. The function tsdiag, among other things, does this calculation and plots
the resulting p-values versus k for the residuals of a fitted ARMA model. Of
course, in this case the calculated p-values should only be taken as an indi-
cation since, in addition to the asymptotic approximation of the distribution
of the test statistic for any fixed k, the issue of multiple testing would have
to be addressed if one wanted to draw a conclusion in a formal way. The dis-
play below illlustrates how to obtain in R the standardized innovations and
perform Shapiro-Wilk and Ljung-Box tests.

R code

> lakeSup <- ts(read.table("Datasets/lakeSuperior.dat", skip = 3,
2 + colClasses = "numeric")[,2], start = 1900)

> modLSup <- dlmModPoly(1, dV = 9.465, dW = 0.121)
4 > lSupFilt <- dlmFilter(lakeSup, modLSup)

> res <- residuals(lSupFilt, sd=FALSE)
6 > shapiro.test(res)

8 Shapiro-Wilk normality test

10 data: res
W = 0.9848, p-value = 0.4033

12

> Box.test(res, lag=20, type="Ljung")
14

Box-Ljung test
16

data: res
18 X-squared = 14.3379, df = 20, p-value = 0.813

20 > sapply(1:20, function(i) Box.test(res, lag=i, type="Ljung-Box")$p.value)
[1] 0.1552078 0.3565713 0.2980295 0.4508888 0.5829209 0.6718375

22 [7] 0.7590090 0.8148123 0.8682010 0.8838797 0.9215812 0.9367660
[13] 0.9143456 0.9185912 0.8924318 0.7983241 0.7855680 0.7971489

24 [19] 0.8010898 0.8129607

Exponential smoothing methods for computing the one-step forecasts (3.3)
are provided by the function HoltWinters of the Stats package. The results
for the annual precipitations in Lake Superior are plotted in figure 3.5 (here the
smoothing parameter is estimated as λ = 0.09721). We see that the steady
model has, for large t, the same forecast function as the Holt forecasting
procedure.

R code

> HWout=HoltWinters(lakeSup, gamma=0, beta=0)
2 > plot(window(lSupFilt$f, start=1901), type="l", lty =1, xlab="", ylab="")
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> lines(HWout$fitted[,1], lty=1, col="red")
4 > leg <- c("Local level model", "Holt-Winters")

> legend(1901, 32.3, legend=leg, lty = rep(1,2),col=c("black","red"), bty="n")

Linear growth model

The linear growth, or local linear trend model, is defined by (2.7). The state
vector is θt = (µt,βt)′, where µt is usually interpreted as the local level and βt

as the local growth rate. The model assumes that the current level µt changes
linearly through time and that the growth rate may also evolve. It is thus
more flexible than a global linear trend model. A good exercise, also for this
model, is to simulate trajectories of (Yt, t = 1, . . . , T ), for varying values of V
and W (see Problem 3.1).

Denoting mt−1 = (µ̂t−1, β̂t−1)′, the one step-ahead point forecasts and the
filtering state estimates are given by

at = Gmt−1 =

[
µ̂t−1 + β̂t−1

β̂t−1

]
(3.11)

ft = Ft at = µ̂t−1 + β̂t−1, (3.12)

mt =

[
µ̂t

β̂t

]
= at + Ktet =

[
µ̂t−1 + β̂t−1 + kt1et

β̂t−1 + kt2et

]
. (3.13)

The forecast function is

ft(k) = µ̂t + kβ̂t,
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(see Problem 3.6) which is a linear function of k, so the linear growth model
is a polynomial DLM of order 2.

Exploiting the fact that the variances are constant, we can study the limit
behavior of the linear growth process as t → ∞. It can be proved that the
gain matrix Kt converges to a constant vector K = (k1, k2) as t → ∞ (see
West and Harrison; 1997, Theorem 7.2) Therefore, the asymptotic updating
formulae for the state vector are given by

µ̂t = µ̂t−1 + β̂t−1 + k1 et (3.14)

β̂t = β̂t−1 + k2 et

Several popular point predictors methods use expressions of the form (3.14),
such as the Holt and Winters exponential smoothing method (compare with
(3.3)) and the Box and Jenkins’ ARIMA(0,2,2) predictor (see West and Har-
rison (1997) p. 221 for a discussion). In fact, the linear growth model is re-
lated ARIMA(0,2,2) processes. It can be shown (Problem 3.5) that the second
differences of (Yt) are stationary and have the same autocorrelation func-
tion as an MA(2) model. Furthermore, we can write the second differences
zt = Yt − 2Yt−1 + Yt−2 as

zt = et + (−2 + k1,t−1 + k2,t−1)et−1 + (1− k1,t−2)et−2 (3.15)

(see problem 3.7). For large t, k1,t ≈ k1 and k2,t ≈ k2, so that the above
expression reduces to

Yt − 2Yt−1 + Yt−2 ≈ et + ψ1et−1 + ψ2et−2

where ψ1 = −2 + k1 + k2 and ψ2 = 1 − k1, which is a MA(2) model. Thus,
asymptotically the series (Yt) is an ARIMA(0,2,2) process.

Example — Spain annual investment
Consider Spain annual investments from 1960 to 2000, plotted in Figure 3.6

(source: http://www.fgn.unisg.ch/eumacro/macrodata/macroeconomic-time-series.
html). The time series shows a roughly linear increase, or decrease, in the level,
with a slope changing every few years. In the near future it would not be un-
reasonable to predict the level of the series by linear extrapolation, i.e., using a
linear forecast function. A linear growth model could be therefore appropriate
for these data. We assume that the variances are known (they were actually
estimated) and are as follows:

W = diag(102236, 321803), V = 10.

The function dlmModPoly with argument order=2 (which is the default) can
be used to set up the model in R, see display below. Visual inspection of a
QQ-plot and ACF of the standardized innovations (not shown) do not raise
any specific concern about the appropriateness of the model. An alternative
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model (an integrated random walk model, in fact, see page 85) that describes
the data almost equally well, with one less parameter, is the linear growth
model with the same V and

W = diag(0, 515939).

R code

> mod1 <- dlmModPoly(dV = 10, dW = c(102236, 321803))
2 > mod1Filt <- dlmFilter(invSpain, mod1)

> fut1 <- dlmForecast(mod1Filt, n = 5)
4 > mod2 <- dlmModPoly(dV = 10, dW = c(0, 515939))

> mod2Filt <- dlmFilter(invSpain, mod2)
6 > fut2 <- dlmForecast(mod2Filt, n = 5)

Figure 3.6 shows, together with the data, one-step-ahead forecasts and five
years forecasts for the two models under consideration. It is clear that the
forecasts, both in sample and out of sample, produced by the two models are
very close. The standard deviations of the one-step-ahead forecasts, that can
be obtained as residuals(mod1Filt)$sd, are also fairly close, 711 for the first
model versus 718 for the second at time t = 41 (year 2000). The reader can
verify that the difference in the forecast variances (fut1$Q and fut2$Q) grows
with the number of steps ahead to be predicted. A more formal comparison
of the two models in terms of forecast accuracy can be done using the mean
absolute deviation (MAD)
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MAD =
1

n

n∑

t=1

|et|

or the mean square error (MSE)

MSE =
1

n

n∑

t=1

e2
t .

Also very common is the mean absolute percentage error (MAPE)

MAPE =
1

n

n∑

t=1

|et|
Yt

.

For the two models under consideration and the Spain investment data, none
of the two stands out as a clear winner, as the following display shows.

R code

> mean(abs(mod1Filt$f - invSpain))
2 [1] 623.5682

> mean(abs(mod2Filt$f - invSpain))
4 [1] 610.2621

> mean((mod1Filt$f - invSpain)^2)
6 [1] 655480.6

> mean((mod2Filt$f - invSpain)^2)
8 [1] 665296.7

> mean(abs(mod1Filt$f - invSpain) / invSpain)
10 [1] 0.08894788

> mean(abs(mod2Filt$f - invSpain) / invSpain)
12 [1] 0.08810524

nth order polynomial model

The general nth order polynomial model has an n-dimensional state space
and is described by the matrices

F = (1, 0, . . . , 0) (3.16)

G =






1 1 0 . . . 0
0 1 1 0 . . . 0
...

. . .
...

0 . . . 0 1 1
0 . . . 0 1






(3.17)

W = diag(W1, . . . , Wn). (3.18)
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In terms of its components, the model can be written in the form





Yt = θt,1 + vt

θt,j = θt−1,j + θt−1,j+1 + wt,j j = 1, . . . , n− 1

θt,n = θt−1,n + wt,n

(3.19)

So, for j = 2, . . . , n, the jth component of the state vector at any time t
represents, up to a random error, the increment of the (j − 1)st component
during the next time interval, while the first component represents the mean
response, or the level of the series. The forecast function, ft(k), is a polynomial
of degree n− 1 in k (Problem 3.6).

The special case that is obtained by setting W1 = · · · = Wn−1 = 0 is called
integrated random walk model. The mean response function satisfies for this
model the relation ∆nµt = εt for some white noise sequence (εt). The form
of the forecast function is again polynomial. With respect to the nth order
polynomial model, the integrated random walk model has n − 1 fewer pa-
rameters, which may improve the precision attainable in estimating unknown
parameters. On the other hand, the integrated random walk model, having
only one degree of freedom in the system noise, may be slower in adapting to
random shocks to the state vector, which reflects in a lower accuracy in the
forecasts.

3.2.2 Seasonal models

We presents two ways of modelling a time series which shows a cyclical behav-
ior, or “seasonality”: the seasonal factor model and the Fourier-form seasonal
model.

Seasonal factor models

Suppose that we have quarterly data (Yt, t = 1, 2, . . .), for examples on the
sales of a store, which show an annual cyclic behavior. Assume for brevity
that the series has zero mean: a non-zero mean, or a trend component, can
be modelled separately, so for the moment we consider the series as purely
seasonal. We might describe the series by introducing seasonal deviations from
the zero mean, expressed by different coefficients αi for the different quarters,
i = 1, . . . , 4. So, it Yt−1 refers to the first quarter of the year and Yt to the
second quarter, we assume

Yt−1 = α1 + vt−1 (3.20)

Yt = α2 + vt

and so on. This model can be written as a DLM as follows. Let θt−1 =
(α1,α4,α3,α2)′ and Ft = F = (1, 0, 0, 0). Then the observation equation
of the DLM is given by
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Yt = Fθt + vt,

which corresponds to (3.20). The state equation must “rotate” θt−1 into a
vector θt = (α2,α1,α4,α3), so that Yt = Fθt + vt = α2 + vt. The required
permutation of the state vector can be obtained by a permutation matrix G
so defined

G =






0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0




 .

Then the state equation can be written as

θt = Gθt−1 + wt = (α2,α1,α4,α3)
′ + wt.

In the static seasonal model, wt is degenerate on a vector of zeros (i.e., Wt = 0)
More generally, the seasonal effects might change in time, so that Wt is nonzero
and has to be carefully specified.

In general, a seasonal time series with period s can be modelled through
an s-dimensional state vector θt of seasonal deviations, by specifying a DLM
with F = (1, 0, . . . , 0) and G given by a s by s permutation matrix. Identifi-
ability constraints have to be imposed on the seasonal factors α1, . . . ,αs. A
common choice is to impose that they sum to zero,

∑s
j=1 αj = 0. The lin-

ear constraint on the s seasonal factors implies that there are effectively only
s−1 free seasonal factors, and this suggests an alternative, more parsimonious
representation that uses an (s− 1)-dimensional state vector. For the example
given by (3.20), one can consider θt−1 = (α1,α4,α3)′ and θt = (α2,α1,α4),
with F = (1, 0, 0). To go from θt−1 to θt, assuming for the moment a static
model without system evolution errors and using the constraint

∑4
i=1 αi = 0,

one has to apply the linear transformation given by the matrix

G =




−1 −1 −1
1 0 0
0 1 0



 .

More generally, for a seasonal model with period s, one can consider an
(s− 1)-dimensional state space, with F = (1, 0, . . . , 0) and

G =






−1 −1 . . . −1 −1
1 0 0 0
0 1 0 0

. . .
0 0 1 0






.

A dynamic variation in the seasonal components may be introduced via a
system evolution error with variance W = diag(σ2

w , 0, . . . , 0).
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Fourier form representation of seasonality

For modelling the cyclic behavior of a time series, rather than introducing
s seasonal effects (α1, . . . ,αs), a more parsimonious representation can be
obtained by using periodic functions.

A seasonal time series (Yt, t = 1, 2 . . .) might be represented as Yt = g(t−
1) + vt, where g(·) is a periodic function. We need a model for the function
g(·), which can be estimated from the data. Since any periodic function on
the real line can be approximated by a sum of harmonic functions (Fourier
sums)

g(t) ≈ a0 +
ν∑

r=1

[ar cos(ωrt) + br sin(ωrt)],

one can try to model g in this way. Moreover, when t is discrete, we have an
exact representation of a periodic function g as a sum of harmonic functions.
Let g be a periodic function on the set of nonnegative integers of period
s, and let ω = 2π/s. The behavior of g is completely determined by the
values g(0), . . . , g(s − 1); indeed, for t = ks + j (0 ≤ j < s, k ≥ o), we have
that g(t) = g(j). (For example, for monthly data with period s = 12, where
t = 0 corresponds to January, say, t = 1 to February, etc., we have that
g(0) = g(12) = g(2 · 12) = · · · , g(1) = g(12 + 1) = g(2 · 12 + 1) = · · · , and
so on). Note the relationship with the seasonal factor α1, . . . ,αs discussed in
the previous section: in fact, we may let g(0) = α1, . . . , g(s− 1) = αs.

Given the values g(0) = α1, . . . , g(s− 1) = αs, we can write the system of
s equations

g(j) = a0 +
ν∑

r=1

[ar cos(ωrj) + br sin(ωrj)], j = 0, . . . , s− 1

in the 2ν + 1 unknown variables (a0, . . . , aν , b1, . . . , bν). This system has a
unique solution if the number of unknowns is equal to the number of equations,
i.e. 2ν +1 = s. This is true if ν = 5s/26, where 5x6 denotes the largest integer
less than or equal to x. Indeed, if s is odd, ν = 5s/26 = (s − 1)/2, so that
2ν + 1 = s. For s even, ν = s/2, and we have s + 1 unknown coefficients.
However, since sin(ωνt) = 0 for every t, bν is arbitrary (although it is common
to set bν = 0), so the number of unknown coefficients is s in this case, too. The
constraint

∑s
j=1 αj = 0 is equivalent to a0 = 0 in view of the trigonometric

identities
s−1∑

j=0

cos(ωrj) = 0 and
s−1∑

j=0

cos(ωrj) = 0.

In what follows we assume without loss of generality that a0 = 0, i.e. we
assume that we are modelling a purely seasonal, zero-mean, time series.

It may seem at first that the representation of seasonality by harmonic
functions is more complicated than the use of seasonal factors. However, the
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Fourier representation usually allows for a more parsimonious representation
of real-world seasonal phenomena, compared to the one that uses seasonal
factors. The rth harmonic of g, ar cos(ωrt) + br sin(ωrt), has period s/r. For
seasonal time series having a smooth behavior, the high-frequency harmonics,
i.e. those corresponding to large values of r, are typically negligible, so one
can assume for g a Fourier representation truncated to q < ν harmonics.

Consider for example monthly data, with period s = 12. For t = 0, 12, 2×
12, . . . (January, say), we have

Yt = +
q∑

r=1

[ar cos(0) + br sin(0)] + vt =
q∑

r=0

ar + vt

and
∑q

r=1 ar = α1, say. For t = 1, 12 + 1, 2× 12 + 1, . . . (February) we have

Yt =
q∑

r=1

[ar cos(ωr) + br sin(ωr)] + vt = α2 + vt.

In general, for t = 12k + j (k = 0, 1, . . .), we have

Yt =
q∑

r=1

[ar cos(ωrj) + br sin(ωrj)] + vt = αj+1 + vt. (3.21)

The unknown parameters are the 2q parameters ar, br, r = 1, . . . , q in the
Fourier-type representation and the s parameters α0, . . . ,αs−1 in the seasonal
factor model. In general, it is enough to consider q = 1, 2, so that the Fourier
representation has 3 or 5 parameters and is more parsimonious.

We can write model (3.21) in a state-space form, as follows. Let F be a
1× 2q partitioned matrix

F =
[
1 0 | 1 0 | . . . | 1 0

]
,

and define the state vector at time t = 0 as

θ0 =
[
ψ′

1 | ψ′
2 | . . . | ψ′

q

]
,

where ψr = (ar, br)′. Define the harmonic matrix

Hr =

[
cos(ωr) sin(ωr)
− sin(ωr) cos(ωr)

]
, r = 1, . . . , q,

and let G be the 2q by 2q block diagonal matrix

G =






H1 0 0
0 H2
...

. . .
...

0 Hq






.
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Finally, let W be a 2q by 2q matrix of zeros. Then model (3.21) can be written
as

Yt = Fθt + vt, vt ∼ N (0, Vt) (3.22)

θt = Gθt−1 + wt, wt ∼ N (0, W ). (3.23)

Indeed, we have

θ1 = G θ0 =






H1ψ1
...

Hqψq






Then

Y1 = Fθ1+v1 =
(
1 0 . . . 1 0

)





H1ψ1
...

Hqψq




+v1 =

q∑

r=1

(ar cos(ωr)+br sin(ωr))+v1 .

Analogously, θ2 = Gθ1 = G2θ0. It can be shown that, for j = 1, 2, . . . , s− 1

Hj
r =

(
cos(ωrj) sin(ωrj)
− sin(ωrj) cos(ωrj)

)
,

and Ht
r = Hj

r for t = kp + j (k = 1, 2, . . .). Therefore

θ2 = G2θ0 =






H2
1ψ1
...

H2
q ψq






where

H2
r =

(
cos(ωr2) sin(ωr2)
− sin(ωr2) cos(ωr2)

)
,

so Y2 = Fθ2 + v2 = FG2θ0 + v2 =
∑q

r=1(ar cos(ωr2) + br cos(ωr2)) + v2, and
so on.

As is the case with the representation of periodic components via seasonal
factors, one may consider a dynamic version of the Fourier form representation
by defining W to be a nontrivial variance matrix, typically a nonsingular diag-
onal matrix. While the seasonal component in this case is no longer periodic,
the forecast function is, see Problem 3.8

We have noticed before that, in case s is even, the last harmonic depends
effectively on the parameter aν only and bν can be set to any value, usually
zero. In this case, if one needs to include all the harmonics in the representation
of the seasonal DLM component, i.e. q = ν, then for the last harmonic the
following modifications are needed: ψν = (aν), Hν = [−1], and the last block
of F is composed by a ’1’ only. The system matrix G has the same block
diagonal structure as before – although in this case the number of rows will
be 2q − 1 = s− 1 instead of 2q.
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The Fourier representation of periodic components described above can
also be used to model cycles whose period is less obviously related to the
frequency at which the observations are taken. In econometrics, for example,
a common application of this type is the inclusion of a DLM component
representing the business cycle. The period in this case is typically estimated.
A DLM component for this kind of cycle can be set up exactly as described
above, with ω replaced by ωc, the appropriate frequency of the cycle. The
corresponding period of the cycle is τc = 2π/ωc. Strictly speaking, in this case
one may need to sum an infinite number of harmonics to exactly represent
a function of period τc. In practice, however, only a finite number q of them
are used in the DLM, and q = 1 or q = 2 are not uncommon choices in many
applications.

3.2.3 Regression models

One of the interesting aspects in the analysis of time series by DLM is the
possibility of easily including explanatory variables in the model. For example,
family expenses Yt might depend on the income xt according to the relation-
ship

Yt = αtxt + vt, vt ∼ N (0, Vt).

The usual regression model is a special case where αt = α is constant over
time. More generally, we might want to let the coefficient αt change over time,
introducing a state equation; for example

αt = αt−1 + wt, wt ∼ N (0, Wt).

In general, the dynamic linear regression model is described by

Yt = Xtθt + vt, vt ∼ N (0, Vt)

θt = Gtθt−1 + wt, wt ∼ N (0, Wt)

where the Xt is the vector of explanatory variables for period t, Xt =
(x1,t, . . . , xr,t), which is assumed known at time t. When the elements of Xt

have the same meaning across time (e.g., for any t, x1,t is the GDP of a spe-
cific country at time t), a common choice for the evolution matrix Gt is the
identity matrix. The static regression linear model corresponds to the case
where Wt = 0 for any t, so that θt = θ is constant over time. This observation
suggests that DLM techniques may be used to sequentially update the esti-
mates of the parameters of a regression model as new observations become
available.

3.2.4 DLM representation of ARIMA models

Any ARIMA model can be expressed as a DLM. More precisely, for any
ARIMA process, it is possible to find a DLM whose measurement process
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(Yt) has the same distribution as the given ARIMA. The state space with its
dynamics is not uniquely determined: several representations have been pro-
posed in the literature and are in use. Here we will present only one of them,
which is probably the most widely used. For alternative representations the
reader can consult Gourieroux and Monfort (1997). Let us start with the sta-
tionary case. Consider the ARMA(p,q) process defined by (3.5), assuming for
simplicity that µ is zero. The defining relation can be written as

Yt =
r∑

j=1

φjYt−j +
r−1∑

j=1

ψjεt−j + εt,

with r = max{p, q + 1}, φj = 0 for j > p and ψj = 0 for j > q. Define the
matrices

F =
[
1 0 . . . 0

]
,

G =






φ1 1 0 . . . 0
φ2 0 1 . . . 0
...

...
. . .

φr−1 0 . . . 0 1
φr 0 . . . 0 0






,

R =
[
1 ψ1 . . . ψr−2 ψr−1

]′
.

(3.24)

If one introduces an r-dimensional state vector θt = (θ1,t, . . . , θr,t)′, then the
given ARMA model has the following DLM representation:

{
Yt = Fθt,

θt+1 = Gθt + Rεt.
(3.25)

This is a DLM with V = 0 and W = RR′σ2, where σ2 is the variance of the
error sequence (εt). For verifying this equivalence, note that the observation
equation gives yt = θ1,t and the state equation is

θ1,t = φ1 θ1,t−1 + θ2,t−1 + εt

θ2,t = φ2 θ1,t−1 + θ3,t−1 + ψ1εt

...

θr−1,t = φr−1 θ1,t−1 + θr,t−1 + ψr−2 εt

θr,t = φr θ1,t−1 + ψr−1 εt

Substituting the expression of θ2,t−1, obtained from the second equation, in
the first equation, we have

θ1,t = φ1θ1,t−1 + φ2θ1,t−2 + θ3,t−2 + ψ1εt−1 + εt

and proceeding by successive substitutions we eventually get
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θ1,t = φ1θ1,t−1 + · · · + φrθ1,t−r + ψ1εt−1 + · · · + ψr−1εt−r−1 + εt .

Recalling that r = max{p, q + 1} and yt = θ1,t we see that this is the ARMA
model (3.5).

