Homework \#3: Due Friday, Feb. 5, 6 PM Solutions

1. Oxygen is contained in a $0.05-\mathrm{m}^{3}$ steel tank at a pressure of 200 bar at $27^{\circ} \mathrm{C}$.
a. What is the mass of oxygen in the tank?
b. If the pressure in the tank gets too high, a fusible plug melts to release the pressure. At what temperature should the plug melt to keep the pressure below 250 bar?

Solution

$$
\begin{aligned}
& \text { a. } M=\frac{P V}{R T}=\frac{200 \operatorname{bar}(100 \mathrm{kPa} / \mathrm{bar})\left(0.05 \mathrm{~m}^{3}\right)}{(0.2598 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K})(273+27) \mathrm{K}}=\mathbf{1 2 . 8} \mathbf{~ k g} \\
& \text { b. } T_{\text {melt }}=\frac{P_{\text {melt }} V}{M R}=\frac{250 \mathrm{bar}(100 \mathrm{kPa} / \mathrm{bar})\left(0.05 \mathrm{~m}^{3}\right)}{12.8 \mathrm{~kg}(0.2598 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K})}=\mathbf{3 7 6 K} \text { OR 103 }{ }^{\circ} \mathrm{C}
\end{aligned}
$$

2. An ideal gas is compressed from a volume of $0.085 \mathrm{~m}^{3}$ to a volume of $0.034 \mathrm{~m}^{3}$ while the pressure is increased from 100 kPa to 390 kPa . The temperature increases by 146 K during this process. The specific gas constant, R , is $0.296 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
a. Find the temperature of the gas at the end of the process.
b. What is the mass of gas in the tank?
c. What is the molecular weight of the gas?

Solution

a. $\mathbf{T}_{\mathbf{1}}=\mathbf{2 6 1 K}=-\mathbf{1 2 . 3}{ }^{\circ} \mathrm{C}$ and $\mathbf{T}_{2}=\underline{\mathbf{1 3 3 . 7}{ }^{\circ} \mathrm{C}}$
b. $M=\frac{P_{1} V_{1}}{R T_{1}}=\frac{100 \mathrm{kPa}\left(0.085 \mathrm{~m}^{3}\right)}{(0.296 \mathrm{~kJ} / \mathrm{kg}-K)(261 \mathrm{~K})}=\mathbf{0 . 1 1} \mathrm{kg}$

Solution

c. $\quad \mathrm{MW}=\frac{\overline{\mathrm{R}}}{\mathrm{R}}=\frac{8.314 \mathrm{~kJ} / \mathrm{kmol}-\mathrm{K}}{0.296 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}}=28 \mathrm{~kg} / \mathrm{kmol}$ (gas is nitrogen, $\mathbf{N}_{2}, \mathbf{M W}=\mathbf{2 8} \mathbf{~ k g} / \mathbf{k m o l}$)
3. The equation of state for a gas is

$$
\overline{\mathbf{v}}\left(\mathbf{P}+\frac{\mathbf{1 0}}{\overline{\mathbf{v}}^{2}}\right)=\overline{\mathbf{R}} \mathbf{T}
$$

where $\overline{\mathbf{v}}=$ specific molar volume $\left(\mathrm{m}^{3} / \mathrm{kmol}\right)$
$\mathrm{P}=$ pressure (kPa), $\overline{\mathbf{R}}=$ universal gas constant $(\mathrm{kJ} / \mathrm{kmol}-\mathrm{K})$ and $\mathrm{T}=$ temperature (K) One kmol gas is expanded from 2 to $4 \mathrm{~m}^{3}$ at a constant temperature of 300 K .
a. What is the boundary work done? Boundary work, W_{b} is calculated by:

$$
W_{b}=\int_{V_{1}}^{V_{2}} P d V
$$

And

$$
\bar{v}=\frac{V}{N}
$$

Where $\mathrm{N}=$ \# moles of the gas.

Solution

$$
\begin{gathered}
\mathrm{W}_{\mathrm{b}}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{PdV} \text { need } \mathrm{P}(\mathrm{~V}) \text {, by rearranging } \overline{\mathrm{V}}\left(\mathrm{P}+\frac{10}{\overline{\mathrm{v}}^{2}}\right)=\overline{\mathrm{R} T} \quad\left(\frac{\mathrm{~kJ}}{\mathrm{kmol}}\right) \text { and substituting } \\
\overline{\mathrm{V}}=\frac{\mathrm{V}}{\mathrm{~N}}\left(\frac{\mathrm{~m}^{3}}{\mathrm{kmol}}\right) \text { to obtain } \mathrm{P}=\frac{\overline{\mathrm{R}} \mathrm{~T}}{\overline{\mathrm{~V}}}-\frac{10}{\overline{\mathrm{v}}^{2}}=\frac{\mathrm{N} \overline{\mathrm{R} T}}{\mathrm{~V}}-\frac{10 \mathrm{~N}^{2}}{\mathrm{~V}^{2}} \quad \mathrm{kPa} \\
\mathrm{~W}_{\mathrm{b}}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}}\left(\frac{\mathrm{~N} \overline{\mathrm{R}} \mathrm{~T}}{\mathrm{~V}}-\frac{10 \mathrm{~N}^{2}}{\mathrm{~V}^{2}}\right) \mathrm{dV}=\int_{2}^{4}\left(\frac{\mathrm{~N} \overline{\mathrm{R}} \mathrm{~T}}{\mathrm{~V}}-\frac{10 \mathrm{~N}^{2}}{\mathrm{~V}^{2}}\right) \mathrm{dV}=\mathrm{N} \overline{\mathrm{R} T \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)+10 \mathrm{~N}^{2}\left(\frac{1}{\mathrm{~V}_{2}}-\frac{1}{\mathrm{~V}_{1}}\right)}
\end{gathered}
$$

