MODELING OF CONCRETE MATERIALS AND STRUCTURES

Kaspar Willam University of Colorado at Boulder

Class Meeting #5: Integration of Constitutive Equations

Structural Equilibrium:

Incremental Tangent Stiffness and Residual Force Iteration

Radial Return Method:

Elastic Predictor-Plastic Corrector Strategy

Algorithmic Tangent Operator: Consistent Tangent with Backward Constitutive Integration

STRUCTURAL EQUILIBRIUM

Out-of-Balance Force Calculation:

Out-of Balance Residual Forces:

$$\boldsymbol{R}(\boldsymbol{u}) = \boldsymbol{F}_{int} - \boldsymbol{F}_{ext} \rightarrow \boldsymbol{0}$$

Internal Forces: $\boldsymbol{F}_{int} = \sum_{e} \int_{V} \boldsymbol{B}^{t} \boldsymbol{\sigma} dV$

External Forces: $\boldsymbol{F}_{ext} = \sum_{e} \int_{V} \boldsymbol{N}^{t} \boldsymbol{b} dV + \sum_{e} \int_{S} \boldsymbol{N}^{t} \boldsymbol{t} dS$

Rate of Equilibrium:

$$\sum_{e} \int_{V} \boldsymbol{B}^{t} \dot{\boldsymbol{\sigma}} dV = \sum_{e} \int_{V} \boldsymbol{N}^{t} \dot{\boldsymbol{b}} dV + \sum_{e} \int_{S} \boldsymbol{N}^{t} \dot{\boldsymbol{t}} dS$$

1. Incremental Methods of Numerical Integration: Path-following continuation strategies to advance solution within $\Delta t = t_{n+1} - t_n$

(a) Explicit Euler Forward Approach: Forward tangent stiffness strategy (should include out-of-balance equilibrium corrections to control drift).

(b) Implicit Euler Backward Approach: Backward tangent stiffness (requires iteration for calculating tangent stiffness at end of increment; Heun's method at midstep, and Runge-Kutta h/o methods at intermediate stages).

INCREMENTAL SOLVERS

Euler Forward Integration: Classical Tangent stiffness approach

Internal forces: $\dot{\boldsymbol{F}}_{ext} = \sum_{e} \int_{V} \boldsymbol{B}^{t} \dot{\boldsymbol{\sigma}} dV$

Tangential Material Law: $\dot{oldsymbol{\sigma}}=\dot{oldsymbol{E}}_{tan}\dot{oldsymbol{\epsilon}}$

Tangential Stiffness Relationship:

$$oldsymbol{K}_{tan} \dot{oldsymbol{u}} = \dot{oldsymbol{F}} \quad ext{where} \quad oldsymbol{K}_{tan} = \sum_{e} \int_{V} oldsymbol{B}^{t} oldsymbol{E}_{tan} oldsymbol{B} dV$$

Incremental Format: $\int_{u_n}^{u_{n+1}} \boldsymbol{K}_{tan} d\boldsymbol{u} = \boldsymbol{F}_{n+1} - \boldsymbol{F}_n$

Euler Forward Integration: $K_{tan}^n = \sum_e \int_V B^t E_{tan}^n B dV$

$$oldsymbol{K}_{tan}^n \Delta oldsymbol{u} = \Delta oldsymbol{F}$$
 where $oldsymbol{E}_{tan}^n = oldsymbol{E}_{tan}(t_n)$

Note: Uncontrolled drift of response path if no equilibrium corrections are included at each load step.

2. ITERATIVE SOLVERS

Picard direct substitution iteration vs Newton-Raphson iteration within $\Delta t = t_{n+1} - t_n$

Robustness Issues: Range and Rate of Convergence?

Newton-Raphson Residual Force Iteration: R(u) = 0

Truncated Taylor Series Expansion of the residual R around u^{i-1} yields

$$\boldsymbol{R}(\boldsymbol{u})^{i} = \boldsymbol{R}(\boldsymbol{u})^{i-1} + \left(\frac{\partial \boldsymbol{R}}{\partial \boldsymbol{u}}\right)^{i-1} [\boldsymbol{u}^{i} - \boldsymbol{u}^{i-1}]$$

Letting $oldsymbol{R}(oldsymbol{u}^i)=oldsymbol{0}$ solve

$$(\frac{\partial \boldsymbol{R}}{\partial \boldsymbol{u}})^{i-1}[\boldsymbol{u}^i - \boldsymbol{u}^{i-1}] = -\boldsymbol{R}(\boldsymbol{u})^{i-1}$$

NEWTON-RAPHSON EQUILIBRIUM ITERATION

Assuming conservative external forces: $\frac{\partial \mathbf{R}}{\partial \mathbf{u}} = \sum_{e} \int_{V} \mathbf{B}^{t} \frac{d\sigma}{d\mathbf{u}} dV$

Chain rule of differentiation leads to

 $d\boldsymbol{\sigma} = \boldsymbol{E}_{tan} d\boldsymbol{\epsilon} = \boldsymbol{E}_{tan} \boldsymbol{B} d\boldsymbol{u}$ such that $\frac{d\boldsymbol{\sigma}}{d\boldsymbol{u}} = \frac{d\boldsymbol{\sigma}}{d\boldsymbol{\epsilon}} \frac{d\boldsymbol{\epsilon}}{d\boldsymbol{u}} = \boldsymbol{E}_{tan} \boldsymbol{B}$.