Consider for example the AR(2) model

Yt = φ1Yt−1 + φ2Yt−2 + εt, εt ∼ N (0,σ2). (3.26)

Here r = p = 2 and the matrices defining the DLM representation are:

F =
[
1 0
]
, V = 0,

G =

[
φ1 1
φ2 0

]
, W =

[
σ2 0
0 0

]
.

(3.27)

On the other hand, for the ARMA(1,1) model

Yt = φ1Yt−1 + εt + ψ1εt−1, εt ∼ N (0,σ2), (3.28)

r = q + 1 = 2 and the matrices of the corresponding DLM are

F =
[
1 0
]
, V = 0,

G =

[
φ1 1
0 0

]
, W =

[
1 ψ1

ψ1 ψ2
1

]
σ2.

(3.29)

Representing an ARMA model as a DLM is useful mainly for two reasons.
The first is that an ARMA component in a DLM can explain residual auto-
correlation not accounted for by other structural components such as trend
and seasonal. The second reason is technical, and consists in the fact that the
evaluation of the likelihood function of an ARMA model can be performed
efficiently by applying the general recursion used to compute the likelihood of
a DLM.

The case of an ARIMA(p, d, q) model, with d > 0, can be derived as an
extension of the stationary case. In fact, if one considers Y ∗

t = ∆dYt, then Y ∗
t

follows a stationary ARIMA model, for which the DLM representation given
above applies. In order to model the original series (Yt) we need to be able
to recover it from the Y ∗

t and possibly other components of the state vector.
For example, if d = 1, Y ∗

t = Yt−Yt−1 and therefore Yt = Y ∗
t + Yt−1. Suppose

that Y ∗
t satisfies the AR(2) model (3.26). Then a DLM representation for Yt

is given by the system






Yt =
[
1 1 0

]
θt−1,

θt =




1 1 0
0 φ1 0
0 φ2 1



 θt−1 + wt, wt ∼ N (0, W ),
(3.30)

with
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θt =




Yt−1

Y ∗
t

φ2Y ∗
t−1



 (3.31)

and W = diag(0,σ2, 0). For a general d, set Y ∗
t = ∆dYt. It can be shown that

the following relation holds:

∆d−jYt = Y ∗
t +

j∑

i=1

∆d−iYt−1, j = 1, . . . , d. (3.32)

Define the state vector as follows:

θt =






Yt−1

∆Yt−1
...

∆d−1Yt−1

Y ∗
t

φ2Y ∗
t−1 + · · · + φrY ∗

t−r+1 + ψ1εt = · · · + ψr−1εt−r+2

φ3Y ∗
t−1 + · · · + φrY ∗

t−r+2 + ψ2εt = · · · + ψr−1εt−r+3
...

φrY ∗
t−1 + ψr−1εt






(3.33)

Note that the definition of the last components of θt follows from for-
mula (3.26). The system and observation matrices, together with the system
variance are defined by

F =
[
1 1 . . . 1 0 . . . 0

]
,

G =






1 1 . . . 1 0 . . . . . . 0
0 1 . . . 1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
. . . . 1 1 0 . . . . . . 0
0 . . . 0 φ1 1 0 . . . 0
. . . . . . . . φ2 0 1 . . . 0

...
...

...
. . .

. . . . . . . . φr−1 0 . . . 0 1
0 . . . 0 φr 0 . . . 0 0






,

R =
[
0 . . . 0 1 ψ1 . . . ψr−2 ψr−1

]′
,

W = RR′σ2.

(3.34)

With the above definition the ARIMA model for (Yt) has the DLM represen-
tation {

Yt = Fθt,

θt = Gθt−1 + wt, wt ∼ N (0, W ).
(3.35)
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Since in DLM modelling a nonstationary behavior of the observations is usu-
ally accounted for directly, through the use of a polynomial trend or a seasonal
component for example, the inclusion of nonstationary ARIMA components is
less common than that of stationary ARMA components that, as we already
mentioned, are typically used to capture correlated noise in the data.

3.2.5 Combining component models: examples

In the previous sections we have presented some common models for the differ-
ent components (trend, seasonality, regression) of a time series. These models
can be used as “building blocks” for constructing a DLM for a time series
with a more complex behavior. The additive structure of the DLM allows to
easily combine the different component models, as discussed at the beginning
of this section.

Suppose, for example, that a series Yt is the sum of a trend component
YL,t and a seasonal component YS,t:

Yt = YL,t + YS,t + vt.

We can construct a DLM for each component, so that

YL,t = FL,tθL,t

θL,t = GL,tθL,t−1 + wL,t, wL,t ∼ N (0, WL,t)

and

YS,t = FS,tθS,t

θS,t = GS,tθS,t−1 + wS,t, wS,t ∼ N (0, WS,t)

Define Ft and θt as partitioned matrices

Ft =
(
FL,t FS,t

)
, θt =

(
θL,t

θS,t

)

and G and Wt as block-diagonal matrices

Gt =

(
GL,t

GS,t

)
, Wt =

(
WL,t

WS,t

)
.

Then Yt is described by a DLM with observation equation

Yt = Ftθt + vt = FL,tθL,t + FS,tθS,t + vt, vt ∼ N (0, Vt)

and state equation

θt = Gtθt−1 + wt, wt ∼ N (0, Wt) .
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In particular, a DLM obtained by combining a linear growth model and a
seasonal component, either in the form of a seasonal factor model or a Fourier
form DLM, is known in the econometric literature as Basic Structural Model,
see Harvey (1989).

Example
Let (Yt) be a univariate time series. A linear growth model with seasonality

for (Yt) can be constructed as follows. The trend component is described by
a linear growth model, with

FL,t = (1, 0), GL,t =

(
1 1
0 1

)
, θL,t = (µt,βt)

′ .

The seasonal component is described by introducing a harmonic component,
so by a DLM with

FS,t = (1, 0), GS,t =

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)

and the general model is obtained as illustrated above.

3.3 Models for multivariate time series

Modeling multivariate time series is of course more interesting - and more
challenging - than studying univariate models, and again DLM offer a very
flexible framework for the analysis. In this section we present some basic
problems and models for multivariate time series, which of course represent
only some examples of the extremely large variety of applications of DLM for
multivariate data.

We will consider two basic types of data and problems in studying multi-
variate time series. In many applications, one has data Yt = (Y1,t, . . . , Ym,t)′

on one or more variables observed for different units; for example, Yt could be
the gross domestic product observed for m countries over time, or the income
and the expenses for a group of m families, or Yi,t could be the historical
returns of stock i, i = 1, . . . , m, etc. In these cases, the focus of interest is
typically understanding the correlation structure among the time series, in-
vestigating the possible presence of clusters etc. These aspects might be of
interest in themselves, or for improving the predictive ability of the model.

In other contexts, the data are observations on one or more variables of in-
terest Y and on some explanatory variables X1, . . . , Xk. For example, Y could
be the inflation rate and Xi relevant macroeconomic variables for a country.
We have again a multivariate time series (Yt, X1,t, . . . , Xk,t), but now the em-
phasis is on explaining or predicting the variable of interest Yt by means of
the explanatory variables Xi,t, so we are more in a regression framework. Note
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that in the regression DLM discussed in section...., the covariates were deter-
ministic (control variables) while here X1,t, . . . , Xk,t are random variables. Of
course by a joint model for (Yt, X1,t, . . . , Xk,t) one can also study feedbacks
effects and causality relations among all variables.

3.3.1 Time series of cross sectional data

Consider a multivariate time series Yt = (Y1,t, . . . , Ym,t) where the Yi,t’s are
observations of a variable Y for m different units. Of course, the simplest
approach would be to study the m series independently, specifying a univariate
model for each of them

yi,t = Fiθi,t + vi,t , vi,t ∼ N (0, Vi)

θi,t = Giθi,t−1 + wi,t , wi,t ∼ Np(0, Wi),

i = 1, . . . , m (we take Fi and Gi as time-invariant just for brevity). This
approach might give fairly good forecasts for each time series, but in predicting
Yi,t+1 say, it doesn’t exploit the information provided by the similar time series
Yj,t, j /= i. For using all the available information, clearly we want a joint
model for the m-variate process (Y1,t, . . . , Ym,t), that is we want to introduce
dependence across the time series.

With this kind of data, it can be reasonable to assume that the m time
series can be modeled using the “same” DLM, possibly with different variances
but with the same time-invariant system and observation matrices G and F ;
that is

yi,t = Fθi,t + vi,t , vi,t ∼ N (0, Vi) (3.36)

θi,t = Gθi,t−1 + wi,t , wi,t ∼ Np(0, Wi),

i = 1, . . . , m. This corresponds to the qualitative assumption that all series
follow the same type of dynamics. It also implies that the components of the
state vectors have similar interpretations across the different DLM, but they
can assume different values for each time series (Yi,t). For simplicity, suppose
for the moment that the variances Vi and Wi are known. Thus we are modeling
the processes (Yi,t)t≥1, i = 1, . . .m, as conditionally independent given the
state processes, with (Yi,t) depending only on “its” (θi,t); in particular

Y1,t, . . . , Ym,t | θ1,t, . . . , θm,t ∼
m∏

i=1

N (yi,t | Fθi,t, Vi).

Note that this assumption is similar to the framework of Section 1.1.2. A
dependence among Y1,t, . . . , Ym,t can be introduced through the joint prob-
ability law of θ1,t, . . . , θm,t. If θ1,t, . . . , θm,t are independent, then the Yi,t

for i = 1, . . . , m are independent; inference on (θi,t) only depends on (Yi,t).
Otherwise, the dependence structure of θ1,t, . . . , θm,t will be reflected in the
dependence across the time series (Yi,t). Examples are provided in the next
two sections.



3.3 Models for multivariate time series 97

3.3.2 Seemingly unrelated time series equations

Seemingly unrelated time series equations (SUTSE) are a class of models
which specify the dependence structure among the state vectors θ1,t, . . . , θm,t

as follows. As we said, the model (3.36) corresponds to the qualitative assump-
tion that all series follow the same type of dynamics, and that the components
of the state vectors have similar interpretations across the different DLMs. For
example, each series might be modeled using a linear growth model, so that for
each of them the state vector has a level and a slope component and, although
not strictly required, it is commonly assumed for simplicity that the variance
matrix of the system errors is diagonal. This means that the evolution of level
and slope is governed by independent random inputs. Clearly, the individual
DLMs can be combined to give a DLM for the multivariate observations. A
simple way of doing so is to assume that the evolution of the levels of the series
is driven by correlated inputs, and the same for the slopes. In other words,
at any fixed time, the components of the system error corresponding to the
levels of the different series may be correlated and the components of the
system error corresponding to the different slopes may be correlated as well.
To keep the model simple, we retain the assumption that levels and slopes
evolve in an uncorrelated way. This suggests to describe the joint evolution
of the state vectors by grouping together all the levels and then all the slopes
in an overall state vector θt = (µt1, . . . , µtm,βt1, . . . ,βtm)′. The system error
of the dynamics of this common state vector will then be characterized by a
block-diagonal variance matrix having a first m by m block accounting for
the correlation among levels and a second m by m block accounting for the
correlation among slopes. To be specific, suppose one has m = 2 series. Then
θt = (µt1, µt2,βt1,βt2)′ and the system equation is






µt1

µt2

βt1

βt2




 =






1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1











µt−1,1

µt−1,2

βt−1,1

βt−1,2




+






wt1

wt2

wt3

wt4




 , (3.37a)

where (wt1, wt2, wt3, wt4)′ ∼ N (0, W ) and

W =






0 0
Wµ 0 0

0 0
0 0

Wβ




 . (3.37b)

The observation equation for the bivariate time series
(
(yt1, yt2) : t ≥ 1

)
is

[
Yt1

Yt2

]
=

[
1 0 0 0
0 1 0 0

]
θt +

[
vt1

vt2

]
, (3.37c)

with (vt1, vt2)′ ∼ N (0, V ). In order to introduce a further correlation between
the series, the observation error variance V can be taken nondiagonal.
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The previous example can be extended to the general case of m univariate
time series. Let Yt denote the multivariate observation at time t, and suppose
that the ith component of Yt follows the DLM

Yti = Fθ(i)
t + vti,

θ(i)
t = Gθ(i)

t−1 + w(i)
t ,

(3.38)

with θ(i)
t = (θ(i)

t1 , . . . , θ(i)
tp )′ for i = 1, . . . , m. Then a SUTSE model for (Yt) has

the form {
Yt = (F ⊗ Im) θt + vt, vt ∼ N (0, V ),

θt = (G⊗ Im) θt−1 + wt, wt ∼ N (0, W ),
(3.39)

with θt = (θ(1)
t1 , θ(2)

t1 , . . . , θ(m−1)
tp , θ(m)

tp )′. When the w(i)
t have diagonal vari-

ances, it is common to assume for W a block-diagonal structure with p blocks
of size m. An immediate implication of the structure of the model is that

forecasts made at time t of θ(i)
t+k or Yt+k,i are based only on the distribution

of θ(i)
t given Dt.

Example — Annual Denmark and Spain investments
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Fig. 3.7. Denmark investment and Spain investment

Figure 3.7 shows the annual investment in Denmark and Spain from 1960
to 2000. From visual inspection it appears that the two series display the same
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type of qualitative behavior, that can be modeled by a linear growth DLM.
This is the model we used on page 82 for the investments in Spain series alone.
To set up a multivariate model for the two series one can combine the two
linear growth models in a comprehensive SUTSE model. This turns out to be
exactly of the form described by (3.37a)-(3.37c). There are six variances and
three covariances in the model, for a total of nine parameters that need to
be specified – or estimated from the data, as we will see in the next chapter.
It is convenient to simplify slightly the model in order to reduce the overall
number of parameters. So, for this example, we are going to assume that
the two individual linear growth models are in fact integrated random walks.
This means that in (3.37b) Wµ = 0. The MLE estimates of the remaining
parameters are

Wβ =

[
49 155
155 437266

]
, V =

[
72 1018

1018 14353

]
.

The display below shows how to set up the model in R. In doing this we start
by constructing a (univariate) linear growth model and then redefine the F
and G matrices according to (3.39), using Kronecker products (lines 4 and 5).
This approach is less subject to typing mistakes than manually entering the
individual entries of F and G. The part of the code defining the variances V
and W is straightforward.
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Fig. 3.8. Denmark investment and Spain investment

R code
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Fig. 3.9. Denmark investment and Spain investment

> invest <- ts(matrix(scan("Datasets/invest2.dat"), nc = 2, byrow = TRUE),
2 + start = 1960, names = c("Denmark", "Spain"))

> mod <- dlmModPoly(2)
4 > mod$FF <- mod$FF %x% diag(2)

> mod$GG <- mod$GG %x% diag(2)
6 > W1 <- matrix(0,2,2)

> W2 <- diag(c(49, 437266))
8 > W2[1,2] <- W2[2,1] <- 155

> mod$W <- bdiag(W1, W2)
10 > V <- diag(c(72, 14353))

> V[1,2] <- V[2,1] <- 1018
12 > mod$V <- V

> mod$m0 <- rep(0,4)
14 > mod$C0 <- diag(4) * 1e7

> investFilt <- dlmFilter(invest, mod)
16 > sdev <- residuals(investFilt)$sd

> lwr <- investFilt$f + qnorm(0.25) * sdev
18 > upr <- investFilt$f - qnorm(0.25) * sdev

The code also illustrates how to compute probability intervals for the one-
step-ahead forecasts, shown in Figures 3.8 and 3.9. Note that conditionally on
Dt−1, Yt and et have the same variance, see Section 2.5. This justifies the use
of the innovation variances in lieu of the one-step-ahead observation forecast
variances, line 16.
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3.3.3 Seemingly unrelated regression models

As an example of how the idea expressed by SUTSE can be applied to more
general DLMs than the basic structural model, we present below a multivariate
dynamic regression model.

Example — Capital Asset Pricing Model
In the Capital Asset Pricing Model (CAPM), an important asset pricing

tool in financial econometrics, one fits a linear model for the returns on a set
of assets in a small portfolio using the overall market return as a covariate.
This allows to study the behavior, in terms of risk and expected returns, of
individual assets compared to the market as a whole. The reader interested
in a deeper treatment from a financial standpoint can consult Campbell et al.
(1996), where additional references can be found; here we will illustrate a
dynamic version of the classical CAPM. Let rt = (rt1, . . . , rtm)′ be the vector
of returns on m assets during period t, and let rM

t and rf
t be the market

return and the return on a risk-free asset, respectively. Define the vector of
excess returns on the m assets as

yt =






rt1 − rf
t

...

rtm − rf
t




 .

Similarly, the excess market return is defined to be xt = rM
t −rf

t . The classical,
static, CAPM postulates that yt follows the linear model

yt = α + βxt + εt,

where α and β are m-dimensional vectors. βi measures the sensitivity of asset
i to movements of the market. A βi greater than one suggests that the asset
tends to magnify changes in the overall market return. Assets whose βi’s are
greater than one are considered aggressive investments, while those whose βi

is less than one are considered conservative investments. It seems natural to
allow the βi’s to vary in time. We can use a SUTSE type of model to describe
the phenomenon, assuming that the individual series (αti) and (βti) have a
random walk distribution. In terms of its components, we can write the model
as:

yti = αti + βtixt + vti,

αti = αt−1,i + w(i)
t1 ,

βti = βt−1,i + w(i)
t2

More concisely, in the usual DLM notation, the model can be written in the
form
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yt = (Ft ⊗ Im)θt + vt, vt ∼ N (0, V ),

θt = (G⊗ Im)θt−1 + wt, wt ∼ N (0, W ),

with yt =






yt1
...

ytm




, θt =






αt1
...

αtm

βt1
...

βtm






, vt =






vt1
...

vtm




, wt =






wt1
...

wt,2m




,

Ft =
[
1 xt

]
, G = I2, W = blockdiag(Wα, Wβ).

The data we are going to analyze for the present example are monthly returns
from January 1978 to December 1987 on the stock of Mobil, IBM, Weyer, and
Citicorp. In addition, we will use 30-day Treasury Bill as a proxy for the risk-
free asset, and a value-weighted composite monthly market return based on
all stocks listed at the New York and American Stock Exchanges to represent
the overall market return. We assume for simplicity that the αti are time-
invariant, which amounts to assuming that Wα = 0. The correlation between
the different excess returns is explained in terms of the nondiagonal variance
matrices V and Wβ , estimated from the data:

V =






41.06 0.01571 −0.9504 −2.328
0.01571 24.23 5.783 3.376
−0.9504 5.783 39.2 8.145
−2.328 3.376 8.145 39.29




 ,

Wβ =






8.153 · 10−7 −3.172 · 10−5 −4.267 · 10−5 −6.649 · 10−5

−3.172 · 10−5 0.001377 0.001852 0.002884
−4.267 · 10−5 0.001852 0.002498 0.003884
−6.649 · 10−5 0.002884 0.003884 0.006057




 .

Smoothing estimates of the βti’s, shown in Figure 3.10, can be obtained using
the code below.

R code

> tmp <- 100 * ts(read.table("Datasets/capm.dat", header=T),
2 + start=c(1978,1), frequency=12)

> y <- tmp[,1:4] - tmp[,"RKFREE"]; colnames(y) <- colnames(tmp)[1:4]
4 > market <- tmp[,"MARKET"] - tmp[,"RKFREE"]

> rm("tmp")
6 > m <- NCOL(y)

> CAPM <- dlmModReg(market)
8 > CAPM$FF <- CAPM$FF %x% diag(m)

> CAPM$GG <- CAPM$GG %x% diag(m)
10 > CAPM$JFF <- CAPM$JFF %x% diag(m)

> CAPM$W <- CAPM$W %x% matrix(0,m,m)
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12 > CAPM$W[-(1:m),-(1:m)] <- c(8.153e-07, -3.172e-05, -4.267e-05, -6.649e-05,
+ -3.172e-05, 0.001377, 0.001852, 0.002884,

14 + -4.267e-05, 0.001852, 0.002498, 0.003884,
+ -6.649e-05, 0.002884, 0.003884, 0.006057)

16 > CAPM$V <- CAPM$V %x% matrix(0,m,m)
> CAPM$V[] <- c(41.06, 0.01571, -0.9504, -2.328,

18 + 0.01571, 24.23, 5.783, 3.376,
+ -0.9504, 5.783, 39.2, 8.145,

20 + -2.328, 3.376, 8.145, 39.29)
> CAPM$m0 <- rep(0,2 * m)

22 > CAPM$C0 <- diag(1e7, nr = 2 * m)
> CAPMfilt <- dlmFilter(y, CAPM)

24 > CAPMsmooth <- dlmSmooth(CAPMfilt)
> plot(window(CAPMsmooth$s[,1:m + m], start=start(y)),

26 + plot.type=’s’, col=1 + 1:4, xlab="", ylab="Beta")
> abline(h=1, lty=2)

28 > legend("bottomright", lty=1, col=1 + 1:4, legend=colnames(y), bty=’n’)

Be
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Fig. 3.10. Estimated beta’s for four stocks

Apparently, while Mobil’s beta remained essentially constant during the pe-
riod under consideration, starting around 1980 the remaining three stocks
became less and less conservative, with Weyer and Citicorp reaching the sta-
tus of “aggressive” investments around 1984. Note in Figure 3.10 how the
estimated beta’s for the different stocks move in a clearly correlated fashion
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(with the exception of Mobil, that does not move at all) – a consequence of
the positive covariances specified in the matrix Wβ .

3.3.4 Hierarchical DLMs

Another general class of models for time series of cross-sectional data (includ-
ing panel data and longitudinal studies) is given by the so called dynamic
hierarchical models (Gamerman and Migon (1993) and references therein),
which extend to dynamic systems the hierarchical linear models introduced
by Lindley and Smith (1972).

A two-stages hierarchical DLM is specified as follows

Yt = Fy,tθt + vt, vt ∼ Nn(0, Vy,t); (3.40)

θt = Fθ,tλt + εt, εt ∼ Np1(0, Vθ,t)

λt = Gtλt−1 + wt wt ∼ Np(0, Wt),

where the disturbance sequences (vt), (εt), (wt) are independent, and the ma-
trices Fj,t are of full rank. Again, we assume that the matrices Fy,t, Fθ,t,
Gt and the covariance matrices are known, but the more realistic case where
they contain unknown parameters will be studied in chapter 4. Thus, in a
two-stages DLM the state vector θt is itself modeled by a DLM. A key aspect
is the progressive reduction in the dimension of the state parameters as the
level becomes higher, that is p1 > p.

Example. Hierarchical models can be used for allowing random effects in
DLM for multivariate time series. Suppose that Yt = (Y1,t, . . . , Yn,t)′ are ob-
servations of a variable Y for n units at time t, and Yi,t is modeled as

Yi,t = F1,tθi,t + vi,t, vt ∼ N (0, vi,t), i = 1, . . . , n.

