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Chapter 1

Fundamentals of Continuum
Mechanics

Abstract

In this section, two topics of Continuum Mechanics will be reviewed:

• Kinematics of Motion : X,x,u (Strain εεεε → ε̇εεε).

• Balance Laws : conservation of mass, linear and angular momenta. (Stress σσσσ → σ̇σσσ).

1.1 Kinematics of Motion:

The description of motion can be divided into :

• Lagrange Coordinates : (Material Description)

X = XAeA where A = 1, 2, 3 (1.1)

• Euler Coordinates : (Spatial Description)

x = xiei where i = 1, 2, 3 (1.2)

The scalar temperature field may be represented by :

• Lagrangian Coordinates : T = T (X, t) - material description.

• Eulerian Coordinates : T = T (x, t) - spatial description.

Jacobian as Deformation Gradient :

F =
∂x

∂X
⇒ dx = F · dX (1.3)

1



Then mapping of the material line element dX from the reference into current configuration
is defined by : 


dxi

dxj

dxk


 =




dxi

dXA

dxi

dXB

dxi

dXC
dxj

dXA

dxj

dXB

dxj

dXC
dxk

dXA

dxk

dXB

dxk

dXC







dXA

dXB

dXC


 (1.4)

Restriction : for unique one-to-one mapping detF �= 0 where J = detF .

1.2 Polar Decomposition :

Polar decomposition theorem states that the deformation gradient tensor F may be decom-
posed uniquely into a positive definite tensor and a proper orthogonal tensor, i.e. the right
U or left V stretch tensor plus the rotation R tensor.

1. Right Description : F = R · U
where: det R = 1, Rt · R = 1, R · Rt = 1,

thus U = Ut such that λU > 0 and

U2 = Ut · Rt · R · U = Ft · F (1.5)

2. Left Description : F = V ·R with

V2 = F · Ft = V · R ·Rt · V (1.6)

and λV = λU

Physical Meaning of U and V :

• Right Stretch : dx = R · U · dX, where dX is first stretched and then rotated.

• Left Stretch : dx = V · R · dX, where dX is first rotated and then stretched.

If F is nonsingular ⇒ detF �= 0, then there is a unique decomposition into a proper orthog-
onal tensor R and a positive definite tensor U or V.

Logarithmic Hencky Strain [1928]: in the uniaxial case the logarithmic strain is defined by
integrating the stretch rate:

εln =
∫ L

L0

d�

�
= ln

L

L0
= lnλ where λ =

L

L0
. (1.7)

Triaxial extension of logarithmic strain:
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• Lagrangian format : εεεεU
ln = lnU, with principal coordinates which are defined by eU)

• Eulerian format : εεεεV
ln = lnV, with principal Coordinates which are defined by eV =

R · eU.

Spectral Representation :

U =
3∑

i=1

λi e
i
U ⊗ ei

U and εεεεU
ln =

3∑
i=1

(lnλi) ei
U ⊗ ei

U (1.8)

V =
3∑

i=1

λi e
i
V ⊗ ei

V and εεεεV
ln =

3∑
i=1

(lnλi) ei
V ⊗ ei

V (1.9)

1.3 Lagrangian Strain Measure :

Extensional deformation

ds2 − dS2 = dxt · dx − dXt · dX = dXt · (Ft · F − 1) · dX (1.10)

The Green-Lagrange strain is related to the right stretch tensor by

EG = 1
2

(Ft · F− 1) = 1
2

(U2 − 1) (1.11)

In indicial form,

F =
∂xi

∂XA
ei ⊗ eA (1.12)

U2 =
∂xi

∂XA

· ∂xi

∂XB

(1.13)

EG
AB =

1

2
(

∂xi

∂XA

· ∂xi

∂XB

− δAB) (1.14)

Generalized Lagrangian Strain [Doyle-Erickson 1956]:

for m=0
E0 = lnU (1.15)

and for m=1,2,...

