CVEN 3161-010

Mechanics of Materials I Spring 2004

- Instructor: Kaspar J. Willam; Office: ECOT 456, Tel: 2-7011
- Office Hrs: MWF 10:00-11:00 am; e-mail: willam@colorado.edu
- Teaching Assistant: Scott Hamel; Office: ECST 320-TA Room 3rd Floor
- Office Hrs: WR 12:00-2:00 pm; e-mail: hamels@colorado.edu
- Laboratory Manager: Tom Bowen; Thomas.Bowen@colorado.edu, ECCE 1B10, Tel: 2-2558
- Textbook: "Mechanics of Materials" Ray R. Craig, Jr., John Wiley & Sons, Inc., New York, 2nd Ed. 1999.
- Lectures: MF 9:00-9:50 a.m., ECCR 245
- Laboratory: W 9:00-9:50 a.m., ECCR 245 Three lab sessions during semester (plus one lab for mixing concrete):
 Lab # 1, L-011 : W 2:00-2:50 am, ECCE 1B52, Groups A,
 Lab # 2, L-011 : W 3:00-3:50 am, ECCE 1B52, Groups B,
 Lab # 3, L-012 : W 4:00-5:50 pm, ECCE 1B52, Groups C.
- Assignments: Weekly Homework Assignments [10 out-of 11](10%).
- Term-Projects: Three Laboratory Reports (30%).
- Three Midterm Examinations: ECCR 105, Wednesday 9:00-9:50 am: Feb. 11, March 17, April 14 (30%).
- Final Examination: ECCR 245, Tuesday May 4, 2004, 4:30 7:00 pm (30%).
- Disabilities: Students with disabilities who need academic accommodations should discuss options with the instructor during the first two weeks of class.

Course Outline

1. Introduction: Jan 12 - Jan 14, 2004	Chapter 1
• Fundamental Concepts of Mechanics of Materials	1.1-1.2
• Review of Static Equilibrium	1.4
2. Stress and Strain, Design: Jan 16 - Jan 30, 2003	Chapter 2
• Normal Stress	2.1-2.2
• Extensional Strain	2.3
• Normal Stress-Strain Diagrams	2.4
• Elasticity and Plasticity	2.5
• Linear Elasticity, Hooke's Law and Poisson's Ratio	2.6
• Shear Stress and Shear Strain	2.7
• Stresses on an Inclined Plane	2.8
• Generalized Hooke's Law (E, ν , G, K)	2.10
• Allowable Stress Design	2.12

3. Axial Deformation: Feb 2 - 9, 2004	Chapter 3
• Axial Deformation of Uniform and Non-Uniform Bars	3.1-3.3
• Stiffness and Flexibility of Uniform Bars	3.4
• Serial and Parallel Axial Bar Assemblies (Composite Bars)	3.5
Midterm #1: Feb 11, 2004	
4. Torsion: Feb 13 - 25, 2004	Chapter 4
• Elastic Torsion of Circular Bars	4.1-4.3
• Serial and Parallel Torsion Bar Assemblies (Composite Torsion Bar)	4.4-4.5
• Inelastic Torsion of Circular Bars	4.9
5. Equilibrium of Beams: Feb. 27 - March 3, 2004	Chapter 5
• Equilibrium using Free Body Diagrams	5.1 - 5.2
• Differential Equilibrium Relationships	5.3
• Interrelationship of Shear Force and Bending Moment Diagrams	5.4
6. Stresses in Beams: March 5 - March 19, 2004	Chapter 6
• Kinematics of Bending: Euler-Bernoulli Theory	6.1-6.2
• Flexural Stresses in Elastic Beams	6.3
• Allowable Stress Design of Beams, Elastic Section Modulus	6.4
Midterm #2: March 17, 2004	
• Inelastic Bending of Beams, Plastic Section Modulus	6.7
• Shear Stresses in Beams	6.8
• Limitations of Elastic Shear Stress Formula	6.9
• Shear Connectors in Built-Up Beams	6.11
7. Deflections of Beams: March 29 - April 9, 2003	Chapter 7
• Elastic Moment-Curvature Relation	7.1
• Differential Equations of Beam Deflection	7.2
• Deflection Analysis by Direct Integration	7.3
• Statically Indeterminate Deflection Problems	7.4
Midterm #3: April 14, 2004	
8. Transformation of Stress and Mohr's Circle: April 12 - 21, 2004	Chapter 8
• Transformation Relationships of Plane Stress	8.1-8.3
• Principal Stresses and Maximum Shear Stress	8.4
• Mohr's Circle for Plane Stress	8.5
9. Stresses due to Combined Loading: April 23 - April 30, 2004	Chapter 9
• Thin-Walled Pressure Vessels	9.1-9.2
• Stresses in Frame Members due to N, M, and V (Combined Loading)	9.4