(more generally, Yi,t may be a multivariate time series). The observation
equation for the n time series can be expressed as in (3.40), with θt =
(θ1,t, . . . , θn,t)′, Fy,t block-diagonal with blocks F1,t, εt = (ε1,t, . . . , εn,t), Vy,t

diagonal with elements (v1,t, . . . , vn,t).
For the state vectors, assume that

θi,t = F2,tλt + εi,t, εi,t ∼ N (0, Vt), independent for i = 1, . . . , n(3.41)

λt = Gλt−1 + wt, wt ∼ Np(0, Wt),

which can be easily written in the form (3.40). This specification corresponds
to an assumption of exchangeability for the state vectors (θi,t), i ≥ 1 at a given
time t, that is, the cross-sectional state vectors θ1,t, θ2,t, . . . are conditionally
i.i.d. given λt, with common distribution N (F2,tλt, Vt). In other words, we
assume the same observation equation for the individual time series Yi,t, al-
lowing however random effects in the individual state processes.

As a simple example, consider the model
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Yi,t = θi,t + vi,t, vi,t ∼ N (0, Vy,t)independent for i = 1, . . . , n

θi,t = λt + εi,t, εi,t ∼ N (0, Vθ,t)

λt = λt−1 + wt, wt ∼ N (0, Wt),

which can be used for modeling measurements over time for a collections of
units, with individual random effects. Another example are dynamic regression
models with random effects. Consider

Yi,t = x′
i,tθi,t + vi,t independent for i = 1, . . . , n.

Here, Yi,t are individual response variables, explained by the same regressors
X1, . . . , Xp with known value xi,t for unit i at time t. Again, random effects
in the regression coefficients can be modeled by assuming that, for fixed t, the
coefficients for the same regressor are exchangeable, i.e.

θi,t | λt ∼ Np(λt, V ), independent for i = 1, . . . , n.

A dynamics is then specified for (λt), e.g. λt = λt−1+wt, with wt ∼ Np(0, Wt).

One can add a further level in the model, obtaining a three-stage hierar-
chical DLM. Recursive formulae for filtering and prediction for hierarchical
DLM are given in Gamerman and Migon (1993). Landim and Gamerman
(2000) present further extensions to multivariate time series.

3.3.5 Mixtures of DLMs

In some applications, especially when we have data on a variable Y for a
large number m of units, it is of interest to explore the presence of clusters
among the time series. In general, a basic inferential tool for cluster analysis
are mixture models, and for time series one might think of using a mixture
of DLM. In Chapter 5, we will give a more detailed analysis of mixtures of
DLM, from a Bayesian nonparametric approach; here we only give the basic
ideas. We consider a DLM of the kind (3.36), where for brevity we let the
time series (Yi,t) have the same known variance Vi = V . Thus we assume for
the moment that individual random effects act on the state process only.

In many applications it is useful to think that there are k clusters, or
“species”, in the population of the time series. Cluster j is characterized by
a state process (θ∗j,t) and (p1, . . . , pk), with pj ≥ 0 and

∑k
j=1 pj = 1, are

the proportions of the k species in the population. We assume that the “typ-
ical paths” (θ∗j,t) are i.i.d. Markov processes, with common probability law
described by the state equation

θ∗j,t = Gθ∗j,t−1 + wj,t; , wj,t ∼ Np(0, W ), (3.42)

with θ∗j,0 ∼ N(m0, C0) (for simplicity, we are assuming a common covariance
matrix W , but the model could be extended to the case of different Wj). Time
series in cluster j are described by the DLM
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yi,t = Fθ∗j,t + vi,t, vi,t ∼ N (0, V ) (3.43)

θ∗j,t = Gθ∗j,t−1 + wj,t; , wj,t ∼ Np(0, W ).

It might help to think that there is some latent factor Z with values in
(1, . . . , k) which induces the clusters. That is, if Zi = j, then (Yi,t) belongs to
cluster j. Thus we can think of the data in terms of the following table

Unit Observations Latent States
factor

1 (Y1,t) Z1 (θ1,t)
...

...
...

...
i (Yi,t) Zi (θi,t)
...

...
...

...
m (Ym,t) Zm (θm,t)

Could we observe the latent factor Z, we would know the clustering structure
of the time series (Yi,t): if Zi = j, then (Yi,t) belongs to cluster j and it is
described by the DLM (3.43). With a heuristic notation, let us write

(Yi,t) | Zi = j ∼ DLM((θj,t)
∗).

In fact, the latent factor Z is not observable and we assume that, given the
weights (p1, . . . , pk),

Zi ∼
{

1 · · · k
p1 · · · pk.

Thus, again using an informal notation

(Yi,t) ∼
k∑

j=1

Pr((yi,t) | Zj = j)Pr(Zi = j) =
k∑

j=1

pjDLM((θ∗j,t)),

a mixture of DLM, with mixing weights (p1, . . . , pk).
This model provides a possible way of introducing dependence across the

time series in the framework of (3.39), focussed on clustering and shrinkage
estimation. In fact, from the previous assumptions it follows that each indi-
vidual state process (θi,t) in (3.36) can be equal to one of the “typical paths”
(θ∗1,t), . . . , (θ

∗
k,t); more precisely we have (θi,t) = (θ∗j,t) with probability pj ,

j = 1, . . . , k. In other words, (θ1,t), . . . , (θm,t) are a sample from a discrete la-
tent distribution, P say, which gives probability mass pj to the process (θ∗j,t),
j = 1, . . . , k; in formulas

(θ1,t), . . . , (θm,t) | P =

{
(θ∗1,t) · · · (θ∗k,t)
p1 · · · pk

i.i.d.∼ P.

Note that the individual state processes (θ1,t), . . . , (θm,t) are independent only
conditionally on the latent distribution P . As we shall see in section.. of chap-
ter 4, in Bayesian inference the mixing distribution P is random and one
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has to assign a prior probability law on it. We have already assumed that
the support points (θ∗1,t), . . . , (θ

∗
k,t) of P are i.i.d. Markov processes, described

by (3.42), and the prior is usually completed by assuming that the unknown
weights (p1, . . . , pk) have a Dirichlet distribution, independent if the (θ∗j,t)’s.
The equivalence between the model formulated in terms of the latent factor
Z or in the mixing distribution P is given by letting (θi,t) = (θ∗j,t) if and only
if Zi = j. Bayesian inference on the clustering structure of the data is then
carried out by computing (by MCMC) the posterior probability law of the
mixing distribution, as we shall see in section.... of Chapter 5.

3.3.6 Dynamic regression

Suppose we want to study the dependence of a variable Y on one or more
explanatory variables X , and to this aim at times t = 1, 2, . . ., we collect the
values Yi,t = Yt(xi) of Y at different values x1, . . . , xm of X . Thus we have a
time series of cross sectional data of the kind ((Yi,t, xi), i = 1, . . . , m), t ≥ 1;
note that the xi are deterministic, while the Yi,t are random. For example,
in financial applications, Yi,t might be the price at time t of a zero coupon
bond which gives one euro at time-to-maturity xi. At each time t, we observe
the prices Yt = (Y1,t, . . . , Ym,t)′ of bonds with times-to-maturity x1, . . . , xm

respectively. Data of this kind are plotted in Figure 3.11.
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Fig. 3.11. Euribor....... Cross-sectional data (1 to 12 months to maturity), and the
12 time series from 05/16/2005 to 05/16/2007. Source: ...................

Here we have two problems. On one hand, we want to estimate the regres-
sion function of Yt on X , that is mt(x) = E(Yt | x), using the cross-sectional
data at time t. This is clearly of interest for understanding the relation be-
tween Y and x or for estimating Y for a new value of x (interpolation), and
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so on. On the other hand, we have m time series (Yi,t), and the interest might
be in studying their temporal evolution. A simple approach could be using a
univariate time series model for each of them, or a multivariate model, for pre-
dicting Yi,t+1 given the data up to time t. This approach might have a fairly
good predictive performance but treats (Y1,t, . . . , Ym,t) as a random vector,
forgetting that they are observations for different values of X and “should
lie” on the regression curve mt(x). In fact, estimating the dynamics of the
regression curve is often one main objective of the analysis.

For considering both aspects of the problem, that is the cross-sectional
and the time series nature of the data, the proposal in this section is a (non-
parametric) dynamic regression model, written in the form of DLM.

Suppose for brevity that X is univariate. Flexible (nonparametric) cross-
sectional models for the regression function are often obtained by expressing
it through some expansion of the kind

mt(x) = E(Y | x) =
k∑

j=1

βj,t hj(x) (3.44)

where hj(x) are given basis functions (e.g. powers of x: mt(x) =
∑∞

j=1 βj,txj ,
trigonometric functions, wavelets, etc.) and βt = (β1,t, . . . ,βk,t)′ a vector of
coefficients. Roughly speaking, the idea is that the model is flexible since for
k large enough (in principle, k → ∞) it can approximate any interesting
shape of the function mt(x) (for example, any continuous function on a closed
interval can be approximated by polynomials). Models of the kind (3.44) are
nevertheless simple since they are still linear in the parameters βj,t; at a given
time t, we have an observation equation

Yt = Fβt + vt, vt ∼ N (0,σ2Im)

where

Yt =
(

Y1,t

... Ym,t

)
, F =






h1(x1) . . . hk(x1)
...

...
h1(xm) . . . hk(xm)




 , β0 =

(
β1,t

... βk,t

)
,

and βt can be estimates by least squares.
Suppose now that the regression curve evolves over time. Clearly, day-by-

day cross-sectional estimates do not give a complete picture of the problem.
We might have information on the dynamics of the curve that we want to
include in the analysis. Note that modeling the dynamics of the curve mt(x)
is not simple at first, since the curve is infinite-dimensional. However, having
expressed mt(x) as in (3.44), its temporal evolution can be described by the
dynamics of the finite-dimensional vector of coefficients (β1,t, . . . ,βk,t).

Thus we obtain a dynamic regression model in the form of a DLM

Yt = Fβt + vt, vt ∼ Nm(0,σ2Im)

βt = Gβt−1 + wt, wt ∼ Nk(0, Wt).
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The state equation expresses the temporal evolution of the regression function.
A simple specification assumes that βj,t are independent random walks or
AR(1) processes; or that, jointly, βt is a VAR processes. A word of caution is
however worth; the state equation introduces additional information but also
constraints on the dynamics of the curve, so it is delicate: a poor specification
of the dynamics may result in an unsatisfactory fit of the data.

Example — Estimating the term structure of interest rates
A relevant problem in financial applications is estimating the term struc-

ture of interest rates. Let Pt(x) be the price at time t of a zero-coupon bond
which gives 1 euro at time to maturity x. The curve Pt(x), x ∈ (0, t), is called
discount function. Other curves of interest are obtained as one-by-one transfor-
mations of the discount function; the yield curve is γt(x) = − log Pt(x)/x, and
the instantaneous (nominal) forward rate curve is ft(x) = d(− log Pt(x)/dx) =
(dPt(x)/dx)/Pt(x). The yield curve, or one of its transformations, allows to
price any coupon bond as the sum of the present values of future coupon
and principal payments. Clearly, the whole curve cannot be observed, but
we can estimate it from the bond prices observed for a finite number of
times-to-maturity, x1, . . . , xm say. More precisely, at time t we have data
(yi,t, xi), i = 1, . . . , m), where yi,t is the observed yield corresponding to time-
to-maturity xi. Due to market frictions, the observed yields do not lie exactly
on the yield curve but we assume that

yi,t = γt(xi) + vi,t, vi,t
indep∼ N (0,σ2), i = 1, . . . , m.

Several cross sectional models for the yield curve have been proposed in the
literature. One of the most popular is the Nelson and Siegel (1987) model. In
fact, Nelson and Siegel model the forward rate curve as

ft(x) = β1,t + β2,te
−λx + β3,tλx e−λx,

(which is a Laguerre polynomial), from which the yield curve can be obtained
as

γt(x) = β1,t + β2,t
1− e−λx

λx
+ β3,t

(
1− e−λx

λx
− e−λx

)
.

This model is not linear in the parameters (β1,t,β2,t,β3,t,λ); however the
decay parameter λ is usually approximated with a fixed value (Diebold and
Li; 2006, see for example), so that the model is more simply treated as a linear
model in the unknown parameters (β1,t,β2,t,β3,t). Thus, for a fixed value of
λ, the model is of the form (3.44), with k = 3 and

h1(x) = 1, h2(x) =
1− e−λx

λx
, h3(x) =

(
1− e−λx

λx
− e−λx

)
.

In the literature, Nelson and Siegel model is also regarded as a latent factor
model (see Section 3.3.7), with β1,t,β2,t,β3,t playing the role of latent dynamic
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factors (long-term, short-term and medium-term factors), also interpreted in
terms of level, slope and curvature of the yield curve. In these terms, λ de-
termines the maturity at which the loading on the medium-term factor, or
curvature, achieves it maximum (so, for example, Diebold and Li (2006) con-
sider 30-months maturity and fix λ = 0.0609). Cross-sectional estimates at a
given time t can be obtained by ordinary least squares. However, as discussed
above, we can also obtain dynamic estimates of the yield curve, adding a state
equation for βt = β1,t,β2,t,β3,t. For example, Diebold et al. (2006) consider a
VAR(1) dynamics for βt where

βt = Aβt−1 + wt wt ∼ N (0, W ),

also studying the effects of macroeconomic variables. More refined dynamics
take into account the constraints imposed on the yield curve evolution by the
no-arbitrage restrictions; see e.g. Petrone and Corielli (2005).

3.3.7 Common factors

Sometimes it is conceptually useful to think of a number of observed series as
driven by a small number of common factors. This is a common approach for
example in economics, where one assumes that many observable series reflect
the current state of the economy, which in turn can be expressed as a lower
dimensional unobservable time series. For example, suppose that m observed
series depend linearly on p (p < m) correlated random walks. The model can
be written as

Yt = Aµt + vt vt ∼ N (0, V ), (3.45)

µt = µt−1 + wt wt ∼ N (0, W ), (3.46)

where A is a fixed m by p matrix of factor loadings. The model can be seen
as a dynamic generalization of factor analysis, where the common factors µt

evolve with time. Note that (3.45) is nothing else than a DLM, with θt = µt

and Ft = A. One important difference with other DLMs that we have seen in
this chapter is that here p < m, i.e., the state has a lower dimension than the
observation. In addition, the system matrix A does not have any particular
structure. As in standard factor analysis, in order to achieve identifiability of
the unknown parameters, some constraints have to be imposed. In fact, if H is
a p by p invertible matrix, defining µ̃t = Hµt and Ã = AH−1 and multiplying
the second equation in (3.45) on the left by H , we obtain the equivalent model

Yt = Ãµ̃t + vt vt ∼ N (0, V ),

µ̃t = µ̃t−1 + w̃t w̃t ∼ N (0, HWH ′).

Since A and W contain mp and 1
2p(p + 1) parameters, respectively, but each

combination of parameters belongs to a manifold of dimension p2 (the number
of elements of H) of equivalent models, the effective number of free parameters
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(not including those in V ) is mp − 1
2p(p − 1). One way to parametrize the

model and achieve identifiability is to set W equal to the identity matrix, and
to impose that the (i, j) element of A, Ai,j , is zero for j > i. Since A is m by
p, with p < m, this means that A can be written as a partitioned matrix as

A =

[
T
B

]
,

with T p by p lower triangular, and B an m − p by p rectangular matrix.
This clearly shows that with this parametrization there are only 1

2p(p + 1) +
p(m − p) = mp − 1

2p(p − 1) parameters, which is exactly the number of free
parameters of the unrestricted model. An alternative parametrization that
achieves identifiability is obtained by assuming that W is a diagonal matrix,
that Ai,i = 1 and Ai,j = 0 for j > i.

The model expressed by (3.45) is related to the notion of co-integrated
series, introduced by Granger (1981) (see also Engle and Granger (1987)).
The components of a vector time series xt are said to be co-integrated of
order d, b, written xt ∼ CI(d, b), if (i) all the components of xt are integrated

of order d (i.e. ∆dx(i)
t is stationary for any i), and (ii) there exists a nonzero

vector α such that α′xt is integrated of order d − b < d. The components of
Yt in (3.45), as linear combinations of independent random walks (assuming
for simplicity that the components of µ0 are independent), are integrated
of order 1. The columns of A are p vectors in Rm, hence there are at least
m − p other linearly independent vectors in Rm that are orthogonal to the
columns of A. For any such α we have α′A = 0 and therefore α′Yt = α′vt,
i.e. α′Yt is stationary – in fact, white noise. This shows that Yt ∼ CI(1, 1).
In a model where the common factors are stochastic linear trends instead of
random walks, one can see that the observable series are CI(2, 2) .

Other DLM components that are commonly used as common factors in-
clude seasonal components and cycles, especially in economic applications.
Further details on common factor models can be found in Harvey (1989).

3.3.8 Multivariate ARMA models

ARMA models for multivariate, m-dimensional, observations, are formally
defined as in the univariate case, through the recursive relation

Yt =
p∑

j=1

ΦjYt−j + εt +
q∑

j=1

Ψjεt−j , (3.47)

where (εt) is an m-variate Gaussian white noise sequence with variance Σ
and the Φj and Ψj are m by m matrices. Here, without loss of generality, we
have taken the mean of the process to be zero. In order for (3.47) to define a
stationary process, all the roots of the complex polynomial

det(I − Φ1z − · · ·− Φpz
p) (3.48)
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must lie outside the unit disk. A DLM representation of a multivariate ARMA
process can be formally obtained by a simple generalization of the represen-
tation given for univariate ARMA processes. Namely, in the G matrix each
φj needs to be replaced by a block containing the matrix Φj ; similarly for the
ψj in the matrix R, that have to be replaced by Ψj blocks. Finally, all the
occurrences of a “one” in F , G, and R must be replaced by the identity matrix
of order m, and all the occurrences of a “zero” with a block of zeroes of order
m by m. For example, let us consider the bivariate ARMA(2,1) process

Yt = Φ1Yt−1 + Φ2Yt−2 + εt + Ψ1εt−1, εt ∼ N (0,Σ), (3.49)

with

Ψ1 =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
, Φi =

[
Φ11,i Φ12,i

Φ21,i Φ22,i

]
, i = 1, 2. (3.50)

Then the system and observation matrices needed to define the DLM repre-
sentation of (3.49) are the following:

F =

[
1 0 0 0
0 1 0 0

]
,

G =






Φ11,1 Φ12,1 1 0
Φ21,1 Φ22,1 0 1
Φ11,2 Φ12,2 0 0
Φ21,2 Φ22,2 0 0




 ,

R =






1 0
0 1

Ψ11 Ψ12

Ψ21 Ψ22




 , W = RΣR′.

(3.51)

In R, the function dlmModARMA can be used to create a DLM representation
of an ARMA model also in the multivariate case.

For a detailed treatment of multivariate ARMA models the reader can
consult Reinsel (1997) and Lütkepohl (2005). In fact, multivariate ARMA
models can be difficult to interpret and most popular are vector autoregressive
models (VAR), which we discuss briefly in the next subsection.

3.3.9 Vector autoregressive models

Vector autoregressive models (VAR) are widely used especially in economet-
rics; a comprehensive treatment is given by Lütkepohl (2005) and Bayesian
VAR are discussed e.g. by Canova (2007). A VAR model of order p is a special
case of (3.47), defined by

yt = ν + Φ1yt−1 + · · · + Φpyt− p + εt,
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where (εt) is a (Gaussian) white noise, εt ∼ Nm(0,Σ) and E(utu′
s) = 0 for

t /= s. The VAR(p) process is stationary if its reverse characteristic polynomial

det(Im − Φ1z − · · ·− Φpz
p)

has no roots outside the unit circle (more precisely, this is a condition for
stability of the VAR(p) process, but it can be proved that it implies that (yt)
is stationary). In econometrics, VAR models are widely used for forecasting
but also for structural analysis, that is for exploring the relationships between
groups of economic variables. Suppose that yt is partitioned in a group of k
variables xt and (m−k) variables zt. The VAR(p) model for yt = (x′

t, z
′
t)

′ pro-
vides the joint probability law of all the variables involved and the covariance
matrix Σ of yt summarizes the correlation structure among them. In principle,
from the joint distribution of the process (yt, t ≥ 1) all the conditional distribu-
tions can be computed, in particular the predictive density p(yt+1|y1, . . . , yt),
or the conditional predictive density p(zt+1|xt+1, y1, . . . , yt), and point or in-
terval forecasts can be obtained as synthesis of the predictive densities or,
more formally, with respect to a loss function. We will provide an example of
forecasting with a VAR model in Chapter 5, in a Bayesian framework.

In practice, economists are also interested in exploring causality relation-
ships: that is, from estimation of the joint model for (yt), one would like to
study what are the effects of the variables xt, say, on the variables zt. There are
several ways of interpreting this problem (Granger causality, impulse-response
functions, forecast error variance decomposition) but a discussion is beyond
our scope here; see e.g. Lütkepohl (2005) and references therein. We only note
that these studies are affected by identifiability issues, so that causality re-
lationships or impulse-response functions are not uniquely defined. In fact,
VAR are reduced form models which capture the dynamic properties of the
variables and are useful for forecasting, but for exploring the structural rela-
tionships they are often insufficient because different economic theories may be
compatible with the same statistical reduced form models. Prior information
and constraints have to be included for identifying the relevant innovations
and impulse-response; the resulting models are referred as structural VAR;
see e.g. Amisano and Giannini (1997). As we will illustrate in Chapter 5, the
Bayesian approach reveals several advantages in these problems and Bayesian
VAR models have become increasingly popular in econometrics and in many
other applications.
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Problems

3.1. Simulate patterns of the random walk plus noise model for varying values
of V and W .

3.2. Show that, for the local level model, limt→∞ Ct = KV , where K is defined
by (3.9).

3.3. Let (Yt, t = 1, 2, . . .) be described by a random walk plus noise model.
Show that the first differences Zt = Yt − Yt−1 are stationary and have the
same autocorrelation function of a MA(1) process.

3.4. Simulate patterns of the linear growth model for varying values of V and
W1, W2.

3.5. Let (Yt, t = 1, 2, . . .) be described by a linear growth model. Show that
the second differences Zt = Yt − 2Yt−1 + Yt−2 are stationary and have the
same autocorrelation function of a MA(2) process.

3.6. Show that the forecast function for the polynomial model of order n is
polynomial of order n− 1.

3.7. Verify that the second differences of (Yt) for a linear growth model can
be written in terms of the innovations as in (3.15).

