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Class Meeting #5: Integration of Constitutive Equations

Structural Equilibrium:
Incremental Tangent Stiffness and Residual Force Iteration

Radial Return Method:
Elastic Predictor-Plastic Corrector Strategy

Algorithmic Tangent Operator:
Consistent Tangent with Backward Constitutive Integration
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STRUCTURAL EQUILIBRIUM

Out-of-Balance Force Calculation:

Out-of Balance Residual Forces: RRR(uuu) = FFF int −FFF ext → 000

Internal Forces: FFF int =
∑

e

∫
V BBBtσσσdV

External Forces: FFF ext =
∑

e

∫
V NNN tbbbdV +

∑
e

∫
S NNN ttttdS

Rate of Equilibrium:∑
e

∫
V

BBBtσ̇σσdV =
∑

e

∫
V

NNN tḃbbdV +
∑

e

∫
S

NNN tṫttdS

1. Incremental Methods of Numerical Integration: Path-following continuation
strategies to advance solution within ∆t = tn+1 − tn

(a) Explicit Euler Forward Approach: Forward tangent stiffness strategy (should
include out-of-balance equilibrium corrections to control drift).

(b) Implicit Euler Backward Approach: Backward tangent stiffness
(requires iteration for calculating tangent stiffness at end of increment; Heun’s
method at midstep, and Runge-Kutta h/o methods at intermediate stages).
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INCREMENTAL SOLVERS

Euler Forward Integration: Classical Tangent stiffness approach

Internal forces: ḞFF ext =
∑

e

∫
V BBBtσ̇σσdV

Tangential Material Law: σ̇σσ = ĖEEtanε̇εε

Tangential Stiffness Relationship:

KKKtanu̇uu = ḞFF where KKKtan =
∑

e

∫
V

BBBtEEEtanBBBdV

Incremental Format:
∫ un+1

un
KKKtanduuu = FFF n+1 −FFF n

Euler Forward Integration: KKKn
tan =

∑
e

∫
V BBBtEEEn

tanBBBdV

KKKn
tan∆uuu = ∆FFF where EEEn

tan = EEEtan(tn)

Note: Uncontrolled drift of response path if no equilibrium corrections are
included at each load step.
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2. ITERATIVE SOLVERS

Picard direct substitution iteration vs Newton-Raphson iteration within
∆t = tn+1 − tn

Robustness Issues: Range and Rate of Convergence?

Newton-Raphson Residual Force Iteration: RRR(uuu) = 000

Truncated Taylor Series Expansion of the residual RRR around uuui−1 yields

RRR(uuu)i = RRR(uuu)i−1 + (
∂RRR

∂uuu
)i−1[uuui − uuui−1]

Letting RRR(uuui) = 000 solve

(
∂RRR

∂uuu
)i−1[uuui − uuui−1] = −RRR(uuu)i−1
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NEWTON-RAPHSON EQUILIBRIUM ITERATION

Assuming conservative external forces: ∂RRR
∂uuu =

∑
e

∫
V BBBtdσσσ

duuudV

Chain rule of differentiation leads to

dσσσ = EEEtandεεε = EEEtan BBBduuu such that dσσσ
duuu = dσσσ

dεεε
dεεε
duuu = EEEtan BBB.

Tangent stiffness matrix provides Jacobian of N-R residual iteration,

∂RRR
∂uuu = KKKtan where KKKtan =

∫
V BBBtEEEtanBBBdV

Newton-Raphson Equilibrium Iteration:

KKK i−1
tan [uuui − uuui−1] = −RRR(uuu)i−1

For i=1, the starting conditions for the first iteration cycle are,

KKKn
tan[uuu

1 − uuun] = FFF n+1 −
∫

V

BBBtσσσn

First iteration cycle coincides with Euler forward step, whereby each equilibrium
iteration requires updating the tangential stiffness matrix.

Note: Difficulties near limit point when detKKKtan → 0

Class #5 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007



RADIAL RETURN METHOD OF J2-PLASTICITY I

Mises Yield Function:

F (sss) =
1

2
sss : sss− 1

3
σ2

Y = 0

Associated Plastic Flow Rule:

ε̇εεp = λ̇ sss where mmm =
∂F

∂sss
= sss

Plastic Consistency Condition:

Ḟ =
∂F

∂sss
: ṡss = sss : ṡss = 0

Deviatoric Stress Rate:

ṡss = 2G [ėee− ėeep] = 2G [ėee− λ̇sss]

Plastic Multiplier:

λ̇ =
sss : ėee

sss : sss
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RADIAL RETURN METHOD OF J2-PLASTICITY II

Incremental Format:

∆sss = 2G [∆eee−∆λsss]

Elastic Predictor-Plastic Corrector Split:

(a) Elastic Predictor: ssstrial = sssn + 2G∆eee
(b) Plastic Corrector: sssn+1 = ssstrial − 2G∆λssstrial = [1− 2G∆λ]ssstrial

“Full” Consistency: Fn+1 = 1
2sssn+1 : sssn+1 − 1

3σ
2
Y = 0

Quadratic equation for computing plastic multiplier ∆λ1 =? and ∆λ2 =?