Em = 1
m

(Um − 1) (1.16)

1-dim examples with λ = L
L0

:

E0 = lnλ
E1 = λ − 1
E2 = 1

2
(λ2 − 1)

(1.17)
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Strain-Displacement Relationship

The displacement description of motion defines the new location of the material particle X
in terms of :

x = x(X, t) = u(X, t) + X (1.18)

The deformation gradient is given as

∂x

∂X
=

∂u

∂x
+ 1 = H + 1 where

∂u

∂X
= H (1.19)

With F = H + 1, we may develop the Lagrangian strain-displacement relationship

U2 = Ft · F = 1 + H + Ht + Ht · H (1.20)

1.4 Eulerian Strain Measure :

Spatial description of extensional deformation

ds2 − dS2 = dxt · (1 − F−t · F−1) · dx (1.21)

The Almansi strain tensor is in terms of the left stretch tensor

eA = 1
2

(1 − F−t · F−1) = 1
2

(1 − (V2)−1) (1.22)

Generalized Eulerian Strain [Doyle-Erickson 1956]:

for m=0
e0 = lnV (1.23)

and for m=-1,-2,...

em = 1
m

(Vm − 1) (1.24)

1-dim examples when 1
λ

= L0

L
:

e0 = −ln 1
λ

e−1 = 1 − 1
λ

e−2 = 1
2

(1 − 1
λ2 )

(1.25)

Strain-Displacement Relationship

In the spatial description the motion is described by:

u(x, t) = x − X(x, t) (1.26)

The spatial displacement gradient is defined as:

h =
∂u

∂x
= 1 − ∂X

∂x
= 1 − F−1 (1.27)
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or
F−1 = 1 − h (1.28)

V−2 = F−t · F−1 = 1 − h − ht + ht · h (1.29)

Substituting into the definition of the Almansi strain eA leads to the Almansi strain-displacement
relationship

eA = 1
2
(h + ht − ht · h) (1.30)

1.5 Infinitesimal Deformations:

If detH << 1 ⇒ det(Ht · H) � 0, then

εεεε =
1

2
(H + Ht) � 1

2
(h + ht) (1.31)

For “Infinitesimal Deformations” the spatial and the material displacement gradients coin-
cide,

∂u

∂X
∼ ∂u

∂x
(1.32)

Additive decomposition into symmetric and skew-symmetric components leads to

H =
∂u

∂X
=

1

2
(H + Ht) +

1

2
(H− Ht) (1.33)

where the symmetric component defines the traditional linearized strain tensor

εij =
1

2
(
∂ui

∂Xj

+
∂uj

∂Xi

) (1.34)

and where the skew-symmetric component defines the infinitesimal rotation tensor

ωij =
1

2
(
∂ui

∂Xj
− ∂uj

∂Xi
) (1.35)

such that εij = εji and ωij = −ωji.

1.6 The Velocity Gradient:

Considering the Eulerian format of the velocity field:

v = v(x, t) (1.36)

the Velocity Gradient is defined as :

���� =
∂v

∂x
(1.37)

Additive decomposition into symmetric and skew-symmetric components leads to

���� = d + w =
1

2
(���� + ����

t) +
1

2
(���� − ����

t) (1.38)
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The rate of deformation tensor is the symmetric part

d =
1

2
(
∂vi

∂xj

+
∂vj

∂xi

) (1.39)

The spin tensor is the skew-symmetric part

w =
1

2
(
∂vi

∂xj
− ∂vj

∂xi
) (1.40)

1.7 The Rate of Deformation Tensor:

Given
ds2 = dxt · dx = dXt · (Ft · F) · dX (1.41)

then the material time derivative is

D

Dt
(ds2) = dXt · (Ft · Ḟ + Ḟt · F)dX (1.42)

Given F = ∂x
∂X

the material time derivative yields Ḟ = ∂v
∂X

= ∂v
∂x

∂x
∂X

.
Relationship between rate of deformation gradient and velocity gradient:

Ḟ = ���� · F (1.43)

The difference between the spatial description of the temperature field T = T (x, t) and the
material description T = T (X, t) leads to the important difference of derivatives as follows:

• Spatial time derivative : Ṫ = Ṫ (x, t)

• Material time derivative : D
Dt

(T ) = Ṫ + ∂T
∂x

· ẋ

Considering the “material time derivative” of the line element ds we have

D

Dt
(ds2) = dXt · (Ft · ���� · F + Ft · ����t · F) · dX (1.44)

and in spatial form
D

Dt
(ds2) = dxt · (���� + ����

t) · dx = 2dxt · d · dx (1.45)