Solution From the identity et = Yt − (µ̂t−1 + β̂t−1) and the expressions of mt

in (3.11), we can write the second differences zt = Yt − 2Yt−1 + Yt−2 as

zt = µ̂t−1 + β̂t−1 + et − 2(µ̂t−2 + β̂t−2)− 2et−1 + µ̂t−3 + β̂t−3 + et−2

= µ̂t − k1,tet + et − 2µ̂t−1 + 2k1,t−1et−1 − 2et−1 + µ̂t−2 − k1,t−2et−2 + et−2

= β̂t−1 − β̂t−2 + et + k1,t−1et−1 − 2et−1 − k1,t−2et−2 + et−2

= et + (−2 + k1,t−1 + k2,t−1)et−1 + (1− k1,t−2)et−2

For large t, k1,t ≈ k1 and k2,t ≈ k2, so that the above expression reduces to

Yt − 2Yt−1 + Yt−2 ≈ et + ψ1et−1 + ψ2et−2

where ψ1 = −2 + k1 + k2 and ψ2 = 1− k1, which is a MA(2) model.

3.8. Show that the DLM (3.22) has a periodic forecast function, even when
W is a general variance matrix.

3.9. (ARMA models). — qualche esercizio anche di analisi standard - f di
autocoorelazione ect., con R - dai lab di Giovanni e mio.... Confronto con
stima ARIMA e con dlm? anche se qui non parliamo di stima?

3.10. Prove (3.32).

3.11. (VAR models). Simulate and draw paths of a stationary bivariate
VAR(1) process. Compare with paths of a nonstationary VAR(p) process.
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Models with unknown parameters

In the previous chapters we presented some basic DLM for time series analysis,
assuming that the system matrices Ft, Gt, Vt and Wt were known, with the
aim of understanding their behavior and general properties. In fact, in time
series applications the matrices in the DLM are very rarely completely known.
In this chapter we let the model matrices depend on a vector of unknown
parameters ψ. We will consider examples where ψ is constant over time, or it
has a temporal evolution/random fluctuations. The dynamics of ψ is anyway
such to maintain the linear, Gaussian structure of the DLM. In chapter 5,
we will see examples where more general dynamics are introduced on the
unknown parameters, which are then treated as latent states in the more
general framework of state space models.

In a classical framework one typically starts by estimating ψ, usually by
maximum likelihood. If the researcher is only interested in the unknown pa-
rameters, the analysis terminates here; if, on the other hand, he is interested
in smoothing or forecasting the values of the observed series or those of the
state vectors, the customary way to proceed is to use the estimated value of ψ
as if it were a known constant, and apply the relevant techniques of Chapter
2 for forecasting or smoothing.

From a Bayesian standpoint unknown parameters are instead random vari-
ables, as we discussed in Chapter 1: therefore, in the context of DLM, the
posterior distribution of interest is the joint conditional distribution of the
state vectors – or of future measurements – and the unknown parameter ψ,
given the observations. As we shall see, Bayesian inference, even if simple
in principle, involves computations that are usually not analytically manage-
able; however, Markov chain Monte Carlo and modern sequential Monte Carlo
methods can be quite efficient in providing an approximation of the posterior
distributions of interest.

In Section 4.1 we discuss Maximum Likelihood estimation of an unknown
parameter occurring in the specification of a DLM, while the rest of the chap-
ter is devoted to Bayesian inference.
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4.1 Maximum likelihood estimation

Suppose that we have n random vectors, Y1, . . . , Yn, whose distribution de-
pends on an unknown parameter ψ. We will denote the joint density of the
observations for a particular value of the parameter, by p(y1, . . . , yn;ψ). The
likelihood function is defined to be, up to a constant factor, the probability
density of the observed data read as a function of ψ, i.e., denoting the like-
lihood by L, we can write L(ψ) = const. · p(y1, . . . , yn;ψ). For a DLM it is
convenient to write the joint density of the observations in the form

p(y1, . . . , yn;ψ) =
n∏

t=1

p(yt|Dt−1;ψ), (4.1)

where p(yt|Dt−1;ψ) is the conditional density of yt given the data up to time
t− 1, assuming that ψ is the value of the unknown parameter. We know from
Chapter 2 that the terms occurring in the RHS of (4.1) are Gaussian densities
with mean ft and variance Qt. Therefore we can write the loglikelihood as

9(ψ) = −1

2

n∑

t=1

log |Qt|−
1

2

n∑

t=1

(yt − ft)
′Q−1

t (yt − ft), (4.2)

where the ft and the Qt depend implicitely on ψ. The expression (4.2) can be
numerically maximized to obtain the maximum likelihood estimator (MLE)
of ψ:

ψ̂ = argmax
ψ

9(ψ). (4.3)

Denote by H the Hessian matrix of −9(ψ), evaluated at ψ = ψ̂. The matrix
H−1 provides an estimate of the variance of the MLE, Var(ψ̂). Conditions
for consistency as well as asymptotic normality of the MLE can be found in
Caines (1988) and Hannan and Deistler (1988). See also Shumway and Stoffer
(2000) for an introduction. For most of the commonly used DLM, however,
the usual consistency and asymptotic normality properties of MLE hold.

A word of caution about numerical optimization is in order. The likeli-
hood function for a DLM may present many local maxima. This implies that
starting the optimization routine from different starting points may lead to
different maxima. It is therefore a good idea to start the optimizer several
times from different starting values and compare the corresponding maxima.
A rather flat likelihood is another problem that one may face when looking
for a MLE. In this case the optimizer, starting from different initial values,
may end up at very different points corresponding to almost the same value
of the likelihood. The estimated variance of the MLE will typically be very
large. This is a signal that the model is not well identifiable. The solution is
usually to simplify the model, eliminating some of the parameters, especially
when one is interested in making inference and interpreting the parameters
themselves. On the other hand, if smoothing or forcasting is the focus, then
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sometimes even a model which is not well identified in terms of its parameters
may produce good results.

R provides an extremely powerful optimizer with the function optim, which
is used inside the function dlmMLE in package dlm. In the optimization world
it is customary to minimize functions, and optim is no ecception: by default it
seeks a minimum. Statisticians too, when looking for an MLE, tend to think
in terms of minimizing the negative loglikelihood. In line with this point of
view, the function dlmLL returns the negative loglikelihood of a specified DLM,
for a given data set. In terms of the parameter ψ occurring in the definition
of the DLM of interest, one can think of minimizing the compound function
obtained in two steps by building a DLM first, and then evaluating its negative
loglikelihood, as a function of the matrices defining it. A suggestive graphical
representation is the following:

ψ
build
=⇒ DLM

loglik.
=⇒ −9(ψ).

That is exacly what dlmMLE does: it takes a user-defined function build that
creates a DLM, defines a new function by composing it with dlmLL, and
passes the result to optim for the actual minimization. Consider for example
the annual precipitation data for Lake Superior. By plotting the data (see
???), it seems that a polynomial model of order one can provide an adequate
description of the phenomenon. The code below shows how to find the MLE
of V and W .

R code

> y <- ts(as.matrix(read.table("Datasets/lakeSuperior.dat",
2 + skip=3))[,2],start=c(1900,1))

> build <- function(parm) {
4 + dlmModPoly(order=1, dV=exp(parm[1]), dW=exp(parm[2]))

+ }
6 > fit <- dlmMLE(y, rep(0,2), build)

> fit$convergence
8 [1] 0

> unlist(build(fit$par)[c("V","W")])
10 V W

9.4654447 0.1211534

We have parametrized the two unknown variances in terms of their log, so
as to avoid problems in case the optimizer went on to examine negative val-
ues of the parameters. The value returned by dlmMLE is the list returned by
the call to optim. In particular, the component convergenge needs always
to be checked: a nonzero value signals that convergence to a minimum has
not been achieved. dlmMLE has a ... argument that can be used to provide
additional named arguments to optim. For example, a call to optim including
the argument hessian=TRUE forces optim to return a numerically evaluated
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Hessian at the minimum. This can be used to estimate standard errors of the
components of the MLE, or more generally its estimated variance matrix, as
detailed above. In the previous example we parametrized the model in terms
of ψ = (log(V ), log(W )), so that standard errors estimated from the Hessian
refer to the MLE of these parameters. In order to get standard errors for the
MLE of V and W , one can apply the delta method. Let us recall the gen-
eral multivariate form of the delta method. Suppose that ψ is h-dimensional,
and g : Rh → Rk is a function which has continuous first derivatives. Write
g(ψ) = (g1(ψ), . . . , gk(ψ)) for any ψ = (ψ1, . . . ,ψh) ∈ Rh, and define the
derivative of g to be the k by h matrix

Dg =






∂g1

∂ψ1
. . .

∂g1

∂ψh
. . . . . . . . . . . .
∂gk

∂ψ1
. . .

∂gk

∂ψh






, (4.4)

that is, the ith row of Dg is the gradient of gi. If Σ̂ is the estimated variance
matrix of the MLE ψ̂, then the MLE of g(ψ) is g(ψ̂), and its estimated variance
is Dg(ψ̂)Σ̂Dg(ψ̂)′. In the example, g(ψ) = (exp(ψ1), exp(ψ2)), so that

Dg(ψ) =

[
exp(ψ1) 0

0 exp(ψ2)

]
. (4.5)

We can use the Hessian of the negative loglikelihood at the minimum and the
delta method to compute in R standard errors of the estimated variances, as
the code below shows.

R code

> fit <- dlmMLE(y, rep(0,2), build, hessian=TRUE)
2 > avarLog <- solve(fit$hessian)

> avar <- diag(exp(fit$par)) %*% avarLog %*%
4 + diag(exp(fit$par)) # Delta method

> sqrt(diag(avar)) # estimated standard errors
6 [1] 1.5059107 0.1032439

As an alternative to using the delta method, one can numerically compute the
Hessian of the loglikelihood, expressed as a function of the new parameters
g(ψ), at g(ψ̂). The recommended package nlme provides the function fdHess,
that we put to use in the following piece of code.

R code

> avar1 <- solve(fdHess(exp(fit$par), function(x)
2 + dlmLL(y,build(log(x))))$Hessian)

> sqrt(diag(avar1))
4 [1] 1.5059616 0.1032148 # estimated standard errors
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In this example one could parametrize the model in terms of V and W , and
then use the Hessian returned by dlmMLE to compute the estimated standard
errors directly. In this case, however, one needs to be careful about the natural
restriction of the parameter space, and provide a lower bound for the two
variances. Note that the default optimization method, L-BFGS-B, is the only
method that accepts restrictions on the parameter space, expressed as bounds
on the components of the parameter. In the following code, the lower bound
10−6 for V reflects the fact that the functions in dlm require the matrix V
to be nonsingular. On the scale of the data, however, 10−6 can be considered
zero for all practical purposes.

R code

> build <- function(parm) {
2 + dlmModPoly(order=1, dV=parm[1], dW=parm[2])

+ }
4 > fit <- dlmMLE(y, rep(0.23,2), build, lower=c(1e-6,0), hessian=T)

> fit$convergence
6 [1] 0

> unlist(build(fit$par)[c("V","W")])
8 V W

9.4654065 0.1211562
10 > avar <- solve(fit$hessian)

> sqrt(diag(avar))
12 [1] 1.5059015 0.1032355

Finally, let us mention the function StructTS, in base R. This function
can be used to find MLE for the variances occurring in some particular uni-
variate DLM. The argument type selects the model to use. The available
models are the first order polynomial model (type="level"), the second or-
der polynomial model (type="trend"), and a second order polynomial model
plus a seasonal component (type="BSM"). Standard errors are not returned
by StructTS, nor are easy to compute from its output.

R code

> StructTS(y,"level")
2

Call:
4 StructTS(x = y, type = "level")

6 Variances:
level epsilon

8 0.1212 9.4654
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4.2 Bayesian inference

The common practice of using the MLE’s ψ̂ as if they were the true values
of the parameters in applying the filtering and smoothing recursions clearly
suffers of the difficulties in taking properly into account the uncertainty about
ψ. The Bayesian approach offers a more consistent formulation of the problem.
The unknown parameters ψ are regarded as a random vector. The general
hypotheses of state space models for the processes (Yt) and (θt) (assumptions
A.1 and A.2 on page 40) are assumed to hold conditionally on the parameters
ψ. Prior knowledge about ψ is expressed through a probability law π(ψ). Thus,
for any n ≥ 1, we assume that

(θ0, θ1, . . . , θn, Y1, . . . , Yn,ψ) ∼ π(θ0|ψ)p(ψ)
n∏

t=1

f(Yt|θt,ψ)π(θt|θt−1,ψ)

(4.6)
(compare with (2.3)). Given the data Dt = (y1, . . . , yt), inference on the un-
known states and parameters is solved by computing the posterior distribution

π(θs,ψ|Dt) = π(θ|ψ,Dt)π(ψ|Dt)

(marginal posterior; as usual, with s = t for filtering, s > t for state pre-
diction, s < t for smoothing problems), or the joint posterior distribution of
the unknown state history up to time t and of the unknown parameter ψ. It
is convenient to use the notation θ0:t for denoting the vector (θ0, θ1, . . . , θt),
t ≥ 0; similarly, from now on we will use the notation y1:t (in place of Dt) for
denoting the data (y1, . . . , yt). Thus, given the data y1:t, the joint posterior
distribution of interest is

π(θ0:t,ψ|y1:t) = π(θ0:t|ψ, y1:t)π(ψ|y1:t). (4.7)

The results and the recursion formulae for estimation and forecasting given in
chapter 2 hold conditionally on ψ and can be used for computing π(θs|ψ, y1:t);
furthermore, they can be extended for obtaining the joint conditional density
π(θ0:t|ψ, y1:t) in (4.7). However, they are now weighted according to the pos-
terior distribution of ψ given the data.

In principle, the posterior distribution (4.7) is computed using the Bayes
rule. In some simple models and using conjugate priors, it can be computed
in closed form; examples are given in the following section. More often, com-
putations are analytically intractable. However, MCMC methods and modern
sequential Monte Carlo algorithms provide quite efficient tools for approxi-
mating the posterior distributions of interest, and this is one reason of the
enormous impulse enjoyed by Bayesian inference for state space models in the
recent years.

Posterior distribution. MCMC and in particular Gibbs sampling algo-
rithms can be used for approximating the joint posterior π. Gibbs sampling
from π(θ0:t,ψ|y1:t) requires to iteratively simulate from the full conditional
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distributions π(θ0:t|ψ, y1:t) and π(ψ|θ0:t, |y1:t). Efficient algorithms for sam-
pling from the full conditional π(θ0:t|ψ, y1:t) have been developed, and will be
presented in section 4.5. Furthermore, exploiting the conditional independence
assumptions of DLM, the full conditional density π(ψ|θ0:T , y1:T ) is easier to
compute than π(ψ|y1:T ). Clearly, this full conditional is problem-specific, but
we will provide several examples in the next sections.

We can thus implement Gibbs sampling algorithms for approximating π.
Samples from π(θ0:t,ψ|y1:t) can also be used for approximating the filtering
density π(θt,ψ|y0:t) and the marginal smoothing densities π(θs,ψ|y0:t), s < t;
and, as we shall see, they also allow to simulate samples from the predic-
tive distribution of the states and observables, π(θt+1, yt+1|y0:t). Thus, this
approach solves at the same time the filtering, smoothing and forecasting
problems for a DLM with unknown parameters.

The shortcoming is that it is not designed for recursive or on-line infer-
ence. If a new observation yt+1 becomes available, the distribution of interest
becomes π(θ0:t+1,ψ|y1:t+1) and one has to run a new MCMC all over again for
sampling from it. This can be quite inefficient, especially in applications that
require an on-line type of analysis, in which new data arrive rather frequently.
These problems are best dealt by using sequential Monte Carlo algorithms .

Filtering and on-line forecasting. As discussed in chapter 2, one of the at-
tractive properties of DLM is the recursive nature of the filter formulas, which
allows to update the inference efficiently as new data become available. In the
case of no unknown parameters in the DLM, one could compute π(θt+1|y1:t+1)
from π(θt|y1:t) by the estimation-error correction formulae given by Kalman
filter, without doing all the computations again. Analogously, when there
are unknown parameters ψ, one would like to exploit the samples generated
from π(θ0:t,ψ|y1:t) in simulating from π(θ0:t+1,ψ|y1:t+1), without running the
MCMC all over again. Modern sequential Monte Carlo techniques, in par-
ticular the family of algorithms that go under the name of particle filters,
can be used to this aim and allow efficient on-line analysis and simulation-
based sequential updating of the posterior distribution of states and unknown
parameters. These techniques will be described in Section 4.8.

4.3 Conjugate Bayesian inference

In some simple cases, Bayesian inference can be carried out in closed form
using conjugate priors. We illustrate an example here.

Clearly, even in simple structural models as presented in chapter 3, where
the system matrices Ft and Gt are known, very rarely the covariance matrices
Vt and Wt are completely known. Thus, a basic problem is estimating Vt

and Wt. Here we consider a simple case where Vt and Wt are known only
up to a common scale factor, that is Vt = σ2Ṽt and Wt = σ2W̃t, with σ2

unknown. This specification of the covariance matrices has been discussed
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in section .. of chapter 1 for the static linear regression model. A classical
example is Vt = σ2Im; an interesting way of specifying W̃t is discussed later,
using discount factors.

4.3.1 Unknown covariance matrices: conjugate inference

Let (Yt, θt), t ≥ 1 be described by a DLM with

Vt = σ2Ṽt, Wt = σ2W̃t, C0 = σ2C̃0. (4.8)

Here all the matrices Ṽt, W̃t, as well as C̃0 and all the Ft and Gt are assumed
to be known. The scale parameter σ2, on the other hand, is unknown. As usual
in Bayesian inference it is convenient to work with its inverse φ = 1/σ2. The
uncertainty therefore is all in the state vectors and in the parameter φ. The
DLM provides the conditional probability law of (Yt, θt) given φ; in particular
the model assumes, for any t ≥ 1,

Yt|θt,φ ∼ Nm(Ftθt,φ
−1Ṽt)

θt|θt−1,φ ∼ Np(Gtθt−1,φ
−1W̃t).

We have to choose a prior for (φ, θ0), and a convenient choice is a conjugate
Normal-Gamma prior (see the Appendix of Chapter 1), that is

φ ∼ G(α0,β0)

and
θ0|φ ∼ N (m0,φ

−1C̃0),

in symbols (θ0,φ) ∼ NG(m0, C̃0,α0,β0). Then we have the following recursive
formulae for filtering.

Proposition 4.1. For the DLM described above, if

θt−1,φ|y1:t−1 ∼ NG(mt−1, C̃t−1,αt−1,βt−1)

where t ≥ 1, then

(i) The one-step-ahead predictive density of (θt,φ)|y1:t−1 is Normal-Gamma
with parameters (at, R̃t,αt−1,βt−1), where

at = Gtmt, R̃t = GtC̃t−1G
′
t + W̃t; (4.9)

the one-step-ahead conditional predictive density of Yt|φ, y1:t−1 is Gaus-
sian, with parameters

ft = Ftat, Qt = φ−1Q̃t = φ−1FtR̃tF
′
t + Ṽt. (4.10)
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(ii)The filtering distribution of (θt,φ|y1:t) is Normal-Gamma, with parameters

mt = at + R̃tFtQ̃
−1(yt − ft) C̃t = R̃t − R̃tF

′
t Q̃

−1
t R̃′

t, (4.11)

αt = αt−1 +
m

2
, βt = βt−1 +

1

2
(yt − ft)

′Q̃−1
t (yt − ft).

Note the analogy with the recursive formulas valid for a DLM with no
unknown parameters. The results (4.9)-(4.10) and the expressions for mt and
Ct in (4.11) are those that we would obtain by Kalman filter (ch 2, theorem
2.2) for a DLM with variance matrices (4.8) and φ known.

By the properties of the Normal-Gamma distribution it follows from (ii)
that the marginal filtering density of θt|y1:t is a multivariate Student-t, and
the density of σ2 given y1:T is Inverse-Gamma (....)

Proof. (i) Suppose that θt−1,ψ|y1:t−1 ∼ NG(mt−1, C̃t−1,αt−1,βt−1) (this is
true for t = 0). By (i) of theorem 2.2, we have that

θt|ψ, y1:t−1 ∼ Np(at,φ
−1R̃t)

with at and R̃t given by (4.9). Therefore

(θt,φ)|y1:t−1 ∼ NG(mt, C̃t,αt,βt).

It also follows that (yt,φ)|y1:t−1 has a Normal-Gamma distribution with pa-
rameters (ft, Q̃t,αt−1,βt−1) and from this we have (4.10).

(ii) For a new observation yt, the likelihood is

yt|θt,ψ ∼ Nm(Ftθt,φ
−1Ṽt)

The theory of linear regression with a Normal-Gamma prior discussed in ch.1
(page 19) applies, and leads to the conclusion that (θt,φ) given Dt has again
a NG(mt, C̃t,αt,βt) defined as in (4.11) (use (1.15) and (1.16)).

As far as smoothing is concerned, note that

(θT ,φ|D) ∼ NG(sT , S̃T ,αT ,βT ), (4.12)

with sT = mT and S̃T = C̃T , and write

π(θt,φ|DT ) = π(θt|φ,DT )π(φ|DT ), t = 0, . . . , T. (4.13)

Conditional on φ, the Normal theory of chapter 1 applies, showing that (θt,φ),
conditional on DT has a Normal-Gamma distribution. The parameters can be
computed using recursive formulas that are the analog of those developed for
the Normal case. Namely, for t = T − 1, . . . , 0, let

st = mt + C̃tG
′
t+1R̃

−1
t+1(st+1 − at+1),

S̃t = C̃t − C̃tG
′
t+1R̃

−1
t+1(R̃t+1 − S̃t+1)R̃

−1
t+1Gt+1C̃t.

Then
(θT ,φ|D) ∼ NG(st, S̃t,αT ,βT ). (4.14)
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4.3.2 Specification of Wt by discount factors

We briefly discuss a popular technique for specifying the covariance matrices
Wt, based on the so-called discount-factors, which has the advantage of being
fairly simple and effective; (see West and Harrison; 1997, section 6.3) for an
in-depth discussion.

As we have often underlined, the structure and magnitude of the state
covariance matrices Wt has a crucial role in determining the role of past ob-
servations in state estimation and forecasting. Roughly speaking, if Wt is large
there is high uncertainty in the state evolution, and a lot of information is lost
in passing from θt−1 to θt: the information carried by the past observations
y1:t−1 about θt−1 is of little relevance in forecasting θt and the current observa-
tion yt is what mainly determines the estimate of θt|y1:t. In the Kalman filter
recursions, the uncertainty about θt−1 given the data y1:t−1 is summarized in
the conditional covariance matrix Ct−1 = V (θt−1|y1:t−1); moving from θt−1

to θt via the state equation θt = Gtθt−1 + wt, the uncertainty increases and
we have V (θt|y1:t−1) = Rt = G′

tCt−1Gt +Wt. Thus, if Wt = 0, i.e. there is no
error in the state equation, we have Rt = V (Gtθt−1|y1:t−1) = Pt, say. Other-
wise, Pt is increased in Rt = Pt + Wt. In this sense, Wt expresses the loss of
information in passing from θt−1 to θt due to the stochastic error component
in the state evolution, the loss depending on the magnitude of Wt with respect
to Pt. One can thus think of expressing Wt as a proportion of Pt:

Wt =
1− δ

δ
Pt (4.15)

where δ ∈ (0, 1]. It follows that Rt = 1/δ Pt, with 1/δ > 1. The parameter δ is
called discount factor since it “discounts” the matrix Pt that one would have
with a deterministic state evolution into the matrix Rt. In practice, the value
of the discount factor is usually chosen between 0.9 and 0.99, or it is chosen
by model selection diagnostics, e.g. looking at the predictive performance of
the model for varying values of δ.

