MODELING OF CONCRETE MATERIALS AND STRUCTURES

Kaspar Willam
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Class Meeting #3: Elastoplastic Concrete Models

Uniaxial Model: Strain-Driven Format of Elastoplasticity
Triaxial Model: Generalized Format of Elastoplasticity
Isotropic Hardening/Softening: Volumetric-Deviatoric Interaction

Rotating Plastic Crack Model: Softening Rankine Formulation
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ELASTOPLASTIC MATERIAL MODEL

Fundamental Steps:

1. Additive Decomposition: Elastic-Plastic Partition € =€ 1¢€,
Incremental format of elastic stress
o =& : |[€ — €, yields elastoplastic tangent stiffness: ocg=E&. €
2. Yield Condition: Plastic Initiation and Persistence: F(o)=0
Plastic consistency condition distinguishes
OF .

plastic loading from elastic unloading F' = 5% 0=0 = n:o=0

3. Flow Rule: Plastic Evolution Equation €)= m
Orientation of plastic flow is defined by m = g—g
and magnitude by plastic multiplier A>0

4. Hardening/Softening Rule: Plastic Stiffness H, = _%_g
normally expressed in terms of an invariant
stress-plastic strain (plastic work) relationship E, = ZZZ

Class #3 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007



UNIAXIAL ELASTOPLASTIC MODEL

1. Deformation Theory of Hencky [1924]: Total secant relationship
2. Flow Theory of Prandtl-Reuss [1928]: Incremental tangent relationship

Additive Decomposition:

o

€ =€ +€, where ¢ = and €, =

o
E,
Consequently,

. o o0 0o
‘“E'EE,
Elastoplastic Tangent Stiffness Relationship:

EE,
E+ Ep

0 = B¢ where E,, =

Note B, =co when E"=—F.




UNIAXIAL ELASTOPLASTIC MODEL

s — o0 0 _
Note: ep—Ep—Owhen E,=0

Use “strain” rather than “stress’ control:

o E
= €

E, E+EL,

€p —

Formal Yield Condition: F'(o) = |o| — 0, =0
Plastic action

(i) when stress path reaches the yield capacity of the material |o| = o,
(ii) persistent plastic loading when 2L E¢ > 0 for strain control.
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IDEAL Jo-ELASTOPLASTICITY |

Mises Yield Function: | !

_ ) 2 __
F(s)—§s.s—§0y—0
Associated Plastic Flow Rule:
€ S h m oF S
— where = — =
b 0s
Plastic Consistency Condition:
: OF
F=—:158=8:58=0
s S=8:8

Deviatoric Stress Rate:

§=2G—e)=2Ge— \s]

Plastic Multiplier:




IDEAL Jo-ELASTOPLASTICITY I

Deviatoric Stress-Strain Relation:

s—2q1—-22% ¢
S. S
5=G. & with gePZQG[I—Sf:]

Tangent Stiffness Operator:
1
o = §(trd)1 +§=K(trée)l+G,, : é

1
oc=K(tre)l1+G.,: € — g(tré)l]
Elastoplastic Tangent Operator

S®sS
S8

og=E.,:€ with &,=A1®1+2G|I - ]

Note: Elastoplastic constitutive structure similar to K — G(e) model.
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SIMPLE SHEAR EXAMPLE

von Mises vs parabolic Drucker-Prager: Response when 15 > 0

Parabolic Yield Function:

F(Iy, Js) = Jo+apl; — 7, =0

Associated Flow Rule:

ép = )\[8 + Oépl]

Simple Shear: ap = 3[f! — f{] = 0 for von Mises, while 7 = £ f/ f/ = 307
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GENERAL FORMULATION OF ELASTOPLASTIC BEHAVIOR |

Kinematic Setting: Decomposition of Total Deformation € = %[V’u, + Viu,

€ = €. T €
Elastic Behavior: Hyperelastic concept of free energy potential:

U = Ule, €, k)
ov . .
0:866 and o0 =E&:[€—¢€)
Plastic Yield Condition:
F(o,k)= flo)—r,(k) <0 with n= ((?9—5

f (o) defines the internal stress demand and r, = the material resistance

_ov
- Ok

Hardening modulus H, characterizes the rate of yield resistance.

Ty and Ty = Hy K
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GENERAL ELASTOPLASTIC FORMULATION Il

Plastic Flow Rule:

ép:}\m with m:g—g

Associated flow when m || n (normality of plastic flow).
Plastic Consistency Condition: F' = 0
Consistency condition enforces the stress path to remain on the yield surface.

Kuhn—Tucker Condition of Plastic Loading:

F <0 A >0 FA=0
Plastic Multiplier:
A=—mn:E:€ with hy=H,+n: €& :m
hy
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GENERAL ELASTOPLASTIC FORMULATION Il

Elastoplastic Stiffness Relation:

m n:€: € |
H,+n:& :m

6=E - m|=E:[e—

og=E&. €

Note #1: Plastic stiffness forms rank—one (two) update of the elastic material
operator

1
Ep=E——E men: &
hy
where h, = H,+n : € : m.

Note #2: h, = 0 when softening modulus reaches H]f”t =-—n:&:m.

Note #3: Loss of symmetry, &, # Sip when n # m for non-associated flow.
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SIMPLE SHEAR RESPONSE

Three Invariant Elastoplastic Concrete Model: Kang and Willam [1999]

Effect of Confinement under Strain Control

Stress—Strain Response in Simple Shear
Non-Associated
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CONCLUDING REMARKS

Main Lessons from Class # 3:

Flow Theory of Plasticity:
introduces path-dependence, irreversibility and energy dissipation

Canonical Form of J, Elastoplasticity:
Decouples volumetric-deviatoric behavior, see K — G(e) model

Volumetric-Deviatoric Coupling:
Two and three invariant elastoplastic models - Isotropic
hardening/softening compares to rotating crack approach (no
crack/slip memory)

Smeared Cracking in Form of Plastic Softening of Major Strain Component
€ = —%(tTO')l + %0’ + CN01[61 & 61]
Softening Rankine plasticity is equivalent to rotating crack
formulation using elastic damage.




