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Abstract 

Nonparametric estimators of at-site flood frequency using annual maximum 

flow data present an alternative to methods that a priori assume a specific probability 

distribution function. They approximate a wide class of distribution functions. Past 

work in this direction using kernel density and quantile estimators is extended here 

using a higher order approximation technique, locally weighted polynomial 

regression, for estimating the quantile function. An empirical investigation of the 

performance of this method relative to selected alternatives and for selected target 

distributions is presented here. 
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Introduction 

Flood frequency analysis entails relating the magnitude of annual maximum 

flood events to their frequency of occurrence at a gauged site. The typical interest in 

estimating extreme flood quantiles i.e. - 100-year or 500-year flood, from a small 

number of observations (~50 to 100 years) for the magnitude of the design of 

hydraulic structures such as dams, culverts and bridges. Traditional parametric 

methods for this problem assume that the annual maximum floods are independent 

and identically distributed and drawn from a population with a known probability 

density function (pdf). An appropriate pdf is selected from a candidate set or 

mandated by a regulatory agency for at site applications. Typical distributions that are 

prescribed by agencies such as USBR, USGS and widely used in practice are Log-

Pearson Type III, Log-Normal and Extreme Value distributions (see Kite, 1977, 

Chow et al., 1988). There are statistical tests to discriminate between choices of 

distributions including L-moments based (see Kite, 1977; Hosking, 1990; Vogel and 

McMartin, 1991; Vogel 1986). However, often, it is difficult to discriminate between 

candidate models for a given data set, and the best fit criteria emphasize the bulk of 

the distribution rather than its tails. Consequently, there is considerable uncertainty as 

to the best underlying model for the estimation of the upper flood quantiles. 

Nonparametric methods, on the other hand, do not assume a distributional 

form to the data. Rather, the flood magnitude at any quantile is estimated by locally 

smoothing the empirical quantile function of the data or estimating the pdf using a 

kernel based estimator. Because the method is “local”, in that estimates of the 

function at a point are based on data points in its neighborhood – this provides the 

ability to better capture an arbitrary features exhibited by  the data and furthermore, 

easily portable across sites. For the estimation of tail quantiles, an extrapolation rather 
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than interpolation of the empirical quantile function is needed. The “local” estimation 

procedure inherent in nonparametric flood frequency analysis translates into a model 

for tail probability estimation. Traditional tail probability estimators consider specific 

models of tail behavior whose parameters are to be estimated. Typically, a threshold 

beyond which the tail probability model should be applied also needs to be inferred 

from the data. Moon et al (1994) demonstrated that kernel based methods often 

performed better in practice than some of the tail probability models that are 

commonly used. In this paper, we present a higher order nonparametric estimation 

scheme that improves further on the kernel quantile estimations presented by Moon et 

al (1994).  

Nonparametric flood frequency estimators were developed and studied by 

Schuster and Yakowitz (1985), Adamowski (1985, 1989), Adamowski and Feluch 

(1990), Bardley (1988, 1989) and more recently Lall et al. (1993), Moon et al. (1993) 

and Moon and Lall (1994). Lall et al. (1993) developed a kernel based quantile 

estimator, where in, a kernel density estimator is used to estimate the probability 

distribution function and consequently, the quantiles of interest. They also showed 

that parametric estimates based on the distribution function are more appropriate than 

those based on density estimates in the flood frequency context. Kernel density based 

estimators while easy to implement, suffer from (1) loss of efficiency of estimation 

with respect to the true distribution, (2) an uncertain and likely negligible ability to 

extrapolate beyond the data (Lall et al., 1993) and (3) oversmooth the distribution 

function. Adamowski (1989) suggested a variable bandwidth kernel density estimator 

that addresses the extrapolation problem. Later Moon and Lall (1994) developed a 

nonparametric kernel based regression estimator for quantiles. Here, the empirical 

quantile function is smoothed using a kernel regression estimator. They find that both, 
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the density and regression based estimators are competitive to other estimators. 

However, both these nonparametric quantile estimators suffer from boundary 

problems, i.e., the tail quantiles are biased (Lall et al., 1993; Moon and Lall, 1994). 

