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B E H A V I O R  OF R E I N F O R C E D  C O N C R E T E  AT E L E V A T E D  TEMPERATURES 

By George N. Freskakis, M. A S C E  

- -  

K E Y  WORDS: Concrete properties;  reinforcing s tee l  properties;  elevated 

temperatures; sectional behavior; compressive strength; 

modulus of e l a s t i c i t y ;  thermal expansion; s t r e s s - s t r a in  

re1 a t i  onships ; s t r a i n  1 imi t s  . 

ABSTRACT: A study i s  presented concerning the behavior of  reinforced 

concrete sections a t  elevated temperatures. Material properties 

of concrete an-erei nforci ng s teel  are discussed. Behavior 

studies a re  made by means of moment-curvature-axial farce relat ion-  

ships.  

capacity,  thermal forces and  moments, and deformation capacity. 

The e f fec ts  on these properties of variations i n  the strength 

propert ies ,  t h e  temperature level and d i s t r ibu t ion ,  the amount o f  

reinforcing s t e e l ,  and l imiting values o f  s t ra ins  a r e  considered. 

Par t icular  a t tent ion i s  given t o  the load c a r r y i n g  

, 

i v  



B E H A V I O R  OF R E I N F O R C E D  C O N C R E T E  AT E L E V A T E D  TEMPERATURES 

By George N .  Freskakisl ,  M .  ASCE 

INTRODUCTION . 

The behavior of reinforced concrete sections a t  elevated temperatures 

i s  a subject of great  i n t e re s t  in the design of n-uclear plant f a c i l i t i e s  and 

par t icu lar ly  LMFBR plants where s t ructures  can be exposed t o  severe tempera- 

tu re  conditions from potential l iquid metal s p i l l s .  The nonl inear i t ies  in 

. 

material propert ies ,  the variation of properties with temperature, t ens i l e  

cracking, and creep e f fec ts  in the case of sustained temperatures, a f f ec t  

the build-up o f  thermal forces as well as the load carrying capacity a n d  the 

deformation capacity or ducti 1 i t y  of s t ructural  members. 

analytical  d i f f i c u l t i e s  in accounting for  the material behavior of concrete 

i t  i s  e s sen t i a l ,  when severe temperatures are considered, t o  include r e a l i s t i c  

behavior in order t o  avoid undue and impractical conservatism in the design. 

Despite the 

This paper presents a study on the material propert ies ,  a n d  the behavior 

charac te r i s t ics  o f  r e in fo rced  concrete sections a t  elevated temperatures 

which are  essential  for  a basic understanding of overall s t ructural  

behavior a n d  the formulation o f  methods a n d  c r i t e r i a  for  s t ructural  

analysis.  

Material properties a t  elevated temperatures summarized here cover the 

strength properties a n d  the coeff ic ient  of thermal expansion for concrete 

a n d  reinforcing s t e e l .  I n  the case of concrete the strength properties are 

Civil Engineering Spec ia l i s t ,  Burns and  Roe, Inc . ,  Oradell, riew Jersey 
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based on an extensive study of these properties ( 6 )  while the coeff ic ient  

of thermal expansion i s  based on ra ther  limited data for  the purpose o f  

studying s t ructural  behavior. For reinforcing s teel  the properties a re  

based on accepted relationships fo r  s t e e l s .  

The behavior of reinforced concrete sections i s  examined by means of 

moment-curvature-axial force re1 ationshi ps which account fo r  both the 

e f f ec t  o f  temperature on the 'material properties and the mechanical e f fec ts  

induced by the tendency f o r  thermal expansion. 

the load carrying capacity,  the thermal forces,  a n d  the deformation capacity. 

The e f fec ts  on these properties of variations in the strength properties 

w i t h  temperature, the temperature level a n d  d i s t r ibu t ion  across a sec t ion ,  

the amount  of reinforcing s t e e l ,  a n d  l imiting values of compressive s t r a ins  

O f  part icular  i n t e re s t  are  

are  considered. 

elevated temperatures i s  n o t  in the scope of t h i s  paper. 