Tangent stiffness matrix provides Jacobian of N-R residual iteration,

$$rac{\partial m{R}}{\partial m{u}} = m{K}_{tan}$$
 where $m{K}_{tan} = \int_V m{B}^t m{E}_{tan} m{B} dV$

Newton-Raphson Equilibrium Iteration:

$$K_{tan}^{i-1}[u^i - u^{i-1}] = -R(u)^{i-1}$$

For i=1, the starting conditions for the first iteration cycle are,

$$oldsymbol{K}_{tan}^n[oldsymbol{u}^1-oldsymbol{u}^n]=oldsymbol{F}^{n+1}-\int_Voldsymbol{B}^toldsymbol{\sigma}^n$$

First iteration cycle coincides with Euler forward step, whereby each equilibrium iteration requires updating the tangential stiffness matrix.

Note: Difficulties near limit point when $\det K_{tan} \rightarrow 0$

RADIAL RETURN METHOD OF J_2 -PLASTICITY I

Mises Yield Function:

$$F(\boldsymbol{s}) = \frac{1}{2}\boldsymbol{s} : \boldsymbol{s} - \frac{1}{3}\sigma_Y^2 = 0$$

Associated Plastic Flow Rule:

$$\dot{oldsymbol{\epsilon}}_p = \dot{\lambda}\,oldsymbol{s}$$
 where $oldsymbol{m} = rac{\partial F}{\partialoldsymbol{s}} = oldsymbol{s}$

Plastic Consistency Condition:

$$\dot{F} = \frac{\partial F}{\partial s} : \dot{s} = s : \dot{s} = 0$$

Deviatoric Stress Rate:

Plastic Multiplier:

RADIAL RETURN METHOD OF J_2 -PLASTICITY II

Incremental Format:

$$\Delta \boldsymbol{s} = 2G \left[\Delta \boldsymbol{e} - \Delta \lambda \boldsymbol{s} \right]$$

Elastic Predictor-Plastic Corrector Split:

(a) Elastic Predictor: $s_{trial} = s_n + 2G\Delta e$ (b) Plastic Corrector: $s_{n+1} = s_{trial} - 2G\Delta\lambda s_{trial} = [1 - 2G\Delta\lambda]s_{trial}$

"Full" Consistency: $F_{n+1} = \frac{1}{2} \boldsymbol{s}_{n+1} : \boldsymbol{s}_{n+1} - \frac{1}{3} \sigma_Y^2 = 0$

Quadratic equation for computing plastic multiplier $\Delta \lambda_1 = ?$ and $\Delta \lambda_2 = ?$

$$\frac{1}{2}[\boldsymbol{s}_{trial} - 2G\Delta\lambda\boldsymbol{s}_{trial}] : [\boldsymbol{s}_{trial} - 2G\Delta\lambda\boldsymbol{s}_{trial}] = \frac{1}{3}\sigma_Y^2$$

Plastic Multiplier: $\Delta \lambda_{min} = \frac{1}{2G} \left[1 - \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\sqrt{\sigma_{trial}:\sigma_{trial}}}\right]$

"Radial Return": represents closest point projection of the trial stress state onto the yield surface. Final stress state is the scaled-back trial stress,

$$\boldsymbol{s}_{n+1} = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\sqrt{\boldsymbol{s}_{trial} : \boldsymbol{s}_{trial}}} \boldsymbol{s}_{trial}$$

GENERAL FORMAT OF PLASTIC RETURN METHOD

Incremental Format:

$$\Delta \boldsymbol{\sigma} = \boldsymbol{E} : [\Delta \boldsymbol{\epsilon} - \Delta \lambda \boldsymbol{m}]$$

Elastic Predictor-Plastic Corrector Split:

(a) Elastic Predictor: $\sigma_{trial} = \sigma_n + E : \Delta \epsilon$ (b) Plastic Corrector: $\sigma_{n+1} = \sigma_{trial} - \Delta \lambda E : m$

"Full" Consistency: $F_{n+1} = F(\boldsymbol{\sigma}_n + \boldsymbol{E} : \Delta \boldsymbol{\epsilon} - \Delta \lambda \boldsymbol{E} : \boldsymbol{m}) = 0$

(i) Explicit Format: $m = m_n$ (or evaluate m at $m = m_c$ or $m = m_{trial}$)

Use N-R for solving $\Delta \lambda = ?$ for a given direction of plastic return e.g. $m = m_n$.