Here, we present a local polynomial (Loader, 1999) based estimator that improves 

upon the kernel regression estimator. 

The local polynomial estimator is first described. We then compare the 

performance of this estimator with traditional parametric estimators on a suite of 

synthetic data set, followed by their comparison on two streamflow data sets. 

 

Local Polynomial Estimator 

Given an n-year historical record of annual maximum floods, we can define 

the empirical quantile function through the following set of ordered pairs: (Xi, Yi), i = 

1,2,…,n where )500()250( .n.iX i +−= , Yi = ranked annual maximum flood data (in 

this study, we use log-transformed Yi). The Xi are the so-called plotting positions, and 

one can use any other formula of interest for the purpose. Here Adamowski’s (1981) 

formula is used. 

Then, we consider a general model for the quantile function as:  

iii  ε) X µ Y += (   (1) 

where  is a nonlinear function, are assumed to be identically distributed 

errors with mean 0 and finite variance, and it is understood that 

)µ (. iε

∈iX  [0,1]. 

In this context if we consider the estimation of the T year flood, then we are 

interested in an estimate )( TXµ  such that TX T /11−= . The specific proposal 

advanced here is that )TX(µ  be estimated using locally weighted polynomial 

regression, where we assume that )( TXµ  is a general function that is continuous and 
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has (p-1) derivatives. Hence, it is reasonable to approximate )( TXµ  using a local 

polynomial of order p, following Taylor series arguments. “Local”, here refers to an 

approximation in the neighborhood of . The size of the neighborhood depends on 

the smoothness of the target regression function and on the nature of the residual 

process, ε . 

TX

)n

i

α

(Xh

( iX)i 1≤u

)(Xµ

1a+

0

)( iY

For details as to the specific local polynomial estimation method (LOCFIT) 

used here see Loader (1999). The estimation algorithm is summarized below: 

1. For any point of estimate, (,kX T = , nearest neighbors (i.e. nearest data points) 

are identified, where a varies from 0 to 1 (when 1=α  then all the data points are 

neighbors to ). The bandwidth of this window of k neighbors around 

 is the distance to the kth neighbor. For tail quantiles, this translates into the 

number of upper order statistics that are used to fit a polynomial tail quantile 

model.  

TX )T

TX

2. Each of the k data pairs used is then weighted according to the distance to T via a 

weight function (e.g. Bisquare, Tricubic etc.). The Bisquare weight is given as 

, where u22 )1(16/15( iuuW −= )(/) TT XhX−= , and . 

3. Within the smoothing window (i.e. with the k neighbors), is approximated 

by a polynomial order p. For example, a local quadratic model would be 

2
20 )()()( XaXaX +=µ  (2) 

The coefficients of the polynomial a , and are obtained by minimizing the 

weighted least squares function, 

1a 2a

2

1

))(( iT

k

i
i XXW µ−∑

=

 (3) 

These steps are repeated for each estimation point. 
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The key parameters identify are the optimal number of neighbors k and the 

order of polynomial p. These are obtained via minimization of a Generalized Cross 

Validation (GCV) function described below. If h(X) is too small, insufficient data fall 

within the smoothing window, the local polynomial fits the data very noisy. The 

resulting regression will have large variance. On the other hand, if h(X) is too large, 

the local polynomial may not fit the data well within the smoothing window, and 

important features of the mean function )(Xµ  may be distorted i.e., the model will 

have a large bias. Therefore, the bandwidth must be chosen to compromise this bias-

variance trade-off.  Similar to the bandwidth, the degree of the local polynomial p, 

affects the bias-variance trade-off. A higher polynomial degree may provide a better 

approximation to the target function )(Xµ  than a low polynomial degree. Thus, 

fitting a high degree polynomial will usually lead to an estimate )(Xµ  with less bias. 

But high order polynomial has large numbers of coefficients to estimate, and the 

result is higher variability of the estimate. 

