
CLAUSIUS INEQUALITY AND ENTROPY 
– with a little history thrown in. 
 
CARNOT PROPOSED THAT HEAT MUST ALWAYS BE WASTED 
IN ORDER FOR A HEAT ENGINE TO PRODUCE NET WORK, BUT 
HE DID NOT QUANTIFY HOW MUCH HEAT HAD TO BE 
WASTED.  
 
IN ~ 1850 RUDOLF CLAUSIUS CONFIRMED THE EXISTING 
THEORIES: 

1. ENERGY IS CONSERVED (1ST LAW) WAS QUANTIFIED AS 
Q – W = ΔU 

2. HEAT FLOWS NATURALLY FROM HOT TO COLD (NOT 
QUANTIFIED) 

 
AND ADDED AN IMPORTANT CONTRIBUTION: 
 
CLAUSIUS KNEW THAT SOME HEAT HAD TO BE REJECTED 
FROM A REVERSIBLE (CARNOT) HEAT ENGINE (QL), AS 
CARNOT PROPOSED, AND HE KNEW THAT 
 

QL = Wnet – QH  (1ST LAW) 
 
BUT NO PRINCIPLE FIXED THE ABSOLUTE AMOUNT OF 
REJECTED HEAT. 
 
CLAUSIUS THEN OBSERVED THAT FOR REVERSIBLE HEAT 
ENGINES, THE RATIO OF THE HEAT INPUT TO THE REJECTED 
HEAT WAS CONSISTENTLY EQUAL TO THE RATIO OF THE 
ABSOLUTE TEMPERATURES OF THE HIGH AND LOW 
TEMPERATURE RESERVOIRS: 
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If and only if the temperature of the high (TH) and low (TL) temperature 
reservoirs are always expressed in degrees Kelvin. 
 
REARRANGING (1) FOR A REVERSIBLE HEAT ENGINE: 
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CLAUSIUS THEN EXAMINED IRREVERSIBLE PROCESSES AND 
FOUND THAT THE RELATION (2) DID NOT HOLD. HE 
REASONED, FOR EXAMPLE, IF 10 JOULES 0F HEAT FLOW 
FROM A HOT OBJECT AT 350K INTO A COOL ROOM AT 300K, 
THEN THE HEAT TRANSFER TERM FOR HEAT LEAVING THE 
OBJECT AND HEAT TRANSFERRED INTO THE ROOM IS THE 
SAME AND  
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That is, for irreversible processes, the ratio of heat over absolute 
temperature increases in the direction of natural heat flow. 
 
COMBINING (2) AND (3) FOR A HEAT ENGINE WITH ONE HEAT 
INPUT AND ONE HEAT OUTPUT: 
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OR FOR ANY SEQUENCE OF PROCESSES WITH DISCRETE 
HEAT TRANSFER TERMS: 
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 THE RATIO OF THE AMOUNT OF HEAT 

TRANSFERRED IN A PROCESS TO THE TEMPERATURE OF THE 
SURROUNDINGS WHERE HEAT IS TRANSFERRED 
 
CALCULATING THE RATIO AS THE INTEGRAL OF A 

CONTINUOUS FUNCTION OF T
Qδ

, CLAUSIUS’ PRINCIPLE FOR 

A REVERSIBLE OR IRREVERSIBLE CYCLE IS: 
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FOR REVERSIBLE CYCLES: 
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FOR IRREVERSIBLE CYCLES: 
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The ratio of heat to temperature has characteristics of a property, since it 
does not change in a cycle, but it is also associated with heat transfer (a 
path function).  In a paper published in 1865, “On various forms of the 
laws of thermodynamics that are convenient for applications,” Clausius 
named the heat:temperature ratio entropy, from the Greek word for 
“transformation” with the symbol for entropy, the letter “S.”  Clausius’ 
1865 paper ends with a bold statement that is the broadest possible 
application of the laws of thermodynamics: 
1. The energy of the universe is constant (1st Law) 
2. The entropy of the universe tends toward a maximum (2nd Law) 
 
Clausius’ statement of the 2nd Law of Thermodynamics and his 
discovery of entropy as the ratio of two macroscopic components: heat 
and absolute temperature, was truly remarkable since the true nature of 
entropy was only discovered later when physicists understood the nature 
of individual atoms and molecules – the microscopic world. 
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It was the physicist Ludwig Boltzmann who in 1905 proposed that the 
nature of entropy is related to the probability of the state of the atoms or 
molecules in a system. That is, if the order or arrangement of molecules 
is unique – has a low probability – then the entropy is low.  In contrast, 
there are many possible combinations of arrangements to obtain a 
disorderly system – with a high probability – then the entropy is high. 
For example, if a deck of cards were arranged with the four suits 
separated and ordered ♣-♦-♥-♠ and all the cards in each suit in ascending 
sequence (A-K), the arrangement is unique, the probability of 
accidentally achieving such an arrangement is very low, and the entropy 
is very low.  However, for disorderly arrangements of the cards (suits 
not in order, cards not in sequence), there are an increasing number of 
ways to achieve increasingly random arrangements and the entropy 
increases correspondingly. Boltzmann’s complete explanation of 
entropy: 
 

1. Qualitatively, entropy is disorder, which has a natural 
tendency to increase. 

2. Entropy is measured by the ratio of heat to absolute 
temperature. 

3. Entropy is theoretically related to the size (number of digits) in 
the probability space for the arrangement of atoms/molecules 
in a system. 