The discount factor specification can be used in the model of the previous
section. In (4.8), we can assume that

W̃t =
1− δ

δ
G′

tC̃t−1Gt.

Given C̃0 and Ṽt (e.g., Ṽt = Im), the value of W̃t can be recursively computed
for every t. Further refinements consider different discount factors δi for the
different components of the state vector.

Example. As a simple illustration of the usage of the discount factor, let
us consider again the time series of the example on page 77, giving the annual
precipitation in inches at Lake Superior from 1900 to 1986 (Figure 3.2) We
model this series by a random walk plus noise DLM with unknown variances
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Vt and Wt. We suppose that Vt, Wt and C0 satisfy the (formula 4.8). In
particular we assume Ṽt = 1, that is Vt = σ2 and we specify W̃t by the discount
factor δ. Assuming φ = 1/σ2, we choose for (φ, θ0) a Normal-Gamma prior
(θ0,φ) ∼ NG(m0, C̃0,α0,β0).

We create a linear growth DLM by dlmModPoly specifying Ṽt by dV=1.
The Kalman filter with the matrices Wt defined as in (formula 4.15) and the
matrices Ft, Gt and Vt constant can be performed in R using the function
dlmFilter_DF. The arguments are the data y, the model mod, and the dis-
count factor DF which correspond to the δ value. The output produced by
dlmFilter_DF is the same as this produced by dlmFilter.
Therefore the function dlmFilter_DF specifying W̃t by the discount factor
DF, computes mt, at, ft and the singular value decomposition of C̃t and R̃t

for any t.
Then we choose the parameters α0 and β0. The mean

E(1/φ) = β0/(α0 − 1)

is the initial a priori point estimate of the observational variance σ2. By the
recursive formulas for αt and βt (formula 4.11) we obtain

αt = α0 + t
2

βt = β0 + 1
2

∑t
i=1(yi − fi)2Q̃

−1
i = β0 + 1

2

∑t
i=1 ẽ2

t

where the standardized innovations ẽt and the standard deviation Q̃1/2
t can

computed with a call to a residuals function. Finally, assuming St = βt/αt

we compute

Ct = V ar(θt|Dt) = C̃tSt (4.16)

Qt = V ar(Yt|Dt−1) = Q̃tSt−1 (4.17)

We assume the initial values m0 = 0, C̃0 = 107, α0 = 2, β0 = 20, so that
the initial point estimate of the observational variance σ2 is σ̂2

0 = 20.
We examine four models being defined by discount values of 0.7, 0.8, 0.9 and
1.0, the latter corresponding to the degenerate static model, Wt = 0. The data
and the one-step ahead forecasts for the four models appear in Figure 4.1 The
loss of information about the level between time t− 1 and t and therefore the
degree of adaptation to new data increases as δ decreases.
To compare the four models in terms of forecast accuracy the following table
displays the MAPE, MAD, MSE measures.

DF MAPE MAD MSE
1.0 0.0977 3.0168 21.5395
0.9 0.0946 2.8568 19.9237
0.8 0.0954 2.8706 20.2896
0.7 0.0977 2.9367 20.9730



126 4 Models with unknown parameters

DF= 1

Time

1900 1920 1940 1960 1980

20
25

30
35

40
45

DF= 0.9

Time

1900 1920 1940 1960 1980

20
25

30
35

40
45

DF= 0.8

1900 1920 1940 1960 1980

20
25

30
35

40
45

DF= 0.7

1900 1920 1940 1960 1980

20
25

30
35

40
45

Fig. 4.1. Annual precipitation at Lake Superior and one-step ahead forecasts

Moreover the Figure 4.2 shows the sequence of estimates variances

σ̂2
t = E(1/φ|Dt) = βt/(αt − 1)

obtained by introducing a learning mechanism. In particular the final value
of the estimated observational variance σ̂2

87 decreases as δ decreases.

DF 1.0 0.9 0.8 0.7
σ̂2

87 12.0010 9.6397 8.9396 8.3601

The MAPE, MAD e MSE measures lead to choose δ = 0.9.
The unconditional (on φ) distribution of µt|Dt is Student-t T (mt, Ct, 2αt)
where Ct is given by the (4.16). The Figure 4.3 shows the filtered level mt

with 90% equal tails probability intervals.
The unconditional (on φ) distribution of Yt|Dt−1 is Student-t T (ft, Qt, 2αt−1)
where Qt is given by the (4.17). The Figure 4.3 shows the one-step ahead
forecasts ft with 90% equal tails probability intervals.

R code

> y <- read.table("plsuper.txt")
2 > y <- ts(y, frequency = 1, start = 1900)

> mod <- dlmModPoly(1,dV=1)
4 > modFilt <- dlmFilter_DF(y, mod, DF=0.9)
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Fig. 4.2. Estimates of the variance σ2
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Fig. 4.4. One-step ahead forecasts and 90% probability intervals

> out <- residuals(modFilt)
6 > beta0 <- 20

> alpha0 <- 2
8 > beta <- beta0 + 1/2 * cumsum(out$res^2)

> alpha <- alpha0 + (1: length(y))*(1/2)
10 > S <- beta/alpha

> Ctildelist <- dlmSvd2var(modFilt$U.C, modFilt$D.C)
12 > C11tilde <- unlist(lapply(Ctildelist,function(x)x[1,1])[-1])

> se1 <- sqrt(C11tilde * S)
14 > conf <- 0.90

> k <- qt((conf+1)/2,df=2*alpha)
16 > plot(y,ylab="Observed/Level filtered estimates",type="o",ylim=c(18,40))

> lines(window(modFilt$m, start=start(y)),col=3,type="o")
18 > lines(window(modFilt$m,start=start(y)) - k*se1, lty=3, col="red")

> lines(window(modFilt$m,start=start(y)) + k*se1, lty=3, col="red")
20 > lagS <- c(beta0/alpha0,beta/alpha)

> lagS <- lagS[-length(lagS)]
22 > Qt <- out$sd^2 * lagS

> alphalag <- c(alpha0,alpha)
24 > alphalag <- alphalag[-length(alphalag)]

> kf <- qt((conf+1)/2,df=2*alphalag)
26 > plot(y,lty=2,ylab="Observed/One step ahead forecasts",type="p",ylim=c(20,45))

> lines(window(modFilt$f, start=1902),col=3, type="o")
28 > lines(window(modFilt$f,start=1902) - kf*sqrt(Qt), lty=3, col="red")

> lines(window(modFilt$f,start=1902) + kf*sqrt(Qt), lty=3, col="red")
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4.3.3 A discount factor model for time-varying Vt

In the dlm (4.8), the unknown precision factor φ is assumed to be constant
over time. Since, for simplicity, the components Ṽt are often taken as time-
invariant too, this implies a constant observation covariance matrix Vt, which
is a restrictive assumption in many applications, for example for financial
time series which show a stochastic volatility. More complex models will be
discussed in later sections; here we apply the technique of discount factors for
introducing a fairly simple temporal evolution for the precision φ in (4.8) (see
West and Harrison; 1997, section 10.8).

Consider the dlm described in section 4.3.1. Suppose again that at time
t− 1

φt−1|y1:t−1 ∼ G(αt−1,βt−1);

however, now φ is not constant, but it evolves from time t − 1 to time t.
Consequently, the uncertainty about φt, given the data y1:t−1 will be bigger,
that is V (φt|y1:t−1) > V (φt−1|y1:t−1). Let us suppose for the moment that
φt|y1:t−1 has still a Gamma density, and in particular suppose that

φt|y1:t−1 ∼ G(δαt−1, δβt−1) , (4.18)

where 0 < δ < 1. Notice that the expected value is not changed: E(φt|y1:t−1) =
E(φt−1|y1:t−1) = αt−1/βt−1, while the variance is bigger: V (φt|y1:t−1) =
1/δ V (φt−1|y1:t−1), with 1/δ > 1. With this assumption, once a new obser-
vation yt becomes available one can use the updating formulas of proposition
4.1, but starting from (4.18) in place of the G(αt−1,βt−1).

It remains to motivate the assumption (4.18), and in fact we have not
specified yet the dynamics which leads from φt−1 to φt. It can be proved
(Ulhig (1994)) that assumption (4.18) is equivalent to assuming the following
multiplicative model for the dynamics of φt

φt =
γt

δ
φt−1 ,

where γt is a random variable independent on φt−1, with a beta density
with parameters (δαt−1, (1 − δ)αt − 1) (so that E(γt) = δ). Therefore, φt

is equivalent to φt−1 multiplied by a random impulse with expected value 1
(E(γt

δ ) = 1).

4.4 Simulation-based Bayesian inference

For a DLM including a possibly multidimensional unknown parameter ψ in
its specification, and observations y1:T , the posterior distribution of the pa-
rameter and unobservable states is

π(ψ, θ0:T |y1:T ). (4.19)
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As mentioned in section 4.2, in general it is impossible to compute in closed
form this distribution. Therefore, in order to come up with posterior sum-
maries one has to resort to numerical methods, almost invariably stochastic,
Monte Carlo methods. The customary MCMC approach to analyze the pos-
terior distribution (4.19) is to generate a (dependent) sample from it and
evaluate posterior summaries from the simulated sample. The inclusion of the
states in the posterior distribution usually simplifies the design of an efficient
sampler, even when one is only interested in the the posterior distribution of
the unknown parameter, π(ψ|y1:T ). In fact, drawing a random variable/vector
from π(ψ|θ0:T , y1:T ) is almost invariably much easier than drawing it from
π(ψ|y1:T ); in addition, efficient algorithms to generate the states conditionally
on the data and the unknown parameter are available, see Section 4.5. This
suggests that a sample from (4.19) can be obtained from a Gibbs sampler alter-
nating draws from π(ψ|θ0:T , y1:T ) and π(θ0:T |ψ, y1:T ). The simulated sample
from the posterior can in turn be used as imput to generate a sample from the
predictive distribution of states and observables, π(θT+1:T+k, yT+1:T+k|y1;T ).
In fact,

π(θT+1:T+k, yT+1:T+k,ψ, θT |y1;T ) = π(θT+1:T+k, yT+1:T+k|ψ, θT )·π(ψ, θT |y1;T ).

Therefore, for every pair (ψ, θ − T ) drawn from π(ψ, θT |y1;T ), one can gen-
erate the “future” θT+1:T+k, yT+1:T+k from π(θT+1:T+k, yT+1:T+k|ψ, θT ) (see
Section 2.5) to obtain a sample from the predictive distribution.

The approach sketched above completely solves the filtering, smoothing
and forecasting problems for a DLM with unknown parameters. However, if
one needs to update the posterior distribution after one or more new observa-
tions become available, then one has to run the Gibbs sampler all over again,
and this can be extremely inefficient. As already mentioned, on-line anal-
ysis and simulation-based sequential updating of the posterior distribution
of states and unknown parameters are best dealt with employing sequential
Monte Carlo techniques (Section 4.8).

4.5 Drawing the states given DT : Forward Filtering
Backward Sampling

In a Gibbs sampling from π(θ0:T ,ψ|y1:T ), one needs to simulate from the
full conditional densities π(ψ|θ0:T , y1:T ) and π(θ0:T |ψ, y1:T ). While the first
density is problem specific, the general expression of the latter density and
efficient algorithms for sampling from it are available.

In fact, the smoothing recursions provide an algorithm for computing
the mean and variance of the distribution of θt conditional on y0:T and ψ
(t = 0, 1, . . . , T ). Since all the involved distributions are Normal, this com-
pletely determines the marginal posterior distribution of θt given y0:T and ψ.
If one is interested in the joint posterior distribution of (θ0:T ) given y1:T ,ψ,
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then also the posterior covariances between θt and θs have to be computed.
General formulas to recursively evaluate these covariances are available, see
Durbin and Koopman (2001). However, when π(θ0:T |ψ, y1:T ) has the role of
full conditional in a Gibbs sampling from π(θ0:T ,ψ|y1:T ), the main question
becomes: how can one generate a draw from the distribution of (θ0:T ) given
y1:T ,ψ? We will use a method due to Carter and Kohn (1994), Früwirth-
Schnatter (1994), and Shephard (1994), which is now widely known as Forward
Filtering Backward Sampling (FFBS) algorithm. By reading the description
that follows, the reader will realize that FFBS is essentially a simulation ver-
sion of the smoothing recursions.

We can write the joint distribution of (θ0, θ1, . . . , θT ) given DT as

π(θ0, θ1, . . . , θT |DT ) =
T∏

t=0

π(θt|θt+1, . . . , θT ,DT ), (4.20)

where the last factor in the product is simply π(θT |DT ), i.e. the filtering
distribution of θT , which is N (mT , CT ). Formula (4.20) suggests that in order
to obtain a draw from the distribution on the left-hand side, one can start
by drawing θT from a N (mT , CT ) and then, for t = T − 1, T − 2, . . . , 0,
recursively draw θt from π(θt|θt+1, . . . , θT ,DT ). We have seen in the proof of
Proposition 2.4 that π(θt|θt+1, . . . , θT ,DT ) = π(θt|θt+1,Dt), and we showed
that this distribution is N (ht, Ht), with

ht = mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1),

Ht = Ct − CtG
′
t+1R

−1
t+1Gt+1Ct.

Therefore, having already (θt+1, . . . , θT ), the next step consists in drawing θt

from a N (ht, Ht). Note that ht explicitly depends on the value of θt+1 already
generated.

In summary, the FFBS algorithm can be described as follows;

1. Run Kalman filter;
2. Draw θT from a N (mT , CT ) distribution;
3. For t = T − 1, T − 2, . . . , 0, draw θt from a N (ht, Ht) distribution.

FFBS is commonly used as a building block of a Gibbs sampler, as we
will illustrate in many examples in the remaining of the chapter. However, it
can be of interest also in DLM when there are no unknown parameters. In
this case, the marginal smoothing distribution of each θt is usually enough to
evaluate posterior probabilities of interest. However, the posterior distribution
of a nonlinear function of the states may be difficult or impossible to derive,
even when all the parameters of the model are known. In this case FFBS
provides an easy way to generate an independent sample from the posterior
of the nonlinear function of interest. Note that in this type of application the
“forward filtering” part of the algorithm only needs to be performed once.
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4.6 General strategies for MCMC

For a completely specified DLM, i.e., one not containing unknown parame-
ters, draws from the posterior distribution of the states, and possibly from
the forecast distribution of states and observations, can be obtained using the
algorithms described in Section 4.5. In the more realistic situation of a DLM
containing an unknown parameter vector ψ, with prior distribution π(ψ), in
the observation, system, or variance matrices, one typically uses MCMC to
obtain posterior summaries of the distributions of interest. Almost all Markov
chain samplers for posterior analysis of a DLM fall in one of the following cat-
egories: Gibbs samplers which include the states as latent variables, marginal
samplers, and hybrid samplers, which combine aspects of both. Note that,
depending on the context, the analyst may be interested in making inference
about the unobservable states, the unknown parameter, or both. Of the three
types of samplers, two (Gibbs and hybrid samplers) generate draws from the
joint posterior of the states and the parameter, while the other (marginal
samplers) only generates draws from the posterior of the parameter. Keep in
mind, however, that once a sample from the posterior distribution of the pa-
rameter is available, a sample from the joint posterior of states and parameter
can be easily obtained in view of the decomposition

π(θ0:T ,ψ|y1:T ) = π(θ0:T |ψ, y1:T ) · π(ψ|y1:T ).

More specifically, for each ψ(i) in the sample (i = 1, . . . , N), it is enough to

draw θ(i)
0:T from π(θ0:T |ψ = ψ(i), y1:T ) using FFBS, and {(θ(i)

0:T ,ψ(i)) : i =
1, . . . , N} will be the required sample from the joint posterior distribution.

The Gibbs sampling approach, consisting in drawing in turn the states
from their conditional distribution given the parameter and observations,
and the parameter from its conditional distribution given the states and ob-
servations, is summarized in Table 4.1. Package dlm provides the function

• Initialize: set ψ = ψ(0).
• For i = 1, . . . , N :

1. Draw θ(i)
0:T from π(θ0:T |y1:T ,ψ = ψ(i−1)) using FFBS.

2. Draw ψ(i) from π(ψ|y1:T θ0:T = θ(i)
0:T ).

Table 4.1. Forward Filtering Backward Sampling in a Gibbs sampler

dlmBSample which, in conjunction with dlmFilter, can be used to perform
step 1. Step 2, on the other hand, depends heavily on the model under con-
sideration, including the prior distribution on ψ. In fact, when ψ is an r-
dimensional vector, it is often simpler to perform a Gibbs step for each com-
ponent of ψ instead of drawing ψ at once. The intermediate approach of
drawing blocks of components of ψ together is another option. In any case,
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when a full conditional distribution is difficult to sample from, a Metropolis-
Hastings step can replace the corresponding Gibbs step. A generic sampler for
nonstandard distributions is ARMS (Section 1.3), available in package dlm in
the function arms.

The second approach, marginal sampling, is conceptually straightforward,
consisting in drawing a sample from π(ψ|y0:T ). The actual implementation
of the sampler depends on the model under consideration. Typically, if ψ
is multivariate, one can use a Gibbs sampler, drawing each component, or
block of components, from its full conditional distributions, possibly using a
Metropolis-Hastings step when the relevant full conditional is not a standard
distribution. Again, ARMS can be used in the latter case.

A hybrid sampler can be used when the parameter can be decomposed
in two components, that is, when ψ can be written as (ψ1,ψ2), where each
component may be univariate or multivariate. Table 4.2 gives an algorith-

• Initialize: set ψ2 = ψ(0)
2 .

• For i = 1, . . . , N :
1. Draw ψ(i)

1 from π(ψ1|y0:T ,ψ2 = ψ(i−1)
2 ).

2. Draw θ(i)
0:T from π(θ0:T |y1:T ,ψ1 = ψ(i)

1 ,ψ2 = ψ(i−1)
2 ) using FFBS.

3. Draw ψ(i)
2 from π(ψ2|y1:T θ0:T = θ(i)

0:T ,ψ1 = ψ(i)
1 .

Table 4.2. Forward Filtering Backward Sampling in a hybrid sampler

mic description of a generic hybrid sampler. As for the previous schemes,
Metropolis-Hastings steps, and ARMS in particular, can be substituted for
direct sampling in steps 1 and 3. Step 2 can always be performed using
dlmFilter followed by dlmBSample. For the theoretically inclined reader, let
us point out a subtle difference between this sampler and a Gibbs sampler.
In a Gibbs sampler, each step consists in applying a Markov transition kernel
whose invariant distribution is the target distribution, so that the latter is
also invariant for the composition of all the kernels. In a hybrid sampler, on
the other hand, the target distribution is not invariant for the Markov kernel
corresponding to step 1, so the previous argument does not apply directly.
However, it is not difficult to show that the composition of step 1 and 2 does
preserve the target distribution and so, when combined with step 3, which is a
standard Gibbs step, it produces a Markov kernel having the correct invariant
distribution.

The output produced by a Markov chain sampler must always be checked
to assess convergence to the stationary distribution and mixing of the chain.
Given that the chain has practically reached the stationary distribution, mix-
ing can be assessed by looking at autocorrelation functions of parameters or
functions of interest. Ideally, one would like to have as low a correlation as pos-
sible between draws. Correlation may be reduced by thinning the simulated
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chain, i.e., discarding a fixed number of iterations between every saved value.
Although this method is very easy to implement, the improvements are usu-
ally only marginal, unless the number of discarded simulations is substantial,
which significantly increases the time required to run the entire sampler. As
far as assessing convergence, a fairly extensive body of literature exists on di-
agnostic tools for MCMC. In R the package BOA provides a suite of functions
implementing many of these diagnostics. In most cases, a visual inspection
of the output, after discarding a first part of the simulated chain as burn
in, can reveal obvious departures from stationarity. For an organic treatment
of MCMC diagnostics, we refer to Robert and Casella (2004) and references
therein.

4.6.1 Example: US Gross National Product

We now illustrate with an example how to implement in R a hybrid sampler
using dlmBSample and arms. The data consist of the quarterly time series of
deseasonalized real GNP of the US from 1950 to 2004, on a logarithmic scale.
Following standard econometric practice, we assume that GNP can be decom-
posed into two unobservable components: a stochastic trend and a stationary
component. We will estimate the two components as well as the parameters of
the underlying model. We assume that the stochastic trend is described by a
local linear trend, while the stationary component follows an AR(2) process.
The order of the AR process allows the residuals (departures from the trend)
to have a (dumped) cyclic autocorrelation function, which is often observed
in economic time series. The model, as a DLM, is therefore the sum, in the
sense discussed in Section 3.2, of a polynomial model of order two and a DLM
representation of a stationary AR(2) process, observed with no error. The
matrices of the resulting DLM are:

F =
[
1 0 1 0

]
,

G =






1 1 0 0
0 1 0 0
0 0 φ1 1
0 0 φ2 0




 ,

V =
[
0
]
,

W = diag
(
σ2

µ,σ2
δ ,σ

2
u, 0
)
.

At any time t, The first component of the state vector represents the trend,
while the third is the AR(2) stationary component. The AR parameters φ1

and φ2 must lie in the stationarity region S defined by

φ1 + φ2 < 1,

φ1 − φ2 > −1,

|φ2| < 1.
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The prior we select for (φ1,φ2) is a product of a N (0, (2/3)2) and a N (0, (1/3)2),
restricted to S. In this way, the prior penalizes those values of the AR parame-
ters close to the boundary of the stationarity region. For the three precisions,
i.e., the inverses of the variances σ2

µ, σ2
δ , and σ2

u, we assume independent
gamma priors with mean a and variance b:

G
(

a2

b
,
a

b

)
.

In this specific case, we set a = 1, b = 1000. A hybrid sampler can draw in
turn the AR parameters from π(φ1,φ2|σ2

µ,σ2
δ ,σ

2
u, y0:T ), the states, and the

three precisions from their full conditional distribution given the states and
the AR parameters. In the notation used in Table 4.2, ψ1 = (φ1,φ2) and
ψ2 = ((σ2

µ)−1, (σ2
δ )

−1, (σ2
u)−1). The precisions, given the states and the AR

parameters, are conditionally independent and gamma-distributed. Specifi-
cally,

(σ2
µ)−1| . . . ∼ G

(
a2

b
+

T

2
,
a

b
+

1

2

T∑

t=1

(
θt,1 − (Gθt−1)1

)2
)

,

(σ2
δ )

−1| . . . ∼ G
(

a2

b
+

T

2
,
a

b
+

1

2

T∑

t=1

(
θt,2 − (Gθt−1)2

)2
)

,

(σ2
u)−1| . . . ∼ G

(
a2

b
+

T

2
,
a

b
+

1

2

T∑

t=1

(
θt,3 − (Gθt−1)3

)2
)

.