It often suffices to choose a low order polynomial and concentrate on choosing 

the bandwidth to obtain a satisfactory fit. Typically, in parametric regression, mean 

squared error is used to assess the performance of the fit. However, this is a poor 

indicator of future performance of the model (i.e. predictive error). Craven and 

Wahba (1979) developed a measure called the GCV (similar to the AIC or BIC) that 

approximates predictive risk.  
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where n is the sample size, ( )ii XY µ̂−  is the residual and hii are the diagonal 

terms of the hat matrix H. The hat matrix can be estimated using standard linear 
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regression procedures –typically, it is ( ) TT XXXX 1− . For fairly small datasets Loader 

(1999) suggests the use of the cross validation (CV) function: 

∑
=

−−
n

i
iii XY

1
(µ̂

( )

( )=
n

pCV 2)1),(α   (5) 

where )(ˆ ii X−µ denotes the leave-Xi-out estimate of )(ˆ iXµ . That is, each Xi is 

removed from the dataset in turn, and the local regression estimate computed from the 

remaining n-1 data points.  

 Loader (1999) also developed an approximate confidence interval for the 

estimates from the local polynomial, assuming the residuals to be normally distributed 

locally (within the neighborhood of k data points). Approximate confidence interval 

for the true mean is 

( )( )(ˆˆ,)(ˆˆ)( XlcXXlcXXI σµσµ +−= )

)

 (6) 

where (Xµ̂  is an unbiased estimate of ( )Xµ , c is the appropriate quantile of 

the standard normal distribution, σ̂  is an estimate of the residual standard deviation, 

and ( )Xl  is the variance reducing factor that measures the reduction in variance due 

to local regression. Usually, the reduction factor decreases as the bandwidth increases. 

Thus, a prediction interval has limits  

( ) ( ) 212)(1ˆˆ XlcX new +± σµ  (7) 

Note that prediction intervals assume normality: If Xnew is not normally 

distributed, the prediction interval will not be correct, even asymptotically.  

   

Applications 

We tested the LOCFIT quantile estimator on a suite of synthetic data sets and 

two streamflow data sets. We also compared with traditional parametric estimators. 
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Synthetic experiments 

To simulate the “choice” of models that a practitioner may face, we 

considered a set of probability distribution models as “parents” for the at-site flood 

generation process, and similarly for the estimation of quantiles. The LOCFIT 

procedure is considered as an alternative for estimation across the suite of “parents”. 

The setting is of interest where a public regulatory agency may have mandated as a 

“best practice”, the use of a specific distributional model across all enterprises.  This 

has been the case in the U.S., since the Bulletin 17, USWRC procedures (USWRC, 

1981) were adopted. Our hypothesis is that the nonparametric procedure will be 

competitive against parametric alternatives, where a mix of parent populations may be 

appropriate across the country or region. We test this hypothesis by examining the 

success or lack thereof versus the proper specification and mis-specification of the 

parametric model. Consequently, we generated 500 samples of size 75 each from the 

following parent populations: 

1) Log-Normal: 
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2
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3) Extreme Value Type I: 
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4) Mixture of Normal: ),(),()( 222111 σµσµ NcNcxf += , ∞<<∞− x  where 

c1 and c2 are weighted constant and c1+ c2=1. 

In each case we compare the performance of LOCFIT for selected tail 

quantiles relative to properly and improperly specified parametric models. The above 

distributions were chosen for the synthetic experiments because they from the 

exponential family-which is widely considered in practice.   

Real Data 

We also applied the LOCFIT estimator to two streamflow data sets (i) Annual 

maximum flow on the Santa Cruz at Tucson, Arizona for the period 1915-2000 and 

(ii) 3-day annual maximum flow on the American river at Folsom dam, CA for the 

period 1905-2001. The LOCFIT estimate at these sites are compared to Log-Normal 

(LN), Log-Pearson type III (LPIII), Extreme Value I distribution (EVI). Confidence 

intervals for the traditional methods were also computed (Chow et al., 1988) for 

estimates at selected return periods. 

 

Results 

Synthetic Data 

The LOCFIT estimator and the parametric estimators are applied to each 

synthetic data and we estimated the 10-, 50-, 100-, 250- and 500-year return period 

magnitudes. These estimates from the simulations are shown as boxplots along with 

the true values as a solid line. Box sizes provide the variance of the estimates.  