 
It follows from Boltzmann’s contribution, that the entropy of a pure 
crystalline substance at T = 0 K (absolute zero) is zero – no random 
arrangement. (Sometimes called the 3rd Law of Thermodynamics.) 
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From Clausius’ principle, for an INTERNALLY REVERSIBLE 
PROCESS, ENTROPY IN A CLOSED SYSTEM IS: 

T
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for an IRREVERSIBLE PROCESS, ENTROPY IN A CLOSED 
SYSTEM IS: 
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defining Sgen as the entropy generated in the surroundings, as the  
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Special cases for equation (10): 
 

1. Reversible processes 
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2. Adiabatic processes 
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3. Reversible AND Adiabatic processes are ISENTROPIC. 
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ENTROPY IN OPEN SYSTEMS (CONTROL VOLUME) 
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In steady-state conditions, 0
dt

dScv =  and 
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Special Cases for equation (11) for control volumes (open systems): 
 

1. For an open system with a single inlet and outlet at steady-state: 
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2. For an adiabatic process in an open system at steady-state with 

single inlet and outlet: 
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3. for a reversible process in an open system at steady-state with 
single inlet and outlet:  
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4. for an adiabatic and reversible process in an open system at 

steady-state (isentropic process) 
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ENTROPY FOR A CYCLE: ΔS = 0 and 
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UNITS OF ENTROPY: 

intensive property, s: Kkg
kJ
−  

 

extensive property, S: K
kJ

 

 

rate of entropy change/transfer: K
kw:Ssm && =  

 
SIGN CONVENTION FOR S IS THE SAME AS FOR HEAT.  
 
IF HEAT IS TRANSFERRED INTO THE SYSTEM (Q > 0) THEN 
THE ENTROPY OF THE SYSTEM INCREASES (ΔS > 0). 
 
IF HEAT IS TRANSFERRED OUT OF THE SYSTEM (Q < 0) 
THEN THE ENTROPY OF THE SYSTEM MUST DECREASE 
(ΔS < 0). 
 
Results of entropy: 
 

A. Equilibrium can be defined as a state of maximum entropy of an 
isolated system, and spontaneous changes only occur in the 
direction of increasing entropy of the universe (Sgen). 

B. Entropy is NOT conserved in real (irreversible processes). 
C. The magnitude of generated entropy is proportional to the 

magnitudes of irreversibilities. 
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THE TEMPERATURE-ENTROPY, T-S, DIAGRAM 
 
Clausius’ principle for an internally reversible process: 
 

δQ = TdS 
 
Any process can be graphed on a T-S (or T-s) diagram (just as with T-v 
or P-v diagrams).  Because of Clausius’ Principle, the T-S diagrams for 
internally reversible processes can be used to calculate heat transfer. 
 
 

T (K) 

S (kJ/K) 
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Shaded area = TdS = δQ and the total area under process line for the 
internally reversible process 1  2 is the heat transferred during the 
process: 
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SPECIAL T-S DIAGRAMS 
 
1. For an isothermal internally reversible process: 
 T (K) 

1 2 

 
 
 
 
 
 
 
 S (kJ/K) 
 

Q1 2 = T(S2 – S1) = 
 
 
 
2. For an adiabatic and internally reversible process (isentropic): 
 
 T (K) 
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 S (kJ/K) 
 

(S2 – S1) = 0 
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3. For pure substances with liquid vapor phases, the T-s diagram 
shows similar constant pressure lines as in the P-v and T-v diagrams, 
indicating vaporization/condensation processes at constant pressure are 
isothermal and as P increases, sfg decreases: 
 

T-s DIAGRAM FOR WATER
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where P2 > P1. As with the T-s and P-v diagrams, the critical point 
(where liquid and vapor phases are indistinguishable) is at the top of the 
phase curve where the saturated liquid and vapor lines meet. A pure 
substance is compressed liquid for s < sf, superheated vapor for s > sg, 
and a saturated liquid-vapor mixture between the saturated liquid and 
vapor lines. 
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4. For Carnot cycles: 
 

(a) Carnot Heat Engine – all totally reversible processes 
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1 2 is isothermal expansion, the heat input process, and QH = area 
under line 1-2 or QH = T1(s2-s1) (will be positive) 
2 3 is isentropic (adiabatic and reversible) expansion, the work output 

process. W2 3 cannot be inferred from the T-S diagram. 
3 4 is isothermal compression, the heat rejection process, and QL = 

area under line 3-4 or QL = T3(s4-s3) (will be negative and <QH) 
4 1 is isentropic (adiabatic and reversible) compression, the work input 

process. W4 1 cannot be inferred from the T-S diagram. 
 