(4.21)

The AR parameters, given the precisions (but not the states), have a non-
standard distribution and we can use ARMS to draw from their joint full
conditional distribution. One can write a function to implement the sampler
in R. One such function, on which the analysis that follows is based, is avail-
able from the book web site. We reproduce below the relevant part of the
main loop. In the code, theta is a T by 4 matrix of states and gibbsPhi
and gibbsVars are matrices in which the results of the simulation are stored.
The states, generated in the loop, can optionally be saved, but they can also
be easily generated again, given the simulated values of the AR and variance
parameters.

R code

for (it in 1:mcmc)
2 {

## generate AR parameters
4 mod$GG[3:4,3] <- arms(mod$GG[3:4,3],

ARfullCond, AR2support, 1)
6 ## generate states - FFBS

modFilt <- dlmFilter(y, mod, simplify=TRUE)
8 theta[] <- dlmBSample(modFilt)
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## generate W
10 theta.center <- theta[-1,-4,drop=FALSE] -

(theta[-(nobs + 1),,drop=FALSE] %*% t(mod$GG))[,-4]
12 SStheta <- drop(sapply( 1 : 3, function(i)

crossprod(theta.center[,i])))
14 diag(mod$W)[1:3] <-

1 / rgamma(3, shape = shape.theta,
16 rate = rate.theta + 0.5 * SStheta)

## save current iteration, if appropriate
18 if ( !(it %% every) )

{
20 it.save <- it.save + 1

gibbsTheta[,,it.save] <- theta
22 gibbsPhi[it.save,] <- mod$GG[3:4,3]

gibbsVars[it.save,] <- diag(mod$W)[1:3]
24 }

}

The if statement on line 18 takes care of the thinning, saving the draw only
when the iteration counter it is divisible by every. The object SStheta
(line 12) is a vector of length 3 containing the sum of squares appearing
in the full conditional distributions of the precisions (equations 4.21). The
two functions ARfullCond and AR2support, which are the main arguments of
arms (line 5) are defined, inside the main function, as follows.

R code

AR2support <- function(u)
2 {

## stationarity region for AR(2) parameters
4 (sum(u) < 1) && (diff(u) < 1) && (abs(u[2]) < 1)

}
6 ARfullCond <- function(u)

{
8 ## log full conditional density for AR(2) parameters

mod$GG[3:4,3] <- u
10 -dlmLL(y, mod) + sum(dnorm(u, sd = c(2,1) * 0.33,

log=TRUE))
12 }

The sampler was run using the following call, where gdp is a time series
object containing the data.

R code
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outGibbs <- gdpGibbs(gdp, a.theta=1, b.theta=1000, n.sample =
2 2050, thin = 1, save.states = TRUE)

Discarding the first 50 draws as burn in, we look at some simple diagnostic
plots. The traces of the simulated variances (Figure 4.5) do not show any
particular sign of a nonstationary behavior. We have also plotted the running
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Fig. 4.5. GDP: traces of simulated variances

ergodic means of the simulated standard deviations σµ σδ, and σu (Figure 4.6).

The first plot shows n−1
∑n

i=1 σ(i)
µ versus i, and similarly for the second and

third. In other words, this is the MC estimate of σµ versus the number of
iterations of the sampler. The estimates look reasonaby stable in the last
part of the plot. (This impression was also confirmed by the results from a
longer run, not shown here). The empirical autocorrelation functions of the
three variances (Figure 4.7) give an idea of the degree of autocorrelation in
the sampler. In the present case, the decay of the ACF is not very fast; this
will reflect in a relatively large Monte Carlo standard error of the Monte
Carlo esimates. Clearly, a smaller standard error can always be achieved by
running the sampler longer. Similar diagnostic plots can be done for the AR
parameters. The reader can find in the display below, for the three standard
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deviations in the model and the two AR parameters, the estimates of the
posterior means and their estimated standard errors, obtained using Sokal’s
method (see Section 1.3). In addition, equal-tail 90% probability intervals are
derived for the five parameters. These probability intervals give an idea of the
region where most of the posterior probability is contained.

R code

> mcmcMeans(outGibbs$phi[-burn,], names = paste("phi", 1:2))
2 phi 1 phi 2

1.3422 -0.4027
4 ( 0.0112) ( 0.0120)

> apply(outGibbs$phi[-burn,], 2, quantile, probs = c(.05,.95))
6 [,1] [,2]

5% 1.174934 -0.5794382
8 95% 1.518323 -0.2495367

> mcmcMeans(sqrt(outGibbs$vars[-burn,]),
10 names = paste("Sigma", 1:3))

Sigma 1 Sigma 2 Sigma 3
12 0.34052 0.05698 0.78059

(0.03653) (0.00491) (0.01766)
14 > apply(sqrt(outGibbs$vars[-burn,]), 2, quantile,



4.6 General strategies for MCMC 139

0 10 20 30 40 50
0.

2
0.

6
1.

0

Lag

AC
F
−
σ

µ2

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

AC
F
−
σ
δ2

0 10 20 30 40 50

0.
2

0.
6

1.
0

Lag

AC
F
−
σ

u2

Fig. 4.7. GDP: Autocorrelation functions

probs = c(.05,.95))
16 [,1] [,2] [,3]

5% 0.06792123 0.02057263 0.5596150
18 95% 0.65583319 0.12661949 0.9294306

One can also plot histograms based on the output of the sampler, to gain some
insight about the shape of posterior distributions of parameters or functions
thereof – at least for univariate marginal posteriors. Figure 4.8 displays the
histograms of the posterior distributions of the three variances. Scatterplots
are sometimes useful to explore the shape of bivariate distributions, especially
for pairs of parameters that are highly dependent on each other. Figure 4.9
displays a bivariate scatterplot of (φ1,φ2), together with their marginal his-
tograms. From the picture, it is clear that there is a strong dependence be-
tween φ1 and φ2, which, incidentally, confirms that drawing the two at the
same time was the right thing to do in order to improve the mixing of the
chain.

Finally, since the sampler also included the unobservable states as latent
variables, one can obtain posterior distributions and summaries of the states.
In particular, in this example it is of interest to separate the trend of the GDP
from the (autocorrelated) noise. The posterior mean of the trend at time t
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is estimated by the mean of the simulated values θ(i)
t,1. Figure 4.10 displays

graphically the posterior mean of the trend, together with the data, and the
posterior mean of the AR(2) noise process, represented by θt,3.

4.7 Unknown variances

In many of the models analyzed in Chapter 3 the system and observation
matrices Gt and Ft are set to specific values as part of the model specification.
This is the case for polynomial and seasonal factor models, for example. The
only possibly unknown parameters are therefore part of the variance matrices
Wt and Vt. In this section we will describe several ways to specify a prior
for the unknown variances and we will derive algorithms to draw from the
posterior distribution of the unknown parameters.

4.7.1 Constant unknown variances: d Inverse Gamma prior

This is the simplest model commonly used for unknown variances. We as-
sume for simplicity that the observations are univariate (m = 1), although
extensions to the multivariate case are easy to devise. The unknown parame-
ters are the precisions ψy,ψθ,1, . . . ,ψθ,p. The observation and system variances
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are time-invariant and are related to the unknown parameters by the following
equalities:

Vt = ψ−1
y ,

Wt = diag(ψ−1
θ,1, . . . ,ψ

−1
θ,p).

The parameters have independent gamma distributions, a priori:

ψy ∼ G
(

a2
y

by
,
ay

by

)
,

ψθ,i ∼ G
(

a2
θ,i

bθ,i
,
aθ,i
bθ,i

)
, i = 1, . . . , p.

As particular cases, this framework includes a Bayesian treatment of nth order
polynomial models as well as the Structural Time Series models of Harvey
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and coauthors. Since each full conditional distribution is proportional to the
joint distribution, it is a usful exercise at this point to write down the joint
distribution of the observations, states, and unknown parameters.

π(y1:T , θ0:T ,ψy,ψθ,1, . . . ,ψθ,p)

= π(y1:T |θ0:T ,ψy,ψθ,1, . . . ,ψθ,p) · π(θ0:T |ψy,ψθ,1, . . . ,ψθ,p)

· π(ψy,ψθ,1, . . . ,ψθ,p)

=
T∏

t=1

π(yt|θt,ψy) ·
T∏

t=1

π(θt|θt−1,ψθ,1, . . . ,ψθ,p) · π(θ0)

· π(ψy) ·
p∏

i=1

π(ψθ,i).

Note that the second product in the factorization can also be written as a
product over i = 1, . . . , p, due to the diagonal form of W . This alternative
factorization is useful when deriving the full conditional distribution of the
ψθ,i’s. A Gibbs sampler for the d-Inverse-Gamma model draws from the full



4.7 Unknown variances 143

conditional distribution of the states and from the full conditional distribu-
tions of ψy,ψθ,1, . . . ,ψθ,p in turn. Sampling the states can be done using the
FFBS algorithm of Section 4.5. Let us derive the full conditional distribution
of ψy:

π(ψy | . . .) ∝
T∏

t=1

π(yt|θt,ψy) · π(ψy)

∝ ψ
T
2 +

a2
y

by
−1

y exp

{

−ψy ·
[

1

2

T∑

t=1

(yt − Ftθt)
2 +

ay

by

]}

.

Therefore the full conditional of ψy is again a gamma distribution,

ψy| . . . ∼ G
(

a2
y

by
+

T

2
,
ay

by
+

1

2
SSy

)

.

with SSy =
∑T

t=1(yt − Ftθt)2. Similarly, it is easy to show that the full
conditionals of the ψθ,i’s are as follows:

ψθ,i| . . . ∼ G
(

a2
θ,i

bθ,i
+

T

2
,
aθ,i
bθ,i

+
1

2
SSθ,i

)

, i = 1, . . . , p,

with SSθ,i =
∑T

t=1(θt,i − (Gtθt−1)i)2.

Example. Let us consider again the data on Spain investment (Sec-
tion 3.2.1). We are going to fit a 2nd-order polynomial model – local linear
growth – to the data. The priors for the precisions of the observation and
evolution errors are (independent) gamma distributions with means ay, aµ,
aβ and variances by, bµ, bβ. We decide for the values ay = 1, aµ = aβ = 10,
with a common variance equal to 1000, to express a large uncertainty in the
prior estimate of the precisions. The function dlmGibbsDIG can be called to
generate a sample from the posterior distribution of the parameters and the
states. The means and variances of the gamma priors are passed to the func-
tion via the arguments a, b (prior mean and variance of observation precision),
alpha, beta (prior mean(s) and variance(s) of evolution precision). Alterna-
tively, the prior distribution can be specified in terms of the usual shape and
rate parameters of the gamma distribution. The arguments to pass in this case
are shape.y, rate.y, shape.theta, and rate.theta. The number of samples
from the posterior to generate is determined by the argument n.sample, while
the logical argument save.states is used to determine whether to include the
generated unobservable states in the output. In addition, a thinning param-
eter can be specified via the integer argument thin. This gives the number
of Gibbs iterations to discard for every saved one. Finally, the data and the
model are passed via the arguments y and mod, respectively. The following
display show how dlmGibbsDIG works in practice.
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R code

> invSpain <- ts(read.table("~/Research/DLM/Book/Datasets/invest2.dat",
2 + colClasses = "numeric")[,2]/1000, start = 1960)

> set.seed(5672)
4 > MCMC <- 12000

> gibbsOut <- dlmGibbsDIG(invSpain, mod = dlmModPoly(2), a = 1, b = 1000,
6 + alpha = 10, beta = 1000, n.sample = MCMC,

+ thin = 1, save.states = FALSE)

Setting thin = 1 means that the function actually generates a sample of size
24,000 but only kept in the output every other value. In addition, the states
are not returned (save.states = FALSE). Considering the first 2000 saved
iterations as burn in, one can proceed to graphically assess the convergence
and mixing properties of the sampler. Figure 4.11 displays a few diagnostic
plots obtained from the MCMC output for the variances V , W11, and W22.
The first row shows the traces of the sampler, i.e., the simulated values, the
second the running ergodic means of the parameters (starting at iteration
500), and the last the estimated autocovariance functions. We obtained the
running ergodic means using the function ergMean. For example, the plot in
the first column and second row was created using the following commands.

R code

use <- MCMC - burn
2 from <- 0.05 * use

plot(ergMean(gibbsOut$dV[-(1:burn)], from), type="l",
4 xaxt="n",xlab="", ylab="")

at <- pretty(c(0,use),n=3); at <- at[at>=from]
6 axis(1, at=at-from, labels=format(at))

From a visual assessment of the MCMC output it seems fair to deduce that
convergence has been achieved and, while the acf’s of the simulated variances
do not decay very fast, the ergodic means are nonetheless pretty stable in the
last part of the plots. One can therefore go ahead and use the MCMC out-
put to estimate the posterior means of the unknown variances. The function
mcmcMeans computes the (column) means of a matrix of simulated values,
together with an estimate af the Monte Carlo standard deviation, obtained
using Sokal’s method (Section 1.3).

R code

> mcmcMeans(cbind(gibbsOut$dV[-(1:burn),], gibbsOut$dW[-(1:burn),]))
2 V.1 V.2 V.3

0.012197 0.117391 0.329588
4 (0.000743) (0.007682) (0.007833)
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Fig. 4.11. Diagnostic plots for d-inverse-Gamma model applied to Spain invest-
ments

Bivariate plots of the simulated parameters may provide additional insight.
Consider the plots in Figure 4.12. The joint realizations seem to suggest that
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Fig. 4.12. Bivariate plots for d-inverse-Gamma model applied to Spain investments

one, or maybe two, of the model variances may be zero. From the third plot
we can see that when W11 is close to zero then W22 is clearly positive, and vice
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versa: W11 and W22 cannot both be zero. The second plot suggests that this
is also true for V and W22. From the first plot it seems that V and W11 may
be zero, possibly at the same time. In summary, by looking at the bivariate
plots, three reduced models come up as alternative to the full model worth
exploring: the submodel obtained by setting V = 0, the submodel W11 = 0,
the submodel V = W11 = 0, and the submodel W22 = 0.

d inverse-Wishart. Multivariate extensions of the d inverse Gamma model can
be devised, using independent Wishart priors. Suppose that Yt is m-variate,
m ≥ 1, and W is block-diagonal with elements (W1, . . . , Wh), Wi having
dimension (pi × pi). Examples of dlm with a block-diagonal state covariance
matrix W include additive compositions of structural models (see section 3....),
or SUTSE models (section 3...). Clearly, the case of a general matrix W is
obtained by letting h = 1.

Again, we parametrize in the precision matrices Φ0 = V −1 and Φ = W−1,
the latter being block-diagonal with elements Φi = W−1

i , i = 1, . . . , h. We
assume that Φ0,Φ1, . . . ,Φh have independent Wishart priors, Φi ∼W (νi, Si),
i = 0, . . . , h, where Si is a symmetric nonsingular positive definite? ma-
trix of dimensions (pi × pi), with p0 = m. Then the posterior density
π(θ0:T ,Φ0, . . . ,Φh)|y1:T ) is proportional to

T∏

t=1

N (yt|Ftθt,Φ
−1
0 ) N (θt|Gθt−1,Φ

−1)N (θ0|m0, C0)W (Φ0|ν0, S0)
h∏

i=1

W (Φi|νi, Si).

(4.22)
A Gibbs sampling from π is obtained by iteratively sampling the states θ0:T

(by the FFBS algorithm) and the precisions Φ0, . . . ,Φh from their full condi-
tionals. From (4.22) we see that the full conditional density of Φi is propor-
tional to

T∏

t=1

h∏

j=1

|Φj |1/2 exp{−1

2
(θt−Gtθt−1)

′Φ(θt−Gtθt−1)} |Φi|νi−(pi+1)/2 exp{−tr(SiΦi)}

∝ |Φi|T/2+νi−(pi+1)/2 exp{−tr(
1

2

T∑

t=1

(θt−Gtθt−1)(θt−Gtθt−1)
′Φ)− tr(SiΦi)}

(see section... page 21). Let

SSt = (θt −Gtθt−1)(θt −Gtθt−1)
′

and partition it in accord with Φ:

SSt =






SS11,t · · · SS1h,t
...

. . .
...

SSh1,t · · · SShh,t




 .
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Then tr(SStΦ) =
∑h

j=1 tr(SSjj,tΦj), so that the full conditional of Φi results
to be proportional to

|Φi|T/2+νi−(pi+1)/2 exp{−tr((
1

2

T∑

t=1

SSii,t + Si)Φi)}.

That is, for i = 1, . . . , h, the full conditional of Φi is Wishart, with parameters
(νi+T/2, 1/2

∑T
t=1 SSii,t+Si). In particular, for a dlm obtained by combining

components models as in section 3....., we have

θt =






θ1,t
...

θh,t




 ; Gt =






G1,t · · · 0

0
. . . 0

0 · · · Gh,t




 ,

with θi,t = (pi × 1) and Gi,t = (pi × pi), so that the full conditional of Φi

is W (νi + T/2, 1/2
∑T

t=1 SSii,t + Si) where Sii,t = (θi,t − Gi,tθi,t−1)(θi,t −
Gi,tθi,t−1)′.

Analogously, one finds that the full conditional of Φ0 is W (T/2+ν0, 1/2
∑T

t=1(yt−
Ftθt)(yt − Ftθt)′ + S0).

4.7.2 λ-ωt model for outliers and structural breaks

In this subsection we consider a generalization of the d-Inverse-Gamma model
that is appropriate to account for outliers and structural breaks. To introduce
the model, let us focus on observational outliers first. Structural breaks – or
outliers in the state series – will be dealt with in a similar way later on. From
the observation equation yt = Ftθt+vt, we see that a simple way to account for
observations that are unusually far from their one-step-ahead predicted value
is to replace the Normal distribution of vt with a heavy-tailed distribution.
The Student-t distribution family is particularly appealing in this respect for
two reasons. On one hand, it can accommodate, through its degrees-of-freedom
parameter, different degrees of heaviness in the tails. On the other hand, the
t distribution admits a simple representation as a scale mixture of Normal
distributions, which allows one to treat a DLM with t-distributed observation
errors as a Gaussian DLM, conditionally on the scale parameters. The obvious
advantage is that all the standard algorithms for DLMs – from Kalman filter
to FFBS – can still be used, albeit conditionally. In particular, within a Gibbs
sampler, one can still draw the states from their full conditional distribution
using the FFBS algorithm. We assume that, up to a scale factor λy , the vt

have Student-t distributions with νy,t degrees of freedom:

λ1/2
y vt|λy , νy,t ∼ tνy,t

.

Introducing latent variables ωy,t, distributed as G
(νy,t

2
,
νy,t

2

)
, we can equiva-

lently write:
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λ1/2
y vt|λy ,ωy,t ∼ N (0,ω−1

y,t ),

ωy,t|νy,t ∼ G
(νy,t

2
,
νy,t

2

)
.

The first line can also be written as

vt|λy ,ωy,t ∼ N (0, (λyωy,t)
−1).

The latent variable ωy,t in the previous representation can be informally in-
terpreted as the degree of nonnormality of vt. In fact, taking the N (0,λ−1

y ) as
baseline – corresponding to ωy,t = E(ωy,t) = 1, – values of ωy,t lower than 1
make larger absolute values of vt more likely. Figure 4.13 shows a plot of the
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Fig. 4.13. 90th percentile of the conditional distribution of vt as a function of ωy,t.

90th percentile of the N (0, (λyωy,t)−1) as a function of ωy,t (λy is selected so
that the percentile is one when ωy,t is one). From the previous discussion, it
follows that the posterior mean of the ωy,t can be used to flag possible outliers.
As a prior for the precision parameter λy we choose a Gamma distribution
with mean ay and variance by,

λy |ay, by ∼ G
(

a2
y

by
,
ay

by

)

,

taking in turn ay and by uniformly distributed on a large, but bounded, in-
terval,

ay ∼ Unif (0, Ay),

by ∼ Unif (0, By).

Although the degrees-of-freedom parameter of a Student-t distribution can
take any positive real value, we restrict for simplicity the set of possible values
to a finite set of integers and set
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νy,t|py ∼ Mult(1; py),

where py = (py,1, . . . , py,K) is a vector of probabilities, the levels of the multi-
nomial distribution are the integers n1, . . . , nK , and the νy,t’s are indepen-
dent across t. As a convenient, yet flexible choice for n1, . . . , nK we use the
set {1, 2, . . . , 10, 20, . . . , 100}. Note that for νy,t = 100, vt is approximately
normally distributed, given λy. As a prior for py we adopt a Dirichlet distri-
bution with parameter αy = (αy,1, . . . ,αy,K). A similar hierarchical structure
is assumed for each diagonal element of Wt, i.e. for the precision parameters
of the state innovations.

In this model the precisions, or, equivalently, the variances, are allowed to
be different at different times, although in a way that does not account for
a possible correlation in time. In other words, the sequences of precisions at
different times are expected to look more like independent, or exchangeable,
sequences, rather than time series. For this reason the model is appropriate to
account for occasional abrupt changes – corresponding to innovations having a
large variance – in the state vector. For example, for polynomial and seasonal
factor models an outlier in a component of wt corresponds to an abrupt change
in the corresponding component of the state, such as a jump in the level of
the series. However, the modeler do not anticipate this changes to present a
clear pattern in time.

Writing Wt,i for the ith diagonal element of Wt, the hierarchical prior
can be summarized in the following display, in which trivial independence or
conditional independence assumptions are not explicitely stated (for example,
the νθ,ti’s are independent over t and i).
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V −1
t = λyωy,t,

W−1
t,i = λθ,iωθ,ti,

λy|ay, by ∼ G
(

a2
y

by
,
ay

by

)

,

λθ,i|aθ,i, bθ,i ∼ G
(

a2
θ,i

bθ,i
,
aθ,i
bθ,i

)

,

ωy,t|νy,t ∼ G
(νy,t

2
,
νy,t

2

)
,

ωθ,ti|νθ,ti ∼ G
(νθ,ti

2
,
νθ,ti
2

)
,

ay ∼ Unif (0, Ay),

by ∼ Unif (0, By),

aθ,i ∼ Unif (0, Aθ,i),

bθ,i ∼ Unif (0, Bθ,i),

νy,t ∼ Mult(1; py)

νθ,ti ∼ Mult(1; pθ,i)

py ∼ Dir(αy)

pθ,i ∼ Dir(αθ,i),

with αθ,i = (αθ,i,1, . . . ,αθ,i,K), i = 1, . . . , K. The levels of all the multinomial
distributions are the integers n1, . . . , nK .