$W_{b}=(1 \mathrm{~mole})(8.314 \mathrm{~kJ} / \mathrm{kmol}-\mathrm{K})(300 \mathrm{~K}) \ln (2)+\left(10 \mathrm{~N}-\mathrm{m}^{4} / \mathrm{kmol}^{2}\right)(1 \mathrm{~mole})(0.25-0.5) \mathrm{m}^{-3}$
$\mathrm{W}_{\mathrm{b}}=+1,726 \mathrm{~kJ}$ (+ sign indicates work done by gas)
4. Nitrogen, an ideal gas, is expanded in a polytropic process according to the relation:

$$
\mathbf{P V}^{\mathbf{n}}=\text { constan } t
$$

where $\mathrm{P}=$ pressure $(\mathrm{kPa}), \mathrm{V}=$ volume $\left(\mathrm{m}^{3}\right)$ and $\mathrm{n}=$ a constant. The initial volume of the nitrogen is $2 \mathrm{~m}^{3}$; the initial pressure is 500 kPa and the initial temperature is $300{ }^{\circ} \mathrm{C}$. During the expansion, the volume triples and the pressure decreases to half its initial value.
a. Find n.

Solution

For polytropic process $P_{1}\left(V_{1}\right)^{n}=P_{2}\left(V_{2}\right)^{n}$

$$
\begin{aligned}
& \frac{P_{1}}{P_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{n} \\
& \ln \left(\frac{P_{1}}{P_{2}}\right)=n \ln \left(\frac{V_{2}}{V_{1}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \left(\frac{V_{2}}{V_{1}}\right)=3 \text { and }\left(\frac{P_{1}}{P_{2}}\right)=2 \\
& n=\frac{\ln (2)}{\ln (3)}=\underline{0.631}
\end{aligned}
$$

$$
n=0.631
$$

b. Calculate the equilibrium temperature after expansion

Solution

$$
\begin{gathered}
T_{2}=\frac{T_{1} P_{2} V_{2}}{P_{1} V_{1}}=\frac{((273+300) K)(3)}{2} \\
T_{2}=859.5 \mathrm{~K} \text { OR 586.5 }{ }^{\circ} \mathrm{C}
\end{gathered}
$$

c. Calculate the boundary work by the gas during the process in kJ .

Solution

$$
W_{b}=\frac{P_{2} V_{2}-P_{1} V_{1}}{(1-n)}=\frac{250(6)-500(2)}{(1-0.631)}(k J)=\mathbf{1 , 3 5 5} \mathbf{k J}(\text { work by system })
$$

5. A device containing air is operated in a cycle consisting of four processes with no work exchanges other than boundary work.
$1 \rightarrow 2$: Isothermal compression, $\mathrm{V}_{1}=3 \mathrm{~m}^{3}, \mathrm{~V}_{2}=1 \mathrm{~m}^{3} ; \mathrm{P}_{1}=100 \mathrm{kPa}$
$2 \rightarrow 3$: Isochoric heat loss, $\mathrm{P}_{3}=\frac{\mathrm{P}_{\mathbf{1}}}{\mathbf{2}} \mathrm{m}^{3}$
$3 \rightarrow 4$: Isobaric expansion, $\mathrm{V}_{4}=3 \mathrm{~m}^{3}$
$4 \rightarrow 1$ Isochoric heat addition, return to state 1
a. Find P_{2}

Solution

$$
\text { For isothermal process: } P_{2}=P_{1} V_{1} / V_{2}=100 \mathrm{kPa} *(3 / 1)=300 \mathrm{kPa}
$$

b. Find W_{b} for process $3 \rightarrow 4$

Solution

For isobaric process: $W_{b, 34}=P_{3}\left(V_{4}-V_{3}\right)=50 \mathrm{kPa} *(3-1) \mathrm{m}^{3}=100 \mathrm{~kJ}$ (work by system)
c. Find W_{b} for process $1 \rightarrow 2$