Hence the rate of deformation tensor measures the rate of extensional deformation of ds

1

2

D

Dt
(ds2) = dxt · d · dx (1.46)
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1.8 Reynold’s Transport Theorem :

The material time derivative of a physical quantity in the spatial description involves two
terms

D
Dt

= ∂
∂t

|X = ∂
∂t

|x +v · grad (1.47)

For the scalar temperature field T = T (x, t) we have

DT

Dt
=

∂T (X, t)

∂t
=

∂T (x, t)

∂t
+

∂T

∂x
· ∂x

∂t
= Ṫ |x +grad T · v (1.48)

Recalling that Ḟ = ���� · F and Ḟt = Ft · ����t, we consider the material time derivative of the
right polar decomposition U2 = Ft · F :

D

Dt
(U2) =

D

Dt
(Ft ·F) = Ḟt ·F+Ft ·F = Ft ·����t ·F+Ft ·����·F = Ft ·(����t+����)·F = 2Ft ·d·F (1.49)

From the Green-Lagrange strain EG = 1
2

(U2 − 1), we find the relationship with the rate of
deformation tensor

ĖG =
1

2
(U · U̇ + U̇ · U) = Ft · d · F (1.50)

1.9 Lagrangian Strain Rate:

From the right polar decomposition of F = R ·U , the time rate of the deformation gradient
is

Ḟ = Ṙ · U + R · U̇ (1.51)

With Ḟ = ���� · F , the left hand side expands into

���� · R ·U = Ṙ · U + R · U̇ (1.52)

After multiplication with U−1 and Rt we get

���� = Ṙ · Rt + R · U̇ · U−1 · Rt (1.53)

where Ṙ · Rt = Ω = −Ωt denotes the Rate of the Material Rotation Tensor.

The velocity gradient decomposes into symmetric and skew-symmetric components

d =
1

2
R · (U̇ · U−1 + U−1 · U̇) · Rt (1.54)

and

w = Ṙ · Rt +
1

2
R · (U̇ · U−1 − U−1U̇) · Rt (1.55)

Remark : The tensor Ω = Ṙ · Rt defines the rate of material rotation without stretching.
Only when there is no change of stretch, the spin tensor w coincides with the rate of material
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rotation tensor Ω. In general, the rate of deformation tensor d does not coincide with the
normalized rate of the right stretch tensor U̇.U−1 because of the superposed rotation R �= 0.
This leads to the concept of the “ rotation-neutralized” intermediate configuration which
should be used to define rotation-free constitutive rate equations.

dRN = Rt · d ·R =
1

2
(U̇ · U−1 + U−1 · U̇) (1.56)

1.10 Eulerian Strain Rate:

From the left polar decomposition of the Jacobian : F = V ·R, the time rate of the Jacobian
is

Ḟ = V̇ · R + V · Ṙ (1.57)

Using Ḟ = ���� · F, then the left hand side expands into

���� · V · R = V̇ · R + V · Ṙ (1.58)

or after multiplication with Rt and V−1 we get

���� = V̇ · V−1 + V · Ṙ · Rt · V−1 (1.59)

Then, the velocity gradient decomposes into symmetric and skew-symmetric components

d =
1

2
(V̇ · V−1 + V−1 · V̇) (1.60)

w =
1

2
(V̇ · V−1 −V−1 · V̇) + V · Ω · V−1 (1.61)

Remark : The rate of deformation tensor d coincides with the normalized rate of the left
stretch tensor, while the spin tensor w does not agree with the rate of material rotation Ω
when stretching takes place with V �= 1 and V̇ �= 0
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Chapter 2

Balance Laws:

The balance laws comprise statements as follows:

1. Balance of Linear Momentum.

2. Balance of Angular Momentum.

3. Balance of Mass.

4. Balance of Energy (First Law of Thermodynamics).

“ Forces” are measured indirectly through their action on deformable solids.
Distributed forces include:

• b : body force/unit volume(i. e. density).

• tn : surface traction.