A Gibbs sampler can be implemented to draw a sample from the posterior
distribution of parameters and states of the model specified above. Given all
the unknown parameters, the states are generated at once from their joint full
conditional distribution using the standard FFBS algorithm. The full condi-
tional distributions of the parameters are easy to derive. We provide here a
detailed derivation of the full conditional distribution of λy, as an example:

π(λy | . . .) ∝ π(y1:T |θ1:T ,ωy,1:T ,λy) · π(λy |ay, by)

∝
T∏

t=1

λ
1
2
y exp

{
−ωy,tλy

2
(yt − Ftθt)

2

}
· λ

a2
y

by
−1

y exp

{
−λy

ay

by

}

∝ λ
T
2 +

a2
y

by
−1

y exp

{

−λy

[
1

2

T∑

t=1

ωy,t(yt − Ftθt)
2 +

ay

by

]}

.

Therefore,

λy| . . . ∼ G
(

a2
y

by
+

T

2
,
ay

by
+

1

2
SS∗

y

)

,

with SS∗
y =

∑T
t=1 ωy,t(yt − Ftθt)2 The following is a summary of all the full

conditional distributions of the unknown parameters.
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• λy:

λy | . . . ∼ G
(

a2
y

by
+

T

2
,
ay

by
+

1

2
SS∗

y

)

,

with SS∗
y =

∑T
t=1 ωy,t(yt − Ftθt)2.

• λθ,i, i = 1, . . . , p:

λθ,i| . . . ∼ G
(

a2
θ,i

bθ,i
+

T

2
,
aθ,i
bθ,i

+
1

2
SS∗
θ,i

)

,

with SS∗
θ,i =

∑T
t=1 ωθ,ti(θti − (Gtθt−1)i)2.

• ωy,t, t = 1, . . . , T :

ωy,t| . . . ∼ G
(

νy,t + 1

2
,
νy,t + λy(yt − Ftθt)2

2

)
.

• ωθ,ti, i = 1, . . . , p, t = 1, . . . , T :

ωθ,ti| . . . ∼ G
(

νθ,ti + 1

2
,
νθ,ti + λθ,i(θti − (Gtθt−1)i)2

2

)
.

• (ay, by):

π(ay , by| . . .) ∝ G(λy ; ay, by) on 0 < ay < Ay , 0 < by < By.

• (aθ,i, bθ,i), i = 1, . . . , p:

π(aθ,i, bθ,i| . . .) ∝ G(λθ,i; aθ,i, bθ,i) on 0 < aθ,i < Aθ,i, 0 < bθ,i < Bθ,i.

• νy,t, t = 1, . . . , T :

π(νy,t = k) ∝ G
(

ωy,t;
k

2
,
k

2

)
· py,k on {n1, . . . , nK}.

• νθ,ti, i = 1, . . . , p, t = 1, . . . , T :

π(νθ,ti = k) ∝ G
(

ωθ,ti;
k

2
,
k

2

)
· pθ,i,k on {n1, . . . , nK}.

• py:
py| . . . ∼ Dir(αy + Ny),

with Ny = (Ny,1, . . . , Ny,K) and, for each k, Ny,k =
∑T

t=1(νy,t = k).
• pθ,i, i = 1, . . . , p:

pθ,i| . . . ∼ Dir(αθ,i + Nθ,i),

with Nθ,i = (Nθ,i,1, . . . , Nθ,i,K) and, for each k, Nθ,i,k =
∑T

t=1(νθ,ti = k).
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Fig. 4.14. UK gas consumption: posterior means of the ωt’s.
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All the full conditional distributions, except for those of ay, by, aθ,i, bθ,i, are
standard. The latter can be drawn from using ARMS. More specifically, we
suggest to use ARMS separately on each pair (a, b).

As an example of the use of the λ − ωt model, consider the time series
of quarterly gas consumption in the UK from 1960 to 1986. The data are
available in R as UKgas. A plot of the data, on the log scale, suggests a
possible change in the seasonal factor around the third quarter of 1970. After
taking logs, we employ a λ − ωt model built on a local linear trend plus
seasonal component DLM to analyze the data. In this model the five-by-five
variance matrix Wt has only three nonzero diagonal elements: the first refers
to the level of the series, the second to the slope of the stochastic linear
trend, and the third to the seasonal factor. We packaged the entire Gibbs
sampler in the function dlmGibbsDIGt, available from the book website. The
parameters ay, by, aθ,1, bθ,1, . . . , aθ,3, bθ,3 are taken to be uniform on (0, 105),
and the parameters of the four Dirichlet distributions of py, pθ,1, pθ,2, pθ,3 are
all equal to 1/19. The posterior analysis is based on 10000 iterations, after a
burn-in of 500 iterations. To improve the mixing, two extra sweeps were run
between every two saved sweeps, that is, the iterations of the sampler after
burn-in were actually 30000.

R code

y <- log(UKgas)
2 set.seed(4521)

MCMC <- 10500
4 gibbsOut <- dlmGibbsDIGt(y, mod = dlmModPoly(2) + dlmModSeas(4),

A_y = 10000, B_y = 10000, p = 3,
6 n.sample = MCMC, thin = 2)

Figure 4.14, obtained with the code below, graphically summarizes the
posterior means of the ωy,t and ωθ,ti, t = 1, ..108, i = 1, 2, 3.

R code

burn <- 1:500
2 nuRange <- c(1:10, seq(20, 100, by = 10))

omega_theta <- ts(apply(gibbsOut$omega_theta[,,-burn], 1:2, mean),
4 start=start(y), freq=4)

layout(matrix(c(1,2,3,4),4,1))
6 par(mar = c(5.1, 4.1, 2.1, 2.1))

plot(ts(colMeans(gibbsOut$omega_y[-burn,]), start=start(y), freq=4),
8 ylim=c(0,1.2), pch = 16, xlab="",

ylab=expression(omega[list(y,t)]), type=’p’)
10 abline(h=1, lty="dashed")

for (i in 1:3)
12 {
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plot(omega_theta[,i], ylim=c(0,1.2), pch = 16, xlab="",
14 ylab=substitute(omega[list(theta,t*i)], list(i=i)),

type=’p’)
16 abline(h=1, lty="dashed")

}

It is clear that there are no outliers and the trend is fairly stable. The
seasonal component, on the other hand, presents several structural breaks,
particularly in the first couple of years of the seventies. The most extreme
change in the seasonal component happened in the third quarter of 1971,
when the corresponding ωt had an estimated value of 0.012. It can also be
seen that after that period of frequent shocks, the overall variability of the
seasonal component remained higher than in the first period of observation.

From the output of the Gibbs sampler one can also estimate the unob-
served components – trend and seasonal variation – of the series. Figure 4.15
provides a plot of estimated trend and seasonal component, together with
95% probability intervals. An interesting feature of a model with time-specific
variances, like the one considered here, is that confidence intervals need not be
of constant width – even after accounting for boundary effects. This is clearly
seen in the example, where the 95% probability interval for the seasonal com-
ponent is wider in the period of high instability of the early seventies. The
following code was used to obtained the plot.

R code

thetaMean <- ts(apply(gibbsTheta,1:2,mean), start=start(y),
2 freq=frequency(y))

LprobLim <- ts(apply(gibbsTheta,1:2,quantile,probs=0.025),
4 start=start(y), freq=frequency(y))

UprobLim <- ts(apply(gibbsTheta,1:2,quantile,probs=0.975),
6 start=start(y), freq=frequency(y))

par(mfrow=c(2,1), mar=c(5.1, 4.1, 2.1, 2.1))
8 plot(thetaMean[,1], xlab="", ylab="Trend")

lines(LprobLim[,1], lty=2); lines(UprobLim[,1], lty=2)
10 plot(thetaMean[,3], xlab="", ylab="Seasonal", type=’o’)

lines(LprobLim[,3], lty=2); lines(UprobLim[,3], lty=2)

4.8 Sequential Monte Carlo

In this Section and the next two we briefly introduce sequential Monte Carlo
methods for state space models. Sequential Monte Carlo provides an alterna-
tive set of simulation-based algorithms to approximate complicated posterior
distributions. It has proved extremely successful when applied to DLMs and
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Fig. 4.15. UK gas consumption: trend and seasonal component, with 95% proba-
bility intervals.

more general state space models – especially in those applications that re-
quire frequent updates of the posterior as new data are observed. Research in
sequential Monte Carlo methods is currently very active and we will not try
to give here an exhaustive review of the field. Instead, we limit ourselves to a
general introduction and a more specific description of a few algorithms that
can be easily implemented in the context of DLMs. For more information the
interested reader can consult the books by Liu (2001), Doucet et al. (2001),
Del Moral (2004), and Cappé et al. (2005).

Particle filtering, which is how sequential Monte Carlo is usually referred
to in applications to state space models, is easier to understand when viewed
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as an extension of importance sampling. For this reason we open this section
with a brief recall of importance sampling.

Suppose one is interested in evaluating the expected value

Eπ(f(X)) =

∫
f(x)π(x)µ(dx). (4.23)

If g is an importance density having the property that g(x) = 0 implies π(x) =
0, then one can write

Eπ(f(X)) =

∫
f(x)

π(x)

g(x)
g(x)µ(dx) = Eg(f(X)w-(X)),

where w-(x) = π(x)/g(x) is the so-called importance function. This suggests
to approximate the expected value of interest by generating a random sample
of size N from g and computing

1

N

N∑

i=1

f(x(i))w-(x(i)) ≈ Eπ(f(X)). (4.24)

In Bayesian applications one can typically evaluate the target density only up
to a normalizing factor, i.e., only C · π(x) can be computed, for an unknown
constant C. Unfortunately, this implies that also the importance function can
only be evaluated up to the same factor C and (4.24) cannot be used directly.
However, letting w̃i = Cw-(x(i)), if one takes f(x) ≡ C, then (4.24) yields

1

N

N∑

i=1

Cw-(x(i)) =
1

N

N∑

i=1

w̃i ≈ Eπ(C) = C. (4.25)

Since the w̃i’s are available, (4.25) provides a way of evaluating C. Moreover,
for the purpose of evaluating (4.23) one does not need an explicit estimate of
the constant C: in fact,

Eπ(f(X)) ≈ 1

N

N∑

i=1

f(x(i))w-(x(i))

=
1
N

∑N
i=1 f(x(i))w̃i

C
≈
∑N

i=1 f(x(i))w̃i
∑N

i=1 w̃i

=
N∑

i=1

f(x(i))wi,

with wi = w̃i/
∑N

j=1 w̃j . Note that: (1) the weights wi sum to one, and (2)

the approximation Eπ(f(X)) ≈
∑N

i=1 f(x(i))wi holds for every well-behaved
function f . Therefore, the sample x(1), . . . , x(N) with the associated weights
wi, . . . , wN can be viewed as a discrete approximation of the target π. In other
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words, writing δx for the unit mass at x, and setting π̂ =
∑N

i=1 wiδx(i) , one
has π ≈ π̂.

In filtering applications, the target distribution changes every time a new
observation is made, moving from π(θ0:t−1|y1:t−1) to π(θ0:t|y1:t). Note that
the former is not a marginal distribution of the latter, even though θ0:t−1 are
the first components of θ0:t. The problem then is how to efficiently update
a discrete approximation of π(θ0:t−1|y1:t−1) when the observation yt becomes
available, in order to obtain a discrete approximation of π(θ0:t|y1:t). For ev-
ery s, let us denote1 by π̂s(θ0:s|y1:s) the approximation of π(θ0:s|y1:s). The

updating process consists of two steps: for each point θ(i)
0:t−1 in the support

of π̂t−1, (1) draw an additional component θ(i)
t to obtain θ(i)

0:t and, (2) up-

date its weight w(i)
t−1 to an appropriate w(i)

t . The weighted points (θ(i)
t , w(i)

t ),
i = 1, . . . , N , provide the new discrete approximation π̂t. For every t, let gt be
the importance density used to generate θ0:t. Since at time t the observations
y1:t are available, gt may depend on them and we will write gt(θ0:t|y1:t) to
make the dependence explicit. We assume that gt can be expressed in the
following form:

gt(θ0:t|y1:t) = gt|t−1(θt|θ0:t−1, y1:t) · gt−1(θ0:t−1|y1:t−1).

This allows to “grow” sequentially θ0:t by combining θ0:t−1, drawn from gt−1

and available at time t−1, and θt, generated at time t from gt|t−1(θt|θ0:t−1, y1:t).
We will call the functions gt|t−1 importance transition densities. Note that only
the importance transition densities are needed to generate θ0:t. Suggestions
about the selection of the importance density are provided at the end of the
section. Let us consider next how to update the weights. One has, dropping
the superscripts for notational simplicity:

wt ∝
π(θ0:t|y1:t)

gt(θ0:t|y1:t)
∝ π(θ0:t, yt|y1:t−1)

gt(θ0:t|y1:t)

∝ π(θt, yt|θ0:t−1, y1:t−1) · π(θ0:t−1|y1:t−1)

gt|t−1(θt|θ0:t−1, y1:t) · gt−1(θ0:t−1|y1:t−1)

∝ π(yt|θt) · π(θt|θt−1)

gt|t−1(θt|θ0:t−1, y1:t)
· wt−1.

Hence, for every i, after drawing θ(i)
t from gt|t−1(θt|θ(i)

0:t−1, y1:t), one can com-

pute the unnormalized weight w̃(i)
t as

w̃(i)
t = w(i)

t−1 ·
π(yt|θ(i)

t ) · π(θ(i)
t |θ(i)

t−1)

gt|t−1(θ
(i)
t |θ(i)

0:t−1, y1:t)
. (4.26)

1 We keep the index s in the notation π̂s because approximations at different times
can be in principle unrelated to one another, while the targets are all derived
from the unique distribution of the process {θi, yj : i ≥ 0, j ≥ 1}.
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• Initialize: draw θ(1)
0 , . . . , θ(N)

0 independently from π(θ0) and set

w(i)
0 = N−1, i = 1, . . . , N .

• For t = 1, . . . , T :
– For i = 1, . . . , N :

· Draw θ(i)
t from gt|t−1(θt|θ

(i)
0:t−1, y1:t) and set

θ(i)
0:t = (θ(i)

0:t−1, θ
(i)
t )

.
· Set

w̃(i)
t = w(i)

t−1 ·
π(θ(i)

t , yt|θ
(i)
t−1)

gt|t−1(θ
(i)
t |θ(i)

0:t−1, y1:t)
.

– Normalize the weights:

w(i)
t =

w̃(i)
t

PN
j=1 w̃(j)

t

.

– Compute

Neff =

 

N
X

i=1

`

w(i)
t

´2

!−1

.

– If Neff < N0, resample:
· Draw a sample of size N from the discrete distribution

P
`

θ0:t = θ(i)
0:t

´

= w(i)
t , i = 1, . . . , N,

and relabel this sample

θ(1)
0:t , . . . , θ(N)

0:t .

· Reset the weights: w(i)
t = N−1, i = 1, . . . , N .

– Set π̂t =
PN

i=1 w(i)
t δ

θ
(i)
0:t

.

Table 4.3. Summary of the particle filter algorithm

The fraction on the left-hand side of equation (4.26), or any quantity propor-
tional2to it, is called the incremental weight. The final step in the updating
process consists in scaling the unnormalized weights:

w(i)
t =

w̃(i)
t

∑N
j=1 w̃(j)

t

.

In practice it is often the case that, after a number of updates have been
performed, a few points in the support of π̂t have relatively large weights, while

2 The proportionality constant may depend on y1:t, but should not depend on θ(i)
t

or θ(i)
0:t−1 for any i.
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all the remaining have negligible weights. This clearly leads to a deterioration
in the Monte Carlo approximation. To keep this phenomenon in control, a
useful criterion to monitor over time is the effective sample size, defined as

Neff =

(
N∑

i=1

(
w(i)

t

)2
)−1

,

which ranges between N (when all the weights are equal) and one (when one
weight is equal to one). When Neff falls below a threshold N0, it is advisable
to perform a resampling step. This consists in drawing a random sample of
size N from π̂t and using the sampled points, with equal weights, as the new
discrete approximation of the target. Table 4.3 contains an algorithmic sum-
mary of particle filtering. Let us stress once again the sequential character of
the algorithm. Each pass of the outermost “for” loop represents the updating
from π̂t−1 to π̂t following the observation of the new data point yt. Therefore,
at any time t ≤ T one has a working approximation π̂t of the current filtering
ditribution.

At time t, a discrete approximation of the filtering distribution π(θt|y0:t)
is immediately obtained as a marginal distribution of π̂t. More specifically, if
π̂t =

∑N
i=1 w(i)δ

θ
(i)
0:t

, we only need to discard the first t components of each

path θ(i)
0:t, leaving only θ(i)

t , to obtain

π(θt|y1:t) ≈
N∑

i=1

w(i)δ
θ
(i)
t

.

As a matter of fact, particle filter is most frequently viewed, as the name itself
suggests, as an algorithm to update sequentially the filtering distribution. Note
that, as long as the transition densities gt|t−1 are Markovian, the incremental

weights in (4.26) only depend on θ(i)
t and θ(i)

t−1, so that, if the user is only
interested in the filtering distribution, the previous components of the path

θ(i)
0:t can be safely discarded. This clearly translates into substantial savings

in terms of storage space. Another, more fundamental, reason to focus on
the filtering distribution is that the discrete approximation provided by π̂t is
likely to be more accurate for the most recent components of θ0:t than for the
initial ones. To see why this is the case, consider, for a fixed s < t, that the

θ(i)
s ’s are generated at a time when only y0:s is available, so that they may

well be far from the center of their smoothing distribution π(θs|y0:t), which is
conditional on t− s additional observations.

We conclude this section with practical guidelines to follow in the selec-
tion of the importance transition densities. In the context of DLM, as well
as for more general state space models, two are the most used importance
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transition densities. The first is gt|t−1(θt|θ0:t−1, y1:t) = π(θt|θt−1), i.e., the ac-
tual transition density of the Markov chain of the states. It is clear that in
this way all the particles are drawn from the prior distribution of the states,
without accounting for any information provided by the observations. The
simulation of the particles and the calculation of the incremental weights are
straightforward. However, most of the times the generated particles will fall
in regions of low posterior density. The consequence will be an inaccurate dis-
crete representation of the posterior density and a high Monte Carlo variance
for the estimated posterior expected values. For these reasons we discourage
the use of the prior as importance density. A more efficient approach, that
accounts for the observations in the importance transition densities, consists
in generating θt from its conditional distribution given θt−1 and yt. In view
of the conditional independence structure of the model, this is the same as
the conditional distribution of θt given θ0:t−1 and y1:t. Therefore, in this way
one is generating θt from the target (conditional) distribution. However, since

θt−1 is not drawn from the target, the particles θ(i)
0:t are not draws from the

target distribution3and the incremental importance weights need to be eval-
uated. Applying standard results about Normal models, it is easily seen that
the importance transition density gt|t−1 is a Normal density with mean and
variance given by

E(θt|θt−1, yt) = Gtθt−1 + WtF
′
tΣ

−1
t (yt − FtGgθt−1),

Var(θt|θt−1, yt) = Wt −WtF
′
tΣ

−1
t FtWt,

where Σt = FtWtF ′
t + Vt. Note that for time-invariant DLMs the conditional

variance above does not depend on t and can therefore be computed once and
for all at the beginning of the process. The incremental weights, using this
importance transition density, are proportional to the conditional density of

yt given θt−1 = θ(i)
t−1, i.e., to the N (FtGtθ

(i)
t−1,Σt) density, evaluated at yt.

4.9 Auxiliary particle filter

For a fully specified DLM, i.e., one containing no unknown paremters, the
algorithm discussed in the previous section, employing the optimal transi-
tion kernel and resampling whenever the effective sample size falls below a
given threshold, typically provides fairly good sequential approximations to
the filtering or smoothing distributions. For nonlinear and/or nonnormal state
space models the general framework of the previous section still applies, but
devising effective importance transition densities is much harder. In fact, the
transition density of the optimal kernel may not be available in closed form
and one has to devise alternative importance densities. The auxiliary parti-
cle filter algorithm was proposed by Pitt and Shephard (1999) to overcome

3 The reason for this apparent paradox is that the target distribution changes from
time t − 1 to time t. When one generates θt−1, the observation yt is not used.
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this difficulty, in the context of general state space models. While not really
needed for fully specified DLMs, an extension of the algorithm, due to Liu
and West (2001), turns out to be very useful even in the DLM case when
the model contains unknown parameters. For this reason we present Pitt and
Shephard’s auxiliary particle filter here, followed in the next section by Liu
and West’s extension to deal with unknown model parameters.

Suppose that at time t−1 a discrete approximation π̂t−1 =
∑N

i=1 w(i)
t−1δθ(i)0:t−1

to the joint smoothing distribution π(θ0:t−1|y1:t−1) is available. The goal is
to update the approximate smoothing distribution when a new data point is
observed or, in other words, to obtain a discrete approximation π̂t to the joint
smoothing distribution at time t, π(θ0:t|y1:t). We have:

π(θ0:t|y1:t) ∝ π(θ0:t, yt|y1:t−1)

= π(yt|θ0:t, y1:t−1) · π(θt|θ0:t−1, y1:t−1) · π(θ0:t−1|y1:t−1)

= π(yt|θt) · π(θt|θt−1) · π(θ0:t−1|y1:t−1)

≈ π(yt|θt) · π(θt|θt−1) · π̂t−1(θ0:t−1)

=
N∑

i=1

w(i)
t−1π(yt|θt)π(θt|θ(i)

t−1)δθ(i)0:t−1
.

Note that the last expression is an unnormalized distribution for θ0:t which is
discrete in the first t components and continuous in the last, θt. This distri-
bution, which approximates π(θ0:t|y1:t), can be taken to be our target for an
importance sampling step. The target being a mixture distribution, a stan-
dard approach to get rid of the summation is to introduce a latent variable I,
taking values in {1, . . . , N}, such that:

P(I = i) = w(i)
t−1,

θ0:t|I = i ∼ Cπ(yt|θt)π(θt|θ(i)
t−1)δθ(i)0:t−1

.

Thus extended, the target becomes

πaux(θ0:t, i|y1:t) ∝ w(i)
t−1π(yt|θt)π(θt|θ(i)

t−1)δθ(i)0:t−1

The importance density suggested by Pitt and Shephard for this target is

gt(θ0:t, i|y1:t) ∝ w(i)
t−1π(yt|θ̂(i)

t )π(θt|θ(i)
t−1)δθ(i)0:t−1

,

where θ̂(i)
t is a central value, such as the mean or the mode, of π(θt|θt−1 =

θ(i)
t−1). A sample from gt is easily obtained by iterating, for k = 1, . . . , N , the

following two steps.

1. Draw a classification variable Ik, with

P(Ik = i) ∝ w(i)
t−1π(yt|θ̂(i)

t ), i = 1, . . . , N.
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• Initialize: draw θ(1)
0 , . . . , θ(N)

0 independently from π(θ0) and set

w(i)
0 = N−1, i = 1, . . . , N .

