CVEN 4830/4434: CIVIL/ENVIRONMENTAL ENGINEERING DESIGN PROJECT SPRING 2008

BOULDER WASTEWATER TREATMENT PLANT

CURRENT UNIT PROCESS FLOW DIAGRAM

KEY

Number	Name	Removal/Conversion	Addition	Residuals
1	Headworks	Large solids	Mechanical power	Screening
		screened		to Landfill
2	Primary Clarifier	50-60% suspended	None	Primary
		solids		sludge
3	1 st stage triclking	80-85% BOD	Power to Dosing	None
	filter	removed	Pumps, Blowers	
			for air supply and	
			scrubbing	
4	Solids Contact	10-15% BOD	Blower for air (O ₂)	None
		removed		
5	Nitrifying trickling	25-75% ammonia	Blower for air (O ₂)	None
	filter	oxidized to nitrate		
6	Secondary Clarifier	99% suspended	Pumping for	Secondary
		solids removed	recycled biomass	Sludge

Current Effluent contains:

Low soluble and particulate BOD/COD Low ammonia nitrogen (NH₄-N) High nitrate-nitrogen (NO₃-N) Low suspended solids (TSS)

FUTURE PROCESS FLOW DIAGRAM

KEY:

Number	Name	Removal/Conversion	Addition	Residuals
1	Headworks	Large solids	Mechanical	Screenings
		screened	power	to Landfill
2	Primary Clarifier	50-60% suspended	None	Primary
		solids		sludge
3	Activated sludge	50-75% BOD	Mixing, Power for	None
	mixed basin	removed,	recirculation	
	(anoxic)	Nitrate reduced to N ₂	pumps	
4	Activated sludge	25-50% BOD	Blower for air (O ₂)	None
	aeration basin	removed, ammonia		
	(aerobic	oxidized to nitrate		
5	Secondary Clarifier	99% suspended	Pumping for	Secondary
		solids removed	recycled biomass	Sludge

<u>Future Effluent contains:</u> Low soluble and particulate BOD/COD Low ammonia nitrogen (NH₄-N) Low nitrate-nitrogen (NO₃-N) Low suspended solids (TSS) Potential to remove excess phosphorus