Solution

$$
\mathbf{W}_{\mathrm{b}, 12}=\int_{V_{1}}^{V_{2}} P * d V
$$

For isothermal process: $\mathbf{P}=(\mathrm{mRT}) / \mathrm{V}$, where $\mathrm{mRT}=$ constant $=\mathrm{P}_{1} \mathbf{V}_{1}$

$$
\mathbf{W}_{\mathrm{b}, 12}=P_{1} V_{1} * \int_{V_{1}}^{V_{2}} \frac{d V}{V}=P_{1} V_{1} * \ln \left(\frac{V_{2}}{V_{1}}\right)=300 \mathrm{~kJ} * \ln (1 / 3)
$$

$$
=-330 \mathrm{~kJ} \text { (work done on system) }
$$

d. Find the net work for the cycle

Solution

No work for $2 \rightarrow 3$ and $4 \rightarrow 1$ since both processes are isochoric ($\mathrm{dV}=0$)

$W_{b, \text { cycle }}=W_{b, 12}+W_{b, 34}=-\mathbf{3 3 0}+100=-\mathbf{2 3 0} \mathrm{kJ}$ (work done on system during cycle)

e. Graph the process on the P-V diagram below

Solution

6. A rigid tank contains an ideal gas at 300 kPa and 600 K . Now half the gas is withdrawn from the tank and the final pressure is 100 kPa .
a. Find the final temperature of the gas after half the mass is removed and the pressure is reduced.

Solution

$\mathrm{V}_{2}=\mathrm{V}_{1}$ and $\mathrm{m}_{2}=0.5 \mathrm{~m}_{1}$
Ideal gas relation for isochoric process

$$
\begin{gathered}
\frac{P_{1}}{m_{1} T_{1}}=\frac{P_{2}}{m_{2} T_{2}} \\
T_{2}=\frac{P_{2} m_{1} T_{1}}{P_{1} 0.5 m_{1}}=\frac{100 \mathrm{kPa} * 600 \mathrm{~K}}{300 \mathrm{kPa} *(0.5)} \\
\mathbf{T}_{2}=400 \mathrm{~K} .
\end{gathered}
$$

b. Compare the system to one where the final temperature is the same as in part a, but no mass was removed: What is the final pressure?

Solution

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

$$
P_{2}=(300 \mathrm{kPa} * 400 \mathrm{~K}) / 600 \mathrm{~K}=200 \mathrm{kPa}
$$

7. A cylindrical piston cylinder device has three chambers, as shown below. Chamber 1 contains 1 kg helium; chamber 2 contains condensing water vapor; chamber 3 is evacuated. The device is placed in surroundings whose temperature is $200^{\circ} \mathrm{C}$ and allowed to come to equilibrium. The inside diameter of chamber 1 is 10 cm and the inside diameter of chamber 2 is 4 cm . Find the volume of the helium in chamber 1 when equilibrium is reached. (Answer: $3.95 \mathrm{~m}^{3}$)

Solution

System is in mechanical and thermal equilibrium.
Thermal equilibrium: for chambers 1 and 2, respectively, $\mathrm{T}_{1}=\mathrm{T}_{2}=200^{\circ} \mathrm{C}$
Condensing water at $\mathrm{T}_{2}=200{ }^{\circ} \mathrm{C}$ has pressure $=\mathrm{P}_{\text {sat }}=\mathrm{P}_{\mathbf{2}}=\mathbf{1 , 5 5 4 . 9 \mathrm { kPa } (\text { Table A-4) }}$

Mechanical equilibrium: assume weight of piston is negligible compared with pressure force. Justification: in chamber 2, pressure force $=1554.9 \mathrm{kPa}^{*}(0.04 \mathrm{~m})^{2} * 3.14 / 4 * 10^{3} \mathrm{~N} / \mathrm{kN}=1,954 \mathrm{~N}$ and for comparable weight force, mass of piston would be: $1,954 \mathrm{~N} / 9.81 \mathrm{~m} / \mathrm{s}^{2}=200 \mathrm{~kg}$. Very unlikely that piston with dimensions of 4 cm and 10 cm would have mass more than 1% of 200 kg . So neglecting weight of piston is reasonable.

Force balance neglecting piston weight:

$$
\begin{gathered}
\mathrm{P}_{2} \mathrm{~A}_{2}=\mathrm{P}_{1} \mathrm{~A}_{1} \\
\mathrm{P}_{1}=\mathrm{P}_{2}\left(\mathrm{~A}_{2} / \mathrm{A}_{1}\right)
\end{gathered}
$$

Area ratio $\left(\mathrm{A}_{2} / \mathrm{A}_{1}\right)=\left(\mathrm{D}_{2} / \mathrm{D}_{1}\right)^{2}=(0.4)^{2}=0.16$

$$
P_{1}=1,554.9 \mathrm{kPa} *(0.16)=248.78 \mathrm{kPa}
$$

Ideal gas law for $\mathrm{He}, \mathrm{R}=2.0769 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ (Table A-2)

$$
\mathrm{V}_{1}=m R T_{1} / \mathrm{P}_{1}=(1 \mathrm{~kg} * 2.0769 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} * 473 \mathrm{~K}) / 248.78 \mathrm{kPa}=3.95 \mathrm{~m}^{3}
$$

(recall that $1 \mathrm{kPa}=1 \mathrm{~kJ} / \mathrm{m}^{3}$)