1

2
[ssstrial − 2G∆λssstrial] : [ssstrial − 2G∆λssstrial] =

1

3
σ2

Y

Plastic Multiplier: ∆λmin = 1
2G[1−

√
2
3

σY√
σtrial:σtrial

]

“Radial Return”: represents closest point projection of the trial stress state
onto the yield surface. Final stress state is the scaled-back trial stress,

sssn+1 =

√
2

3

σY√
ssstrial : ssstrial

ssstrial
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GENERAL FORMAT OF PLASTIC RETURN METHOD

Incremental Format:

∆σσσ = EEE : [∆εεε−∆λmmm]

Elastic Predictor-Plastic Corrector Split:

(a) Elastic Predictor: σσσtrial = σσσn + EEE : ∆εεε
(b) Plastic Corrector: σσσn+1 = σσσtrial −∆λEEE : mmm

“Full” Consistency: Fn+1 = F (σσσn + EEE : ∆εεε−∆λEEE : mmm) = 0

(i) Explicit Format: mmm = mmmn (or evaluate mmm at mmm = mmmc or mmm = mmmtrial)

Use N-R for solving ∆λ =? for a given direction of plastic return e.g. mmm = mmmn.

(i) Implicit Format: mmm = mmmn+α where 0 < α ≤ 1 (mmm = mmmn+1 for BEM).

Fn+1 = F (σσσn + EEE : ∆εεε−∆λEEE : mmmn+α) = 0

Use N-R for solving ∆λ =? in addition to unknown mmm = mmmn+α
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ALGORITHMIC TANGENT STIFFNESS

Consistent Tangent vs Continuum Tangent:

Uniaxial Example:

σ̇ = Etanε̇ where Etan = E0[1−
σ

σ0
] hence σ = σ0[1− e

−E0
σ0

ε
]

Fully Implicit Euler Backward Integration: Etan = En+1
tan in ∆t = tn+1 − tn,

σn+1 = σn + E0[1−
σn+1

σ0
][εn+1 − εn]

Algorithmic Tangent Stiffness: Relates dεn+1 to dσn+1 at tn+1

dσn+1 = Ealg
tan dεn+1 where Ealg

tan =
E0[1− σn+1

σ0
]

1 + E0
σ0

∆ε

Ratio of Tangent Stiffness Properties:
E

alg
tan

Etan
= 1

1+
E0
σ0

∆ε
∼ 0.7
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ALGORITHMIC TANGENT STIFFNESS OF J2-PLASTICITY

Incremental Form of Elastic-Plastic Split:

∆sss = 2G [∆eee−∆λsss]

Fully Implicit Euler Backward Integration: for ∆t = tn+1 − tn,

sssn+1 = sssn + 2G[eeen+1 − eeen]−∆λ2Gsssn+1

Relating dsssn+1 to deeen+1 at tn+1, differentiation yields,

dsssn+1 = 2G deeen+1 − d∆λ2Gsssn+1 −∆λ2Gdsssn+1

Algorithmic Tangent Stiffness Relationship:

dsssn+1 =
2G

1 + ∆λ2G
[III − sssn+1 ⊗ sssn+1

sssn+1 : sssn+1
] : deeen+1

Ratio of Tangent Stiffness Properties:
GGG

alg
tan

GGGcont
tan

= 1
1+∆λ2G when ||sssn+1|| ∼ ||sssn||.
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CONCLUDING REMARKS

Main Lessons from Class # 5:

Nonlinear Solvers:
Forward Euler method introduces drift from true response path.
Newton-Raphson Iteration exhibits convergence difficulties when
KKKtan → 0 (ill-conditioning).

CPPM for Computational Plasticity:
Analytical Radial Return solution available for J2-plasticity and
Drucker-Prager. Generalization leads to explicit and implicit plastic
return strategies which are nowadays combined with the incremental
hardening and incremental stress residuals in a monolithic Newton
strategy.

Algorithmic vs Continuum Tangent:
For quadratic convergence tangent operator must be consistent with
integration of constitutive equations. The algorithmic tangent
compares to secant stiffness in increments which are truly finite.
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