• For t = 1, . . . , T :
– For k = 1, . . . , N :

· Draw Ik, with P(Ik = i) ∝ w(i)
t−1π(yt|θ̂

(i)
t ).

· Draw θ(k)
t from π(θt|θt−1 = θ(Ik)

t−1 ) and set

θ(k)
0:t =

`

θ(Ik)
0:t−1, θ

(k)
t

´

.

· Set

w̃(k)
t =

π(yt|θ
(k)
t )

π(yt|θ̂
(k)
t )

.

– Normalize the weights:

w(i)
t =

w̃(i)
t

PN
j=1 w̃(j)

t

.

– Compute

Neff =

 

N
X

i=1

`

w(i)
t

´2

!−1

.

– If Neff < N0, resample:
· Draw a sample of size N from the discrete distribution

P
`

θ0:t = θ(i)
0:t

´

= w(i)
t , i = 1, . . . , N,

and relabel this sample

θ(1)
0:t , . . . , θ(N)

0:t .

· Reset the weights: w(i)
t = N−1, i = 1, . . . , N .

– Set π̂t =
PN

i=1 w(i)
t δ

θ
(i)
0:t

.

Table 4.4. Summary of the auxiliary particle filter algorithm

2. Given Ik = i, draw

θ(k)
t ∼ π(θt|θ(i)

t−1)

and set θ(k)
0:t = (θ(i)

0:t−1, θ
(k)
t ).

The importance weight of the kth draw from gt is proportional to

w̃(k)
t =

w(Ik)
t−1 π(yt|θ(k)

t )π(θ(k)
t |θ(k)

t−1)

w(Ik)
t−1 π(yt|θ̂(k)

t )π(θ(k)
t |θ(k)

t−1)
=

π(yt|θ(k)
t )

π(yt|θ̂(k)
t )

.

After normalizing the w̃(k)
t ’s and discarding the classification variables Ik’s, we

finally obtain the discrete approximation to the joint smoothing distribution
at time t:
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π̂t(θ0:t) =
N∑

i=1

w(i)
t δ

θ(i)0:t
≈ π(θ0:t|y1:t).

As with the standard algorithm of Section 4.8, a resampling step is commonly
applied in case the effective sample size drops below a specified threshold. A
summary of the auxiliary particle filter is provided in Table 4.4

The main advantage of auxiliary particle filter over the simple direct al-
gorithm described in the previous section consists in the fact that it allows
to use the one-step prior distribution π(θt|θt−1) to draw θt without loosing
much efficiency. Loosely speaking, when drawing from gt, the role of the first
step is to pre-select a conditioning θt−1 that is likely to evolve into a highly
plausible θt in the light of the new observation yt. In this way possible conflicts
between prior – π(θt|θt−1) – and likelihood – π(yt|θt) – are minimized. While
for a DLM deriving the optimal instrumental kernel is straightforward, for a
general state space model this is not the case, so that efficiently using the
prior distribution, which is almost always available, as importance transition
kernel provides a substantial simplification.

4.10 Sequential Monte Carlo with unknown parameters

In real applications the model almost invariably contains unknown parameters
that need to be estimated from the data. Denoting again by ψ the vector
of unknown parameters, the target distribution at time t for a sequential
Monte Carlo algorithm is therefore in this case π(θ0:t,ψ|y1:t). As detailed
in Section 4.4, a (weighted) sample from the forecast distributions can be
easily obtained once a (weighted) sample from the joint posterior distribution
is available. On the other hand, the filtering distribution and the posterior
distribution of the parameter can be trivially obtained by marginalization.
A simple-minded approach to sequential Monte Carlo for a model with an
unknown parameter is to extend the state vector to include ψ as part of
it, defining the trivial dynamics ψt = ψt−1 (= ψ). In this way a relatively
simple DLM typically becomes a nonlinear and nonnormal state space model.
However, the most serious drawback is that, applying the general algorithm

of Section 4.8 (or the auxiliary particle filter of Section 4.9), the values ψ(i)
t ,

i = 1, . . . , N . are those drawn at time t = 0, since there is no evolution for

this fictitious state. In other words, ψ(i)
t = ψ(i)

0 for every i and t, so that the

ψ(i)
t ’s, drawn from the prior distribution, are typically not representative of

the posterior distribution at a later time t > 0. It is true that, as the particle
filter algorithm is sequentially applied, the weights are adjusted to reflect the
changes of the target distributions. However, this can only account for the

relative weights: if the ψ(i)
t ’s happen to be all in the tails of the marginal

target π(ψ|y1:t), the discrete approximation provided by the algorithm will
always be a poor one. There is, in view of the previous considerations, a
need to “refresh” the sampled values of ψ in order to follow the evolution
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of the posterior distribution. This can be achieved by discarding the current
values of ψ each time the target changes and generating new ones. Among
the different available methods, probably the most commonly used is the one
proposed by Liu and West (2001) and described below, which extends the
auxiliary particle filter. Gilks and Berzuini (2001) and Storvik (2002) propose
interesting alternative algorithms.

The idea of Liu and West essentially consists in constructing an approxi-
mate target distribution at time t which is continuous not only in θt, but also
in ψ, so that using importance sampling one draws values of ψ from a contin-
uous importance density, effectively forgetting about the values of ψ used in
the discrete approximation at time t−1. Consider the discrete approximation
available at time t− 1:

π̂t−1(θ0:t−1,ψ) =
N∑

i=1

w(i)
t−1δ(θ

(i)
0:t−1,ψ(i))

≈ π(θ0:t−1,ψ|y0:t−1).

Marginally,

π̂t−1(ψ) =
N∑

i=1

w(i)
t−1δψ(i) ≈ π(ψ|y0:t−1).

Liu and West suggest to replace each point mass δψ(i) with a Normal distri-
bution, so that the resulting mixture becomes a continuous distribution. The
most natural way of doing so would be to replace δψ(i) with a Normal centered

at ψ(i). However, while preserving the mean, this would increase the variance
of the approximating distribution. To see that this is the case, let ψ̄ and V be
the mean vector and variance matrix of ψ under π̂t−1, and let

π̃t−1(ψ) =
N∑

i=1

w(i)
t−1N (ψ;ψ(i),Λ).

Introducing a latent classification variable I for the component of the mixture
an observation comes from, we have

E(ψ) = E(E(ψ|I)) = E(ψ(I))

=
N∑

i=1

w(i)
t−1ψ

(i) = ψ̄;

Var(ψ) = E(Var(ψ|I)) + Var(E(ψ|I))

= E(Λ) + Var(ψ(I))

= Λ + V > V,

where expected values and variances are with respect to π̃t−1. However, by
changing the definition of π̃t−1 to

π̃t−1(ψ) =
N∑

i=1

w(i)
t−1N (ψ; m(i), h2V ),
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with m(i) = aψ(i) + (1− a)ψ̄ for some a in (0, 1) and a2 + h2 = 1, we have

E(ψ) = E(E(ψ|I)) = E(aψ(I) + (1− a)ψ̄)

= aψ̄ + (1− a)ψ̄ = ψ̄;

Var(ψ) = E(Var(ψ|I)) + Var(E(ψ|I))

= E(h2V ) + Var(aψ(I) + (1− a)ψ̄)

= h2V + a2Var(ψ(I)) = h2V + a2V = V.

Thus, ψ has the same first and second moment under π̃t−1 and π̂t−1. Albeit
this is true for any a in (0, 1), in practice Liu and West recommend to set
a = (3δ − 1)/(2δ) for a “discount factor” δ in (0.95, 0.99), which corresponds
to an a in (0.974, 0.995). The very same idea can be applied even in the
presence of θ0:t−1 to the discrete distribution π̂t−1(θ0:t−1,ψ), leading to the
extension of π̃t−1 to a joint distribution for θ0:t−1 and ψ:

π̃t−1(θ0:t−1,ψ) =
N∑

i=1

w(i)
t−1N (ψ; m(i), h2V )δ

θ
(i)
0:t−1

.

Note that π̃t−1 is discrete in θ0:t−1, but continuous in ψ. From this point
onward, the method parallels the development of the auxiliary particle filter.
After the new data point yt is observed, the distribution of interest becomes

π(θ0:t,ψ|y1:t) ∝ π(θ0:t,ψ, yt|y1:t−1)

= π(yt|θ0:t,ψ, y1:t−1) · π(θt|θ0:t−1,ψ, y1:t−1) · π(θ0:t−1,ψ|y1:t−1)

= π(yt|θt,ψ) · π(θt|θt−1,ψ) · π(θ0:t−1,ψ|y1:t−1)

≈ π(yt|θt,ψ) · π(θt|θt−1,ψ) · π̃t−1(θ0:t−1,ψ)

=
N∑

i=1

w(i)
t−1π(yt|θt,ψ)π(θt|θ(i)

t−1,ψ)N (ψ; m(i), h2V )δ
θ
(i)
0:t−1

.

Similarly to what we did in Section 4.9, we can introduce an auxiliary classi-
fication variable I such that:

P(I = i) = w(i)
t−1,

θ0:t,ψ|I = i ∼ Cπ(yt|θt,ψ)π(θt|θ(i)
t−1,ψ)N (ψ; m(i), h2V )δ

θ(i)0:t−1
.

Note that the conditional distribution in the second line is continuous in
θt and ψ, and discrete in θ0:t−1 – in fact, degenerate on θ(i)

0:t−1. With the
introduction of the random variable I, the auxiliary target distribution for
the importance sampling update becomes

πaux(θ0:t,ψ, i|y1:t) ∝ w(i)
t−1π(yt|θt,ψ)π(θt|θ(i)

t−1,ψ)N (ψ; m(i), h2V )δ
θ(i)0:t−1

.

As an importance density, a convenient choice is
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• Initialize: draw (θ(1)
0 ,ψ(1)), . . . , (θ(N)

0 ,ψ(N)) independently from

π(θ0)π(ψ). Set w(i)
0 = N−1, i = 1, . . . , N , and

π̂0 =
N
X

i=1

w(i)
0 δ

(θ
(i)
0 ,ψ(i))

.

• For t = 1, . . . , T :
– Compute ψ̄ = Eπ̂t−1 (ψ) and V = Varπ̂t−1(ψ). Set

m(i) = aψ(i) + (1 − a)ψ̄, i = 1, . . . , N.

– For k = 1, . . . , N :
· Draw Ik, with P(Ik = i) ∝ w(i)

t−1π(yt|θt = θ̂(i)
t ,ψ = m(i)).

· Draw ψ(k) from N (m(Ik), h2V ).

· Draw θ(k)
t from π(θt|θt−1 = θ(Ik)

t−1 ,ψ = ψ(k)) and set

θ(k)
0:t =

`

θ(Ik)
0:t−1, θ

(k)
t

´

.

· Set

w̃(k)
t =

π(yt|θt = θ(k)
t ,ψ = ψ(k))

π(yt|θt = θ̂(k)
t ,ψ = m(Ik))

.

– Normalize the weights:

w(i)
t =

w̃(i)
t

PN
j=1 w̃(j)

t

.

– Compute

Neff =

 

N
X

i=1

`

w(i)
t

´2

!−1

.

– If Neff < N0, resample:
· Draw a sample of size N from the discrete distribution

P
`

(θ0:t,ψ) = (θ(i)
0:t,ψ

(i))
´

= w(i)
t , i = 1, . . . , N,

and relabel this sample

(θ(1)
0:t ,ψ(1)), . . . , (θ(N)

0:t ,ψ(N)).

· Reset the weights: w(i)
t = N−1, i = 1, . . . , N .

– Set π̂t =
PN

i=1 w(i)
t δ

(θ
(i)
0:t,ψ(i))

.

Table 4.5. Summary of Liu and West’s algorithm
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gt(θ0:t,ψ, i|y1:t) ∝ w(i)
t−1π(yt|θt = θ̂(i)

t ,ψ = m(i))π(θt|θ(i)
t−1,ψ)N (ψ; m(i), h2V )δ

θ(i)0:t−1
,

where θ̂(i)
t is a central value, such as the mean or the mode, of π(θt|θt−1 =

θ(i)
t−1,ψ = m(i)). A sample from gt can be obtained by iterating, for k =

1, . . . , N , the following three steps.

1. Draw a classification variable Ik, with

P(Ik = i) ∝ w(i)
t−1π(yt|θt = θ̂(i)

t ,ψ = m(i)), i = 1, . . . , N.

2. Given Ik = i, draw ψ ∼ N (m(i), h2V ) and set ψ(k) = ψ.
3. Given Ik = i and ψ = ψ(k), draw

θ(k)
t ∼ π(θt|θt−1 = θ(i)

t−1,ψ = ψ(k))

and set θ(k)
0:t = (θ(i)

0:t−1, θ
(k)
t ).

The importance weight of the kth draw from gt is proportional to

w̃(k)
t =

w(Ik)
t−1 π(yt|θt = θ(k)

t ,ψ = ψ(k))π(θ(k)
t |θ(k)

t−1,ψ
(k))N (ψ(k); m(Ik), h2V )

w(Ik)
t−1 π(yt|θt = θ̂(k)

t ,ψ = m(Ik))π(θ(k)
t |θ(k)

t−1,ψ
(k))N (ψ(k); m(Ik), h2V )

=
π(yt|θt = θ(k)

t ,ψ = ψ(k))

π(yt|θt = θ̂(k)
t ,ψ = m(Ik))

.

Renormalizing the weights, we obtain the approximate joint posterior distri-
bution at time t

π̂t(θ0:t,ψ) =
N∑

i=1

w(i)
t δ

(θ
(i)
0:t,ψ(i))

≈ π(θ0:t,ψ|y1:t).

As usual, a resampling step can be applied whenever the effective sample size
drops below a specified threshold. Table 4.5 provides a convenient summary
of the algorithm.

As a final remark, let us point out that, in order for the mixture of nor-
mals approximation of the posterior distribution at time t to make sense, the
parameter ψ has to be expressed in a form which is consistent with such a
distribution – in particular, the support of a one-dimensional parameter must
be the entire real line. For example, variances can be parametrized in terms
of their log, probabilities in terms of their logit, and so on.
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Further developments and advanced examples

In Chapter 4 we have discussed the basic issues of Bayesian analysis for DLMs,
and here we present further examples, in particular for multivariate time se-
ries. Indeed, the Bayesian approach is particularly effective in treating mul-
tivariate series, allowing to model quite naturally the dependence structure
of the data. Furthermore, even in complex models, computations can be de-
veloped using modern Monte Carlo techniques. In fact, the development of
powerful computational tools allows to move from linear Gaussian models to
more general state space models. In the last section, we will briefly discuss
some more advanced applications and directions for developments.

5.1 Missing data

Gibbs sampling with missing data

5.2 Model selection/comparison

5.3 Multivariate models

5.3.1 Time series of cross sectional models

Bayesian inference for SUTSE, hierarchical DLM, other examples...
Example. Let us consider again the data on Spain and Denmark invest-

ments (Section 3.3.2). We are going to fit a SUTSE model with both Wµ and
Wβ not zero. The prior for the precisions Φ0 = V −1,Φ1 = W−1

µ and φ2 = W−1
β

are (independent) Wishart distributions with parameters S0 and ν0, S1 and ν1,
S2 and ν2, respectively. In this specific case we assume ν0 = ν1 = ν2 = 2 and
S0 = S1 = S2 with S−1

0 equal to sample covariance between (yt1, t = 1, 2, · · · )
and (yt2, t = 1, 2, · · · ).
The full conditional of Φ0 is W (ν0 +T/2, S0 +1/2

∑T
t=1(yt−Fθt)(yt−Fθt)

′

)
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and the full conditional of Φi, for i = 1, 2, is W (νi +T/2, Si+1/2
∑T

t=1 SSii,t)
where SSii,t is defined in Section ??. The Gibbs sampling generates in turn
the state vectors θt, V , Wµ and Wβ . We set the number of MCMC samples to
10,000 and we remove the first 1000 iterations as burn-in. The ergodic means
of all parameters (not displayed here) show that the convergence has been
achieved. In the display below are given for the parameters V , Wµ, Wβ the
estimates of the posterior means, their estimated standard errors, obtained
by using the function mcmcMeans.

R code

> meanV <- round(cbind(mcmcMeans(gibbsV[-burn,1,1]),
2 + mcmcMeans(gibbsV[-burn,2,2]),

+ mcmcMeans(gibbsV[-burn,2,1])),4);meanV
4 [,1] [,2] [,3]

mean 24.2210 34857.4228 304.7083 sd 0.0904 125.5578 2.3393
6 > meanWmu <- round(cbind(mcmcMeans(gibbsWmu[-burn,1,1]),

+ mcmcMeans(gibbsWmu[-burn,2,2]),
8 + mcmcMeans(gibbsWmu[-burn,2,1])),4);meanWmu

[,1] [,2] [,3]
10 mean 12.4505 29523.7481 121.1562 sd 0.0450 106.3611 1.5000

> meanWbeta <- round(cbind(mcmcMeans(gibbsWbeta[-burn,1,1]),
12 + mcmcMeans(gibbsWbeta[-burn,2,2]),

+ mcmcMeans(gibbsWbeta[-burn,2,1])),4);meanWbeta
14 [,1] [,2] [,3]

mean 12.9639 50877.1045 131.7372 sd 0.0470 178.6172 2.0368

Figures 5.1 and 5.2 show the Bayesian estimate of the level for Denmark
investment and Spain investment respectively.

5.3.2 Conditionally Gaussian DLMs

GARCH??

5.3.3 Factor models

Example. We extract the common stochastic trend from the federal funds rate
(short rate) and 30-year conventional fixed mortgage rate (long rate), obtained
from Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred2/).
(Y. et al.; 2005, See). These series are sampled at weekly intervals over the
period April 7, 1971 trough September 8, 2004, and we transform them by
taking the natural logarithm one plus the interest rate. The transformed series
are illustrated in Figure 5.3 To extract a common trend in the bivariate time
series ((yt1, yt2) : t ≥ 1), we assume the following factor model:
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Fig. 5.1. Bayesian estimate of the level for Denmark investment
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Fig. 5.2. Bayesian estimate of the level for Spain investment

{
Yt = Aµt + µ0 + vt, vt ∼ N (0, V ),

µt = µt−1 + wt, wt ∼ N (0,σ2
w),

(5.1)

where the 2 by 1 matrix A is set to be A =
[
1 α
]′

for ensuring the parameters

identification and µ0 =
[
1 µ̄
]′

The latent variable µt is defined as a random
walk and may be regarded as a common stochastic trend in Yt.
In the usual DLM notation the model can be written in the form
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Fig. 5.3. Log of one plus the federal funds rate (FF) and the 30-year mortgage rate
(WMORTG)






Yt =

[
1 0
α 1

]
θt + vt,

θt =

[
1 0
0 1

]
θt−1 +

[
wt

0

]
,

(5.2)

with

V =

[
V11 V12

V12 V22

]
,

W = diag(σ2
µ, 0)

The prior we select for α is a N (0, 42). For the precision (σ2
µ)−1 and V −1

we assume independent gamma prior distribution G(a2

b , a
b ) and Wishart prior

distribution with parameter S0 and ν0 degrees of freedom, respectively. In this
specific case, we set a = 1, b = 1000, ν0 = 2 and S−1

0 equal to sample covari-
ance between (yt1, t = 1, 2, · · · ) and (yt2, t = 1, 2, · · · ). A hybrid sampler can
draw in turn the α parameter from π(α|σ2

µ, V, y1:T ), the states, the precision
V −1 from its full conditional distribution given the states, the observations
and α parameter

W

(
ν0 +

T

2
, +S0 +

1

2

T∑

t=1

(yt − Fθt)(yt − Fθt)
′

)

and the precision (σ2
µ)−1 from its full conditional distribution given the states

and the observations

G
(

a2

b
+

T

2
,
a

b
+

1

2

T∑

t=1

(θt,1 − (Gθt−1)1)
2
)
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Generating a sample of size 5000 and discarding the first 500 draws as burn in,
we look some diagnostic plots. We plot the running ergodic means, obtained
by using the function ergmean, of the simulated parameter α, of the simulated

standard deviation σµ, of the simulated standard deviations V 1/2
11 and V 1/2

22

(Figure 5.4). The estimates appear stable in the last part of the plot. In the
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Fig. 5.4. Running ergodic means

display below are given for the parameters α, V and σ2
µ the estimates of

the posterior means, their estimated standard errors, obtained by using the
function mcmcMeans, and their equal-tail 90% probability intervals.

R code

> round(mcmcMeans(gibbsAlpha[-burn,]),4)
2 [,1]

mean 0.0849
4 sd 0.0047

> round(quantile(gibbsAlpha[-burn,], probs=c(0.05,0.95)),4)
6 5% 95%

-0.4474 0.6189
8 > round(mcmcMeans(sqrt(gibbsV[-burn,1,1])),4)

[,1]
10 mean 1.8953

sd 0.0005
12 > round(quantile(sqrt(gibbsV[-burn,1,1]), probs=c(0.05,0.95)),4)
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5% 95%
14 1.8447 1.9476

> round(mcmcMeans(sqrt(gibbsV[-burn,2,2])),4)
16 [,1]

mean 1.4274
18 sd 0.0003

> round(quantile(sqrt(gibbsV[-burn,2,2]), probs=c(0.05,0.95)),4)
20 5% 95%

1.3898 1.4676
22 > round(mcmcMeans(gibbsV[-burn,2,1]),4)

[,1]
24 mean -2.3166

sd 0.0012
26 > round(quantile(gibbsV[-burn,2,1], probs=c(0.05,0.95)),4)

5% 95%
28 -2.4567 -2.1828

> round(mcmcMeans(sqrt(gibbsW[-burn,])),4)
30 [,1]

mean 0.0136
32 sd 0.0005

> round(quantile(sqrt(gibbsW[-burn,]), probs=c(0.05,0.95)),4)
34 5% 95%

0.0099 0.0180

The Figure 5.5 displays graphically the posterior mean of the common stochas-
tic trend, together with the data. Note that the common trend is very similar
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Fig. 5.5. Posterior mean of the common stochastic trend
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to the long rate.
Moreover from the equations (5.2) we obtain

Yt2 = α(Yt1 − vt1) + µ̄ + vt2

Then the long-run equilibrium relation of the components of Yt is the station-
ary component

[
−α 1

] [Yt1

Yt2

]
= vt2 − αvt1 + µ̄

where β =

[
−α
1

]
is the cointegrating vector. The Figure 5.6 displays the mean

posterior stationary component. Note that this component resembles the short
rate and does not appear to be completely stationary.
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Fig. 5.6. Stationary component

5.3.4 Bayesian VAR

Bayesian inference for VAR models ...
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5.4 Further topics...

Here, we just give a brief overview with references – see also Chapter 2.

• Non linear, non gaussian state space models
• Stochastic volatility models
• Hidden Markov models
• Processes in continuous time
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