MODELING OF CONCRETE MATERIALS AND STRUCTURES

Kaspar Willam

University of Colorado at Boulder
Class Meeting #b5: Integration of Constitutive Equations

Structural Equilibrium:
Incremental Tangent Stiffness and Residual Force Iteration

Radial Return Method:
FElastic Predictor-Plastic Corrector Strategy

Algorithmic Tangent Operator:
Consistent Tangent with Backward Constitutive Integration
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STRUCTURAL EQUILIBRIUM

Out-of-Balance Force Calculation:
Out-of Balance Residual Forces: Ru)=F;; —F.., —0

Internal Forces: Fy =) . fv BladV

External Forces: Fopy =) . fv N'bdV + >, fS N'tds

Rate of Equilibrium:

> / B'gdV =) / N'bdV + ) / N'tds
€ 4 e 4 € S
1. Incremental Methods of Numerical Integration: Path-following continuation
strategies to advance solution within At =t,.1 — t,

(a) Explicit Euler Forward Approach: Forward tangent stiffness strategy (should
include out-of-balance equilibrium corrections to control drift).

(b) Implicit Euler Backward Approach: Backward tangent stiffness
(requires iteration for calculating tangent stiffness at end of increment; Heun's
method at midstep, and Runge-Kutta h/o methods at intermediate stages).



INCREMENTAL SOLVERS

Euler Forward Integration: Classical Tangent stiffness approach
Internal forces: F, ; = > fv BleadV
Tangential Material Law: 0 = Emné

Tangential Stiffness Relationship:

K, u=F where K, 6 = Z / B'E,, BdV
o V

. [Un+1 _
Incremental Format: fun” K,,du=F, —F,

Euler Forward Integration: K, =, [, B'E}, BdV

tan tan

K; Au=AF where E} =FE,,(t,)
Note: Uncontrolled drift of response path if no equilibrium corrections are
included at each load step.
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2. ITERATIVE SOLVERS

Picard direct substitution iteration vs Newton-Raphson iteration within
At = tn+1 — 1y

Robustness Issues: Range and Rate of Convergence?

Newton-Raphson Residual Force Iteration: R(u) =0

Truncated Taylor Series Expansion of the residual R around u'~! yields

OR

i—1p,0 -1
o) ]

Riw) = Riw) '+
Letting R(u') = 0 solve

OR

(au )z’—l[uz' o ui—l] _ _R(u>i—1
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NEWTON-RAPHSON EQUILIBRIUM ITERATION

- - . OR _ tdo
Assuming conservative external forces: S = %" [ B'%ZdV

Chain rule of differentiation leads to

d do d
do = Ey,,de = E;,, Bdu such that 2 = 22~ = F;,, B.

Tangent stiffness matrix provides Jacobian of N-R residual iteration,
% = Ktan where Ktan — fv BtEmanV

Newton-Raphson Equilibrium lteration:

Ki—l[uz' . uz’—l] _ _R<u)i—1

tan

For i=1, the starting conditions for the first iteration cycle are,

KTL

tan

[ul . un] _ Fn—l—l . / Bto_n
V

First iteration cycle coincides with Euler forward step, whereby each equilibrium
iteration requires updating the tangential stiffness matrix.

Note: Difficulties near limit point when det K;,, — 0




RADIAL RETURN METHOD OF Jo-PLASTICITY |

Mises Yield Function:
1 1,

F<S>:§SIS—§UY:O

Associated Plastic Flow Rule:
€ \S h m oF S
0s
Plastic Consistency Condition:
. OF
F=—:158=8:58=0
s S=8:8

Deviatoric Stress Rate:

§=2G—e)=2Ge— \s]
Plastic Multiplier:




RADIAL RETURN METHOD OF Jo-PLASTICITY Il

Incremental Format:

As = 2G [Ae — A)s]
Elastic Predictor-Plastic Corrector Split:

(a) Elastic Predictor: sy = 8, + 2GAe
(b) Plastic Corrector: 8,11 = Striat — 2GANStjar = |1 — 2G AN Sty

“Full” Consistency: Fj,.1 = %Sn_}_l D 8pal — %0)2/ =0

Quadratic equation for computing plastic multiplier A\ =7 and A\y =7

1 ].
é[stm’al — QGAAStm'al] : [Strial o QGAAS”MZ] - 50}2/

Plastic Multiplier: A\, = %[1 — %\/%]

“Radial Return”: represents closest point projection of the trial stress state
onto the yield surface. Final stress state is the scaled-back trial stress,

2 Oy
Sn+1 — - Strial
3 \/Stm'al . Strial




GENERAL FORMAT OF PLASTIC RETURN METHOD
Incremental Format:
Ao = FE : [Ae — Am]
Elastic Predictor-Plastic Corrector Split:

(a) Elastic Predictor: 040 =0, + E : A€
(b) Plastic Corrector: 0,11 = Otriat — ANE :m

“Full” Consistency: Fj,11 = F(0,+E : Ae — ANE :m) =0
(i) Explicit Format: m = m,, (or evaluate m at m = m. or m = my,;y)

Use N-R for solving AX =7 for a given direction of plastic return e.g. m = m,,.

(i) Implicit Format: m = m,,, where 0 < a <1 (m = m,, for BEM).

Fooa=Fo,+E :Ae—ANE :m,.,)=0
Use N-R for solving AX =7 in addition to unknown m =m,,_,

Class #5 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007



ALGORITHMIC TANGENT STIFFNESS

Consistent Tangent vs Continuum Tangent:

Uniaxial Example:

: : o _ kg,
0 = Finé where FEy, = Eyll — —| hence o =o0p[l —e 0]
o)

Fully Implicit Euler Backward Integration: Ey,, = B2 in At =t,.1 — ta,

tan

n+1
Epl — —]
do" ™ = B 4™ where  EMY = —
1+ U—SAE
alg
Ratio of Tangent Stiffness Properties: Pan — 1 07

Etan 1—}—?A6
0
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ALGORITHMIC TANGENT STIFFNESS OF Jo-PLASTICITY

Incremental Form of Elastic-Plastic Split:
As = 2G [Ae — A)s]
Fully Implicit Euler Backward Integration: for At =t¢,,.1 — t,,

Sni1 = 8n +2Glen 1 — e, — AXN2GS, 11

Relating ds"*! to de"™! at t,., differentiation vyields,

dsn_|_1 — 2G den_|_1 - dA)\ZGSn+1 - A)\QGdsn+1

Algorithmic Tangent Stiffness Relationship:

2G T sn+1®sn+1]:d

ds,4+1 = —
o 1—FZXAQC;[ Sn+1 - Sp+1

en+1

alg

- . AC- Gtan — 1
Ratio of Tangent Stiffness Properties: Gt = TTANG

when (|84 ~ I8,

Class #5 Concrete Modeling, UNICAMP, Campinas, Brazil, August 20-28, 2007



CONCLUDING REMARKS

Main Lessons from Class # b:

Nonlinear Solvers:
Forward Euler method introduces drift from true response path.
Newton-Raphson Iteration exhibits convergence difficulties when
K., — 0 (ill-conditioning).

CPPM for Computational Plasticity:
Analytical Radial Return solution available for Jy-plasticity and
Drucker-Prager. Generalization leads to explicit and implicit plastic
return strategies which are nowadays combined with the incremental
hardening and incremental stress residuals in a monolithic Newton
strateqy.

Algorithmic vs Continuum Tangent:
For quadratic convergence tangent operator must be consistent with
integration of constitutive equations. The algorithmic tangent
compares to secant stiffness in increments which are truly finite.