The e f f ec t  of creep which becomes s igni f icant  a t  sustained 

MATERIAL PROPERTIES AT E L E V A T E D  TEMPERATURES 

S t r e n g t h  Properties o f  Concrete 

I t  i s  well known t ha t  the compressive strength and the modulus of 

e l a s t i c i t y  of concrete decrease w i t h  exposure t o  elevated temperature. 

magnitude a n d  variation of the reduction in these properties w i t h  temperature, 

however, i s  influenced by a multitude of factors  resul t ing i n  a wide 

s c a t t e r  o f  experimental resu l t s .  

presented i n  Reference ( 6 ) ,  considered the various factors a n d  established 

relationships for  two general types o f  t e s t  conditions, "cold" and  " h o t "  

t es t ing .  I n  "cold" tes t ing the t e s t  specimens are heated gradually t o  a 

The 

An extensive study of these properties , 
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specified temperature, a re  allowed t o  remain or heat soak a t  t h a t  

temperature for  a period of  time, then are allowed t o  cool t o  ambient and 

are  tes ted .  I n  " h o t "  t es t ing  the specimens are  heated gradually t o  the 

specified temperature, are  allowed t o  heat soak a n d  are  tested while a t  

t h a t  temperature. 
. 

Hot tes t ing  conditions are more appropriate for 

s t ructures  under thermal gradients and for  t h i s  reason the relationships 

corresponding t o  these conditions were adopted, from Reference ( 6 )  , for  

these behavior s tudies .  The upper a n d  lower bound relationships f o r  

strength and  the modulus of e l a s t i c i t y  a re  shown in Figure 1 and the 

s t r e s s - s t r a in  temperature curves in Figures 2 a n d  3. I t  should be noted 

tha t  the s t r e s s - s t r a in  curves are  shown t o  extend t o  s t r a in  l imi t s  much 

higher t h a n  allowed, by the present codes a n d  were used in th i s  form t o  

study sectional behavior. The e f f ec t  of s t r a in  l imi t s  i s  discussed in th i s  

paper. 

Thermal Expansion o f  Concrete 

The thermal expansion of concrete depends on a number o f  factors  

including mix proportions, moisture c o n t e n t ,  age, and the r a t e  of  heating. 

The most important f ac to r ,  however, i s  the mineral composition a n d  

s t ruc ture  o f  the aggregate. 

have the highest coeff ic ients  o f  thermal expansion while those containing 

l i t t l e  o r  no q u a r t z ,  such as limestone concrete have the lowest coeff ic ients .  

Concrete mixtures with high q u a r t z  content 

The coeff ic ient  o f  thermal expansion for  concrete varies w i t h  tempera- 

ture  a n d  generally increases a t  higher temperatures. Test resu l t s  of t h i s  

property a t  elevated temperatures are  1 imited f o r  temperatures below 3OO0F 

- 3  
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a n d  rather scarce above. Some of the resul ts  found i n  l i t e r a t u r e  f o r  the 

average coeff ic ient  of  thermal expansion, a, are shown in Figure 4 together 

with a general re la t ionship established from these d a t a .  The proposed 

relat ionship f o r  CI s t a r t s  o u t  with a value equal t o  t h a t  specified i n  the 

code ( 4 )  f o r  normal temperature then follows the trend of  the experimental 

which show a l i nea r  increase with temperature above 3OOuF. 

Properties o f  Reinforcing Steel 

S t ress -s t ra in  curves f o r  reinforcing s teel  a t  normal temperatures 

exhibi t  an i n i t i a l  e l a s t i c  portion u p  t o  the yield point,  a p l a s t i c  range 

where s t r a i n  increases a t  a constant or nearly constant s t r e s s ,  and a 

strain-hardening range where s t r a in  increases w i t h  s t r e s s .  

a t  normal temperature has been developed for  Grade 60 bars using the resu l t s  

reported i n  Reference ( 1 )  together w i t h  the ASTM Specification (A615) f o r  

yield s t r e s s  and t ens i l e  strength.  