Integrating the distributed forces over part I of the body B defines the resultant force vector

fI =
∫
BI

b dv +
∫

∂BI
tn da (2.1)

2.1 Balance of Linear Momentum:

Linear momentum is defined as:
i =

∫
BI

ρ ẋ dv (2.2)

Application of Newton’s second law
∑

f = m · a to the control volume of the body

D

Dt
i = f (2.3)

“Dynamic equilibrium” or the balance of linear momentum may be expressed as

∫
BI

D

Dt
(ρẋ)dv =

∫
∂BI

b dv +
∫
BI

tn da (2.4)
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or in terms of ∫
BI

(b − D

Dt
(ρẋ))dv +

∫
∂B

tn da = 0 (2.5)

Cauchy Lemma : states pointwise balance of surface tractions across any surface in the
interior of the body.

tn(x,n) + tn(x,−n) = 0 (2.6)

or
tn(x,n) = −tn(x,−n) (2.7)

2.2 Cauchy’s First Theorem:

The stress tensor is a linear mapping of the stress vector tn onto the normal vector n.

tn = σσσσt(x) · n (2.8)

In indicial notation,
ti = σji nj (2.9)

Considering elementary tetrahedron:

tn = n1 t1 + n2 t2 + n3 t3 (2.10)

The stress tensor σσσσ is simply composed of the coordinates of stress vectors on three mutually
orthogonal planes

σσσσ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 (2.11)

In our notation of σij , the first subscript i refers to normal direction of the area element and
the subscript j refers to the direction of the traction.

Considering the equilibrium in x1 direction :
∑

fx1 = 0.

t1da = σ11n1da + σ21n2da + σ31n3da (2.12)

then
t1 = σ11n1 + σ21n2 + σ31n3 (2.13)

With the help of the Divergence Theorem we find

∫
∂B σji nj da =

∫
B σji,j dv (2.14)

The equation of motion by Cauchy states the balance between the body forces and surface
tractions when inertia forces remain negligible:
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∫
B

bidv +
∫

∂B
tni da = 0 (2.15)

can be rewritten as
σji,j + bi = 0 (2.16)

“Cauchy’s First Theorem” states pointwise equilibrium in the interior of the body.

In the dynamic case, the balance equations generalize to

σji,j + bi =
D

Dt
(ρẋi) (2.17)

2.3 Balance of Mass:

The material time derivative of volume integral is comprised of two terms, one volume and
one surface integral

D

Dt
(
∫
B

Φρdv) =
∫
B

∂

∂t
(Φρ) dv +

∫
∂B

Φ ρ v · n da (2.18)

Using the divergence theorem the above equation reduces to:

D

Dt
(
∫
B

Φρ)dv =
∫
B

[
Φ [

∂ρ

∂t
+ div (ρv)] + ρ[

dΦ

dt
+ v · grad Φ]

]
dv (2.19)

If we assume that the function Φ = 1, then this reduces to an integral statement of mass
conservation

D

Dt

∫
B

ρdv =
∫
B

[
∂ρ

∂t
+ div (ρ v)

]
dv = 0 (2.20)

or pointwise it must hold
∂ρ
∂t

+ div(ρv) = 0 (2.21)

Expanding the divergence term

∂ρ

∂t
+ (gradρ) v + ρ divv = 0 (2.22)

Finally, the Continuity Condition at each point is simply

Dρ
Dt

+ ρ divv = 0 (2.23)

In indicial notation
Dρ

Dt
+

∂vi

∂xi
= 0 (2.24)

where
Dρ

Dt
=

∂ρ

∂t
+ vi

∂ρ

∂xi
(2.25)

The continuity condition reduces the material time derivative of linear momentum to

D

Dt

∫
B

ρẋ =
∫
B

∂

∂t
(ρẋ)dv +

∫
∂B

ẋ ρẋ · nda =
∫
B

ρ
Dẋ

Dt
dv (2.26)
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Material Description of Mass Balance:

Considering dx = F · dX, with det F = J = d v
d V

, then

∫
B

dv =
∫
B0

JdV (2.27)

There is no mass flow, but only mapping of geometry.