It can be seen from Figures 1-4 that the LOCFIT estimator exhibits good 

performance for all the tested distributions. The variance of the estimates from 

LOCFIT increases (bigger boxes) as the return period increases – more so for return 

periods 250 and 500 years. This is to be expected from standard regression theory, as 
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LOCFIT extrapolates beyond the range of the data at higher return periods and hence, 

increased variance. It performs well especially with the mixture distribution (Figure 4) 

when compared with other estimators. LPIII estimator is also good for all the 

distributions with relatively smaller variance in comparison to LOCFIT. This is 

because, LPIII performs very well for exponential family of distributions, as is the 

case with the distributions tested here. However, for the mixture distribution (Figure 

4) the variances from LPIII are higher than those from LOCFIT. LN estimator works 

well for simulations from EVI and LN distributions (Figure 1 and 2), but performs 

badly in all other cases. The EVI estimator exhibits poor performance in all the 

distributions except of course, the simulations from EVI.  

 

Real Data 

 The LOCFIT estimator and the traditional methods are applied to the Santa 

Cruz annual maximum flow data. As shown in Figure 5, the LOCFIT estimates 

closely follow and smooth the empirical quantiles (shown as circles) in the tails. The 

parametric methods fit well at lower return periods, but for higher return 

periods they grossly underestimate relative to the observed quantiles, with 

EVI performing especially poorly. The cross-validated quantile estimates 

(Figure 5b) appear to be within the 90% confidence interval (obtained from 

equation 7). Residuals from cross-validated estimates are normally distributed 

and show no significant lag-1 autocorrelation (Figures 5c and d) indicating 

the goodness of the LOCFIT model. Furthermore, the LOCFIT estimator has a 

smaller confidence interval compared to the other methods (Table 1). These findings 

are consistent with those seen in Moon and Lall (1994) on the same data set for the 

period 1915-1986. 
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 In the case of American River as well, the LOCFIT estimator follows the 

empirical quantiles quite well, while parametric methods perform poorly 

in the tails (Figure 6a). Also the Log-Normal estimator appears to overestimate the 

higher return period flows and EVI seems to underestimate. Here too the 

confidence intervals from the LOCFIT estimator are tighter than those from the 

parametric models (Table 2). The residuals from the cross-validated estimates 

show a Gaussian structure and significant autocorrelations (Figure 6c and d). 

This indicates that an iterated estimation may be required (Loader, 1999). 

Similar results are found when applying these methods to the data from the 

1905-1945 (Figures 7a and b) and 1946-2001 (Figures 7c and d) sub periods 

(Tables 3 and 4). These sub periods were chosen because the Folsom dam was 

built in 1945. The Folsom dam was a case study of a recent National Research 

Council report (Potter et al., 1999) - where they suggest climate variability 

as being a reason for increased annual maximum flows in the latter sub period. 

 

Summary 

Locally weighted polynomial regression technique, a nonparametric approach, 

is applied to flood frequency estimation. The estimation is “local” and therefore, has 

the ability to capture any smooth distribution that generated the data. Unlike  

its parametric counterparts, no prior assumption of the underlying distribution is 

required, which makes it portable across sites. This also improves upon kernel-based 

nonparametric estimators developed in the past. Good performance on a variety of 

synthetic and real data sets is observed. Multivariate extensions of this approach to 

forecasting regional flood quantiles conditioned on large-scale ocean-atmospheric 

information are underway.  
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Figure 1: Boxplots of estimates of 10, 50, 100, 250 and 500-year return period 
of data from EVI distribution. The estimates are from (i) True distribution 
(EVI), (ii) locfit (iii) Log Normal,and (iv) Log Pearson III estimators. The 
solid lines in all the figures join the true value.  
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Figure 2:  Same as Figure 1, but for data from Log Normal distribution. 

 

 

 16



 

 

 

 

 

Figure 3: Same as Figure 1, but for data from Log Pearson III distribution 
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Figure 4: Same as Figure 1, but for data from Mixture Normal distribution 
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Figure 5: Quantile function estimates and x-validation for Santa Cruz, AZ (1915-
2000).  
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Figure 6:  Quantile function estimates and x-validation for American River 3-day 
maximum flood data (1905-2000).  
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Figure 7: Quantile function estimates for American River 3-day maximum flood data 

(1905-1945) and (1946-2000). 
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