A relationship 

There i s  a l a c k  o f  i n f o r m a t i o n  on the  properties o f  r e i n f o r c i n g  bars 

a t  elevated temperatures, however, fo r  the purpose of t h i s  study i t  i s  

assumed t h a t  reinforcing bars exhibit  the same behavior described in Ref- 

erence ( 3 )  f o r  s t ructural  s t e e l s ,  i .e .  , the t ens i l e  and y i e l d  strength 

generally decrease and  the modulus o f  e l a s t i c i t y  a lso drops w i t h  increasing 

temperature. The 0-E curves for reinforcing s tee l  a t  elevated temperatures, 

shown i n  Figure 5 ,  were obtained from the curve a t  normal temperature by 

adjusting the yield value, modulus of e l a s t i c i t y  and t ens i l e  s t rength,  

a c c o r d i n g  t o  the reductions indicated i n  Reference ( 3 )  for low alloy 

- I  

s t e e l s .  I t  should be p o i n t e d  o u t  t h a t  since the s teel  strength i s  n o t  
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affected s igni f icant ly  in the range of i n t e re s t  in t h i s  study, small 

deviations from the actual strength do  n o t  a f f ec t  the basic behavior of 

reinforced concrete sections.  

c 

The average coeff ic ient  of thermal expansion, a, for  reinforcing s,eel 

( 8 )  may be assumed the same as tha t  recommended in the AISC Specification 

fo r  s t ructural  s t e e l s .  This re la t ionship i s  given by the following 

equation: 

a = ( 6 . 1  + 0.0019 T )  x 

Where T i s  the temperature i n  question. 

SECTIONAL RESPONSE AT ELEVATED TEMPERATURES 

Moment Curvature Relationships 

T h e  b e h a v i o r  o f  concrete sections and the influence o f  various factors  

on the behavior can be best represented by relationships between moment, 

curvature, and axial force.  

case o f  elevated temperatures i t  i s  important to  consider both the e f f ec t  

of temperature on the material properties and the mechanical e f fec ts  

induced by the tendency fo r  expansion. 

In  order t o  develop such relationships for  the 

The e f f ec t  of elevated temperatures on the material properties was 

I n  order t o  explain the mechanical discussed i n  the previous sections.  

e f f ec t s ,  consider Section A-A o f  the beam in Figure 6 which i s  under some 

5 
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nonlinear temperature gradient. The section 

QAT b u t  due t o  internal r e s t r a in t s  remains p 

B-B.  I f  the r o t a t i o n  of  the beam, and hence 

t o t a l l y  prevented, b u t  axial expansion i s  a1 

tends t o  expand t o  the shape 

ane a n d  assumes the position 

o f  the cross sect ion,  i s  

owed, the f i n a l  position of  

the section will be a t  A ' - A '  while i f  b o t h  r o t a t i o n  a n d  t ranslat ion are 

prevented the section will remain in i t s  original position A-A.  I n  any 

case the o f f se t s  between the f r ee  thermal expansion l i ne  aAT and  the final 

1 ine represent mechanical s t r a ins  and hence s t r e s ses .  The thermal axial 

force,  Pt, and  moment, M t ,  may be obtained by summing u p  the s t r e s ses ,  u ,  

and the moments o f  the s t resses  over the en t i re  cross section. 

Moment curvature force relationships for  sections under thermal 

gradients may be obtained by methods s imilar  t o  those when the temperature 

i s  n o t  involved, i . e .  se lec t  a curvature @ and calculate  the forces a n d  

moments corresponding t o  d i f fe ren t  positions of  the section. 

purpose of  t h i s  study a computer program was developed t h a t  uses the 

following numerical procedure t o  develop the moment-curvature re la t ionship 

corresponding t o  a given a x i a l  force. 

\ 

For the 

a .  

b. 