(i) Implicit Format: $\boldsymbol{m} = \boldsymbol{m}_{n+\alpha}$ where $0 < \alpha \leq 1$ ($\boldsymbol{m} = \boldsymbol{m}_{n+1}$ for BEM).

$$F_{n+1} = F(\boldsymbol{\sigma}_n + \boldsymbol{E} : \Delta \boldsymbol{\epsilon} - \Delta \lambda \boldsymbol{E} : \boldsymbol{m}_{n+\alpha}) = 0$$

Use N-R for solving $\Delta \lambda = ?$ in addition to unknown $\boldsymbol{m} = \boldsymbol{m}_{n+\alpha}$

ALGORITHMIC TANGENT STIFFNESS

Consistent Tangent vs Continuum Tangent:

Uniaxial Example:

$$\dot{\sigma} = E_{tan}\dot{\epsilon}$$
 where $E_{tan} = E_0[1 - \frac{\sigma}{\sigma_0}]$ hence $\sigma = \sigma_0[1 - e^{-\frac{E_0}{\sigma_0}\epsilon}]$

Fully Implicit Euler Backward Integration: $E_{tan} = E_{tan}^{n+1}$ in $\Delta t = t_{n+1} - t_n$,

$$\sigma^{n+1} = \sigma^n + E_0 [1 - \frac{\sigma^{n+1}}{\sigma_0}] [\epsilon^{n+1} - \epsilon^n]$$

Algorithmic Tangent Stiffness: Relates $d\epsilon^{n+1}$ to $d\sigma^{n+1}$ at t_{n+1}

$$d\sigma^{n+1} = E_{tan}^{alg} d\epsilon^{n+1} \quad \text{where} \quad E_{tan}^{alg} = \frac{E_0 [1 - \frac{\sigma^{n+1}}{\sigma_0}]}{1 + \frac{E_0}{\sigma_0} \Delta \epsilon}$$

Ratio of Tangent Stiffness Properties: $\frac{E_{tan}^{alg}}{E_{tan}} = \frac{1}{1 + \frac{E_0}{\sigma_0} \Delta \epsilon} \sim 0.7$

ALGORITHMIC TANGENT STIFFNESS OF J_2 -PLASTICITY

Incremental Form of Elastic-Plastic Split:

$$\Delta \boldsymbol{s} = 2G \left[\Delta \boldsymbol{e} - \Delta \lambda \boldsymbol{s} \right]$$

Fully Implicit Euler Backward Integration: for $\Delta t = t_{n+1} - t_n$,

$$\boldsymbol{s}_{n+1} = \boldsymbol{s}_n + 2G[\boldsymbol{e}_{n+1} - \boldsymbol{e}_n] - \Delta \lambda 2G\boldsymbol{s}_{n+1}$$

Relating ds^{n+1} to de^{n+1} at t_{n+1} , differentiation yields,

$$d\boldsymbol{s}_{n+1} = 2G \, d\boldsymbol{e}_{n+1} - d\Delta\lambda 2G\boldsymbol{s}_{n+1} - \Delta\lambda 2G d\boldsymbol{s}_{n+1}$$

Algorithmic Tangent Stiffness Relationship:

$$d\boldsymbol{s}_{n+1} = \frac{2G}{1 + \Delta\lambda 2G} [\boldsymbol{I} - \frac{\boldsymbol{s}_{n+1} \otimes \boldsymbol{s}_{n+1}}{\boldsymbol{s}_{n+1} : \boldsymbol{s}_{n+1}}] : d\boldsymbol{e}_{n+1}$$

Ratio of Tangent Stiffness Properties: $\frac{G_{tan}^{alg}}{G_{tan}^{cont}} = \frac{1}{1+\Delta\lambda 2G}$ when $||s_{n+1}|| \sim ||s_n||$.

CONCLUDING REMARKS

Main Lessons from Class # 5:

Nonlinear Solvers:

Forward Euler method introduces drift from true response path. Newton-Raphson Iteration exhibits convergence difficulties when $K_{tan} \rightarrow 0$ (ill-conditioning).

CPPM for Computational Plasticity:

Analytical Radial Return solution available for J_2 -plasticity and Drucker-Prager. Generalization leads to explicit and implicit plastic return strategies which are nowadays combined with the incremental hardening and incremental stress residuals in a monolithic Newton strategy.

Algorithmic vs Continuum Tangent:

For quadratic convergence tangent operator must be consistent with integration of constitutive equations. The algorithmic tangent compares to secant stiffness in increments which are truly finite.