For mass conservation, ∫
B

ρ dv =
∫
B0

ρ0 dV (2.28)

With ρ0 dV = ρ J dV we find

J = ρ0

ρ
(2.29)

When mass flow is involved; the material time derivative of the mass balance must vanish,

D

Dt
(Jρ − ρ0) = 0 (2.30)

With Dρ
Dt

J + DJ
Dt

ρ = 0 we find that

DJ

Dt
= J div v (2.31)

For “incompressible” behavior, Dρ
Dt

= 0. and thus div v = 0, or vi,i = 0. Therefore, the
incompressibility condition reduces to,

tr d = 0 (2.32)

2.4 Balance of Angular Momentum

The angular momentum involves

h0 =
∫
BI

(x × ρẋ) dv (2.33)

where the pole is assumed to coincide with the origin x0 = 0. The moment of the distributed
forces is

m0 =
∫
B
(x × b)dv +

∫
∂B

(x × tn) da (2.34)

The balance of angular momentum states

Dh0

Dt
= m0 (2.35)

D

Dt

∫
B
(x × ρẋ)dv =

∫
B

(x × b)dv +
∫

∂B
(x × tn) da (2.36)
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The divergence theorem yields for the last term above∫
B
[x × (b + div σσσσt − ρẍ)]dv + 2

∫
B
(1 × σσσσt)dv = 0 (2.37)

Application of the first theorem of Cauchy : b + div σσσσt − ρ D
Dt

ẋ = 0, we get

1 × σσσσt = 0 → σσσσ = σσσσt (2.38)

which states that the stress tensors symmetric, i.e. σσσσt = σσσσ, i.e. the “Boltzmann Postulate”
of a symmetric stress tensor.

In index notation :
eijkσjk = 0 → σjk = σkj (2.39)

this results in
σ23 − σ32 = 0; σ31 − σ13 = 0; σ12 − σ21 = 0 (2.40)

2.5 Alternative Stress Measures:

Consider that the force vector is the same on the deformed and undeformed surface areas

f = tn da = σσσσt n da = ΣΣΣΣt N dA (2.41)

then ΣΣΣΣ denotes the “First Piola-Kirchhoff” stress tensor with respect to the undeformed
surface area.

From Nanson’s formula n da = J F−t N dA we get

J σσσσt F−t N dA = ΣΣΣΣt N dA (2.42)

or
ΣΣΣΣ = J F−1 σσσσ (2.43)

which shows the loss of symmetry of the first Piola-Kirchhoff stress, ΣΣΣΣ �= ΣΣΣΣt .

The “Second Piola-Kirchoff” stress is defined as

S = ΣΣΣΣ F−t = J F−1 σσσσ F−t (2.44)

or
S = F−1 ττττ F−t (2.45)

in which ττττ = J σσσσ denotes the Kirchoff stress. From σσσσ = 1
J

F S Ft , we can relate the

Kirchhoff stress to the second Piola-Kirchhoff stress

ττττ = F S Ft (2.46)

Balance of Linear Momentum:
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In the current reference configuration

D

Dt
(
∫
B

ρ ẋ dv) =
∫
B

b dv +
∫

∂B
tn da (2.47)

in which tn = σσσσt · n. In the initial undeformed reference configuration this reads∫
B0

ρ0
Dẋ

Dt
dV =

∫
B0

b0 dV +
∫

∂B0

ΣΣΣΣt N dA (2.48)

2.6 Mechanical Stress Power:

Conjugate forms of kinematic and static measures lead to an inner product form of stress
and deformation rate. Using the divergence theorem the spatial description of momentum
balance leads to the local statement of differential equilibrium :

div σσσσt + b = ρ Dv
Dt

(2.49)

If this equation of motion is scalar multiplied with v and integrated over the entire body,
we get ∫

B
(div σσσσt) · v dv +

∫
B

b · v dv =
∫
B

ρ v̇ · v dv (2.50)

With (div σσσσt) · v = div(σσσσt · v) − σσσσ : d, we get∫
B

b · v dv +
∫

∂B
t · v da =

∫
B

σσσσ : d dv +
D

Dt

∫
B

ρv̇.v dv (2.51)

Using the divergence theorem the material description of momentum balance leads to the
local statement of differential equilibrium :

Div Σt + b0 = ρ0
D V
Dt

(2.52)

If this equation is multiplied with the weighing function v and integrated over the entire
body in the reference configuration, we find∫