The section i s  divided into a d i scre te  number of elements a n d  the 

thermal s t r a in  of  each element, i ,  i s  ca-lculated as ( E ~ ) ~  = a i  ATi  

A plane section i s  passed a t  a curvature @ a n d  s t ra ins  E ~ .  

mechanical s t ra ins  are calculated as 

The 

E = ( E f ) i  - ( E  ) = ( E ~ ) ~  - a i A T i  i t i  



,- 

c.  Stresses a t  the centroid of each element are  calculated from the 

temperature dependent u-E relationships a n d  the corresponding force 

and moment a re  obtained from the summations 

n c 

P = Z a i  A i  
i = l  

n 

i = l  
M = C ai Y i  A i  

where Y i  i s  the distance of element i from the centroidal axis of the 

section. 

d .  The value of P i s  compared w i t h  the force under consideration and i f  

d i f fe ren t  the section i s  moved to  a new position maintaining the same 

(I and the process i s  repeated until  convergence. 

e .  A new curvature i s  selected and steps c and d are  repeated. 

A typical moment-curvature diagram fo r  a section under a thermal 

gradient i s  shown in Figure 7 for  a par t icu lar  va lue  of axial force,  P .  

The in te rsep t  of the diagram w i t h  the horizontal ,  4 ,  axis  represents the 

rotation t h a t  would take place i f  there were no rotational res t ra  n t s .  

in te rsep t  of the diagram and the ve r t i ca l ,  M, axis represents the thermal 

moment of the section when i t  i s  restrained against  r o t a t i o n ,  i . e  , the 

The 

fixed end thermal moment which will be simply referred t o  as "thermal 

moment". 

corresponding t o  the par t icular  axial force P .  

moment capacity a n d  the thermal moment will be referred t o  as the "net 

The peak moment represents the moment capacity of the section 

The difference between the 

7 
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moment (or bending) capacity" and i s  of par t icu lar  i n t e re s t  since i t  

represents a margin of safety or the moment capacity available f o r  other 

1 oads or forces.  

- 
Axial forces may be due t o  loads other t h a n  thermal or  they may be 

thermal forces resul t ing from axial r e s t r a in t s .  A thermal force may vary 

f r o m  zero when a member i s  f r ee  t o  grow axia l ly  t o  a value corresponding t o  

. f u l l  axial r e s t r a i n t .  The thermal force corresponding t o  fu l l  axial 

r e s t r a i n t  will be referred t o  as the " fu l l  f i x i t y  force" and i s  of 

par t icu lar  i n t e re s t  because i t  often represents a n  upper bound  of the axial 

1 oad. 

General Characterist ics 

In  order t o  study the behavior of reinforced concrete sections a t  

elevated temperatures a 48" x 12" section (Figure 8 )  with f; = 4000 psi was 

selected,  which may typical ly  represent a s t r i p  o f  wall or  f loor  in a 

s t ruc ture .  I n  a case tha t  i s  used as a base t o  determine t h e  e f f e c t s  o f  

various f ac to r s ,  the section has one percent of Grade 60 reinforcing s teel  

dis t r ibuted equally a t  the two s ides .  Moment-curvature a x i a l  force relat ion-  

ships were obtained a t  normal temperature and for  the thermal gradients o f  

Figure 9(b) which have temperatures of 3OO0F, 50OoF, and 8OO0F a t  the face 

of the section a n d  w i l l  be referred t o  by these temperatures. The gradients 

o f  Figures 9 ( a )  a n d  9 ( c )  were also used extensively t o  ensure t h a t  any 

conclusions d rawn  from resu l t s  using the type I 1  gradients are  applicable 

t o  other temperature dis t r ibut ions as well. The s t ress -s t ra in  relationships 

used in t h i s  base case are  those in Figure 1 which correspond t o  lower 

a 
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bound relationships f o r  strength and e l a s t i c i t y .  The t ens i l e  strength o f  

concrete was neglected i n  the calculations.  