For the Carnot heat engine cycle, net heat transfer, Qnet, is the area 1-2-
3-4 or Qnet = (T1-T4)(s2-s1) (will be positive), and by the 1st Law for 
cycles: Qnet = Wnet
 
By Clausius’ principle, the entropy generated in a Carnot heat engine 
cycle is zero, which can be shown using the T-S diagram above and 
noting that ΔS = 0 for a cycle: 
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(b) Carnot Refrigerator – all totally reversible processes 
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1 2 is isothermal compression, the heat rejection process, and QH = 
area under line 1-2 or QH = T1(s2-s1) (will be negative) 

2 3 is isentropic (adiabatic and reversible) compression, the work input 
process. W2 3 cannot be inferred from the T-S diagram. 

3 4 is isothermal expansion, the heat input process, and QL = area 
under line 3-4 or QL = T3(s4-s3) (will be positive and < QH) 

4 1 is isentropic (adiabatic and reversible) expansion, the work output 
process. W4 1 cannot be inferred from the T-S diagram. 

 

For the Carnot refrigeration cycle, net heat transfer, Qnet, is the area 1-2-
3-4 or Qnet = (T1-T4)(s2-s1) (will be negative), and by the 1st Law for 
cycles: Qnet = Wnet
 
By Clausius’ principle, the entropy generated in a Carnot refrigeration 
cycle is zero, which can be shown using the T-S diagram above and 
noting that ΔS = 0 for a cycle: 
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CALCULATING ENTROPY CHANGE, ΔS 
 
Objective: express the entropy of a system as a function of measurable 
intensive properties (like what we did for the energy of a system, (u and 
h). For the derivation below, assume internally reversible processes. 
 
1st Law: 
 

δQ - δW = dU  (1) 
 
Clausius’ Principle: 
 

δQ = TdS  (2) 
 
Definition: 
 

δW = PdV  (3) 
 
Substituting (2) and (3) into (1): 
 

TdS = dU + PdV  (4 – extensive properties) 
or 

Tds = du + Pdv  (4a – intensive properties) 
 
Note that the formulas 4 and 4a do not depend on process path (all terms 
are properties) so they are true for BOTH reversible and irreversible 
processes. 
 
Also, since h = u + Pv and dh = du + vdP + Pdv, or du = dh – Pdv – vdP. 
 
Substituting for du in (4a): 
TdS = dh - Pdv – vdP + Pdv 
 

Tds = dh – vdP  (5) 
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Dividing 4a and 5 through by T:  )7(
T

vdP
T
dhds

)6(
T

Pdv
T
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−=
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(6) and (7) show that if you know the terms on the right hand side, you 
can find the entropy change in a process. They are equivalent formulas 
and may be used interchangeably depending on the problem conditions. 
 
Cases 
 

1. IDEAL LIQUID & SOLIDS ARE INCOMPRESSIBLE: dv = 0 
 
From (6): 

T
duds =  

 

also specific heat   dT
duCv =  
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where T is absolute temperature (K) and Cv is the average specific heat. 
 
FOR IDEAL LIQUIDS AND SOLIDS, ISOTHERMAL 
PROCESSES ARE ISENTROPIC. 
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2. IDEAL GASES 
 
(a) 

FOR AN IDEAL GAS:  v
RTP =  

 
Substituting CvdT for du and RT/v for P in (6): 
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integrating both sides with Cv constant: 
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(b) similarly 

FOR AN IDEAL GAS:  P
RTv =  

 
Substituting CPdT for dh and RT/P for v in (7): 
 

P
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integrating both sides with CP constant: 
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where T is always absolute temperature (K). 
 
(9) and (10) are equivalent formulas and either may be used for ideal gas 
entropy change calculations, depending on which formula is easier to 
use. 
 

3. PURE SUBSTANCES WITH LIQUID-VAPOR PHASES 
 
Use the tables for water/steam and refrigerant (R-134a) just as you did 
with energy. 
 
For saturated liquid: s = sf @ Psat,Tsat (A-4, A-5, A-11, A-12) 
 
For saturated vapor: s = sg @ Psat,Tsat (A-4, A-5, A-11, A-12) 
 
For vaporization or condensation from saturated liquid ↔ saturated 
vapor: Δs = sfg @ Psat,Tsat (A-4, A-5, A-11, A-12) 
 
For superheated vapor: s = s @ P,T (A-6, A-13) 
 
For saturated liquid-vapor mixture: s = x(sfg) + sf @ Psat,Tsat
 
For compressed liquid: sCL ≈ sf @ TCL
 
The specific entropy of a substance (kJ/kg-K) is independent of T, P, v, 
u, h and with one other independent intensive property determines the 
complete state of a simple compressible system. 
 

4. CYCLES 
 

ΔS = 0 
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