B0

(Div ΣΣΣΣt) · v dV +
∫
B0

b0 · v dV =
∫
B0

ρ0
D

Dt
V̇ · v dV (2.53)

After analogous calculation to the spatial description we get∫
B0

b0 · v dV +
∫

∂B0

(Σt · N) · v dA =
∫
B0

ΣΣΣΣt : Ḟ dV +
∫
B0

ρ0 V̇ · v dV (2.54)

Stress Power:

Considering ττττ = ρ σσσσ, the inner product of stress and the rate of deformation leads to
alternative representations in terms of conjugate values

Ẇσ =
1

ρ0
ττττ : d =

1

ρ
σσσσ : d =

1

ρ0
ΣΣΣΣt : Ḟ =

1

ρ0
S : ĖG (2.55)
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Chapter 3

Lagrangian and Eulerian Descriptions

Abstract

This section develops Lagrangean and Eulerian settings for the finite element
description of motion in terms of linearized incremental statements of virtual
work.

3.1 Strong Equilibrium Statements

Considering the balance of momentum neglecting inertia effects:

1. Reference configuration:

Div ΣΣΣΣt + b0 = 0 (3.1)

and the traction boundary condition T = Σt · N in the reference configuration;
The balance of angular momentum results in symmetry of F ·ΣΣΣΣ = ΣΣΣΣt · Ft

2. Current configuration:

div σσσσt + b = 0 (3.2)

and the traction boundary condition t = σσσσt · n in the current configuration. The
balance of angular momentum results in symmetry of the Cauchy stress tensor, i.e.
σσσσ = σσσσt.

3.2 Weak Equilibrium Statements: δWi = δWe

The weak form of equilibrium is expressed in terms of the virtual work principle, with the
internal work being defined in the reference configuration as

δWi =
∫
B0

Grad(δu) : ΣΣΣΣ dV (3.3)

and in the current configuration as

δWi =
∫
B

grad(δu) : σσσσ dv (3.4)

Two descriptions will be disscussed for linearizing these weak equilibrium statements:
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1. The Lagrangian Approach: Total Lagrange Method.

2. The Eulerian Approach: Updated Lagrange Method.

3.3 Lagrangian Approach:

The incremental form of weak equilibrium derives directly from the weighted form of point-
wise balance of incremental linear momentum. In the reference configuration this results in
the increment of virtual work δU̇ = δẆ with

δẆi =
∫
B

Grad(δu) : Σ̇ΣΣΣ dV (3.5)

Recall that Ḟ = Grad(u̇) = ���� · F, and that the tangential material law in the reference

configuration is defined as Ṡ = C0 : ĖG,

With D
Dt

(Div ΣΣΣΣ) = Div Σ̇ΣΣΣ, and with ΣΣΣΣ = S · Ft we may substitute these expressions into
the incremental form of the internal virtual work, which leads to

δẆi =
∫
B

Grad(δu) : (Ṡ ·Ft + S · Ḟt)dV =
∫

β1

Grad(δu) : (F ·C0 : ĖG + S ·Ft ·����t)dV (3.6)

where ĖG = 1
2
(Ḟt · F + Ft · Ḟ).

This expression may be decomposed into two separate terms,

δẆi =
∫
B

Grad(δu) : S · Grad(u̇)t dV +

1

2

∫
B

Grad(δu) : F : C0 : (Ft · Grad(u̇) + Grad (u̇t)F)dV (3.7)

in which the term Grad(δu) : S · Grad(u̇)t gives rise to the “geometric stiffness”, and the
second term Grad(δu) : F · C0 : (Ft · Grad(u̇) + Grad(u̇) F) gives rise to the “material
stiffness”

δẆG =
∫
B

Grad(δu) : S · Grad(u̇)t dV (3.8)

δẆM =
1

2

∫
β1

Grad(δu) : F : C0 : (Ft · Grad(u̇) + Grad(u̇)t · F) dV (3.9)

3.4 Eulerian Approach:

We start from the definition of “Nominal Stress” in terms of the first Piola-Kirchhoff stress
ΣΣΣΣ = J F−1σσσσ . The material time derivative involves three terms because of the chain rule
of differentiation

D

Dt
(ΣΣΣΣ) = Σ̇ΣΣΣ = J̇ F−1 · σσσσ + J Ḟ−1 · σσσσ + J F−1 · σ̇σσσ (3.10)
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with the definition J̇ = J (tr����) and with F · F−1 = 1, we obtain Ḟ−1 = −F−1 · ���� .The
material derivative of the nominal stress is henceforth

Σ̇ΣΣΣ = J F−1 ((tr����) σσσσ − ���� · σσσσ + σ̇σσσ) (3.11)

The nominal stress rate in the “Current Configuration” is obtained by push-forward oper-
ation and updating the reference configuration to the current configuration.

Σ̇ΣΣΣ
c

= (tr����) σσσσ − ���� σσσσ + σ̇σσσ (3.12)

since F = 1 and J = 1.

Adopting an “objective” description of the hypo-elastic material law:

σ̆σσσ = c : d (3.13)

in terms of the objective rate of deformation and an objective stress rate such as the co-
rotational Jaumann rate of Cauchy-stress

σ̆σσσ = σ̇σσσ − w · σσσσ + σσσσ · wt (3.14)

with the spin defined as wt = −w = −1
2
(���� − ����t) , we obtain for the nominal stress rate an

expansion as follows

Σ̇ΣΣΣ
c

= σ̆σσσ + (tr����)σσσσ − ���� · σσσσ + w · σσσσ − σσσσ · wt (3.15)

or

Σ̇ΣΣΣ
c

= c : d + (tr����) σσσσ − ���� · σσσσ +
1

2
(���� · σσσσ − ����

tσσσσ + σσσσ · ����t − σσσσ · ����) (3.16)

With ���� = Ḟ · F−1 and F−1 = 1, we may develop the desired relationship between the
nominal stress state Σ̇ΣΣΣ

c
and the rate of the deformation gradient Ḟ = ���� · F.

Σ̇ΣΣΣ
c

= Dc
T : ���� (3.17)

The “effective”tangential material tensor Dc
T is comprised of two terms which involve the

“tangential moduli” tensor c and the current stress state σσσσ.

Explicit format :

Dc
ijkl = cT

ijkl + σijδkl − δikσlj +
1

2
(δikσlj − δilσkj + δjkσil − δjlσik) (3.18)

or expanded

Σ̇c
ij = cT

ijkl dkl + σij �kk − �ilσlj +
1

2
(�ilσlj − �ikσkj + �jlσil − �jkσik) (3.19)
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Substituting the rate of the nominal stress tensor into the weak equilibrium statement, the
virtual internal work statement in the current configuration reduces to

δẆi =
∫

β1

Grad(δu) : Σ̇ΣΣΣ dV →
∫

β
grad(δu) : Σ̇ΣΣΣ

c
dv (3.20)

with ���� = grad(u̇), the incremental virtual work expands into

δẆ =
∫

β
grad(δu) : Dc

T : ���� dv =
∫

β
grad(δu) : Dc

T : grad(u̇) dv (3.21)

This incremental equilibrium statement gives rise to the “ Tangential Material Stiffness”
and the “Geometric Stiffness” operators defined by:

δẆi = δẆM + δẆG (3.22)

With the tangential material law σ̆σσσ = c : d, we recover the material stiffness operator of
the small displacement theory

δẆM =
∫

β
grad(δu) : c : d dv =

∫
β

δεεεε : c : d dv (3.23)

and the geometric stiffness of the initial stress operator

δẆG =
∫

β
grad(δu) : σ̂σσσ : grad(u̇) dv (3.24)

In the finite element sense, these virtual work terms translate into matrix notation:

δẆ h
i = δut

I (kE + kG) u̇I (3.25)

and
δẆh

e = δut
I ḟI (3.26)

The “Tangential Stiffness” relationship describes a quasi-linear statement of incremental
equilibrium which reads at the element level as;

(kE + kG) u̇I = ḟI (3.27)

With G = ∂N
∂x

, and the material tangent ET = c, we retrieve the format of the Eulerian
tangent stiffness operators,

kE =
∫
Ωe

Bt
L ET BL dv (3.28)

kG =
∫
Ωe

Gt σ̂σσσ G dv (3.29)

in which BL denotes the traditional linear rate of deformation-nodal velocity operator and
G the spatial gradient of the finite element velocity expansion.
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