Moment-curvatureraxial-force diagrams fo r  normal temperature are.shown 

Both in Figure 10 and  fo r  the 3OO0F type I 1  thermal gradient i n  Figure 1 1 .  

s e t s  of  curves show the same general behavior charac te r i s t ics  i . e .  an 

increase in bending capacity a t  low values of the compressive force and a 

decrease a t  higher values, a loss of d u c t i l i t y  with axial force,  and higher 

s t i f fnes s  in the presence of axial forces.  The presence of a compressive 

force increases the thermal moment since i t  prevents or reduces the 

cracking o f  the sect ion,  however, a t  high compressive forces the thermal 

moment decreases due t o  the loss  o f  s t i f fnes s  of the section resul t ing from 

p la s t i c  s t r a i n s .  

observed a t  elevated temperatures. 

._ - -. - 

An increase in deformation capacity or d u c t i l i t y  i s  

Temperature Level and  Distribution 

In considering thermal e f fec ts  b o t h  the temperature level and  

the d is t r ibu t ion  o f  temperature across the thickness o f  a section are  

important parameters. The level of temperature re la tes  t o  the 

changes in material properties and the level o f  thermal s t r e s ses ,  

while the shape re la tes  t o  the d is t r ibu t ion  of s t resses  and hence t o  

the resul tant  bending and axial forces.  In th i s  study, temperature 

level i s  defined as the temperature a t  the h o t  face o f  the sect ion,  

and dis t r ibut ions are grouped into three basic types t h a t  cover the 

range from short  t o  l o n g  durations o f  heat exposure (Figure 9 ) .  



. '  

The e f f ec t  of  the temperature level on the behavior i s  i l l u s t r a t ed  i n  

Figure 1 2  fo r  the case of the thermal gradient Type 11. 

ture  level r e su l t s  i n  greater loss of  bending capacity i n  the presence of  

a x i a l  forces b u t  has pract ical ly  no e f f ec t  i n  the case o f  pure bending 

where the capacity i s  governed by the reinforcing s t e e l .  

moment increases w i t h  the temperature level the net bending capacity 

decreases rapidly a t  higher temperatures. The s t i f fnes s  E I ,  measured by 

the slope of  the M-$I curves, i s  pract ical ly  n o t  affected by the level of, 

The higher tempera- 

As the thermal 

. 
temperature in the case o f  P = 0 b u t  drops sharply i n  the presence of axial 

forces.  

The d i f f e ren t  types o f  temperature d s t r ibut ions resulted i n  the same 

general behavior discussed e a r l i e r  except t h a t  i n  the case o f  steady s t a t e  

gradients (Type 111)  there was a d r o p  i n  the d u c t i l i t y .  The sever i ty ,  i n  

terms of the net bending capacity, o f  d i f fe ren t  thermal gradients i s  

i l l u s t r a t e d  in Figure 13. 

d u r a t i o n  of heat exposure i s  the l ea s t  severe, however, the resu l t s  on the 

other cases are not easily predictable. Of the two cases using a Type I11  

d i s t r ib tu ion ,  case ( c )  w i t h  the steeper gradient,  i s  more severe for 

spec i f ic  values of  a x i a l  compression b u t  becomes less  severe when conditions 

o f  fu l l  f i x i t y  are  considered. In general the net bending capacity increases 

w i t h  a x i a l  compression i n  the region of the interaction diagram governed by 

tension and decreases i n  the region governed by compression a n d  th i s  should 

be taken into account in assessing d i f fe ren t  gradients.  

As expected, case ( a )  which represents a short  

I n  view of  the resu l t s  i n  Figures 12 a n d  13 i t  i s  wor th  n o t i n g  t h a t  

in terms of bending and a x i a l  force capacity reinforced concrete sections 

10 



can be designed t o  s u s t a i n  severe temperature g r a d i e n t s  w i t h  l e v e l s  o f  

temperature much h i g h e r  than a l l owed  by t h e  p r e s e n t  codes. 

Upper.and Lower 6ound S t r e n g t h  R e l a t i o n s h i p s  

I n  t h e  b e h a v i o r  o f  c o n c r e t e  s e c t i o n s  s u b j e c t  t o  thermal  g r a d i e n t s ,  t h e  

compressive s t r e n g t h  ( f h )  and t h e  modulus of e l a s t i c i t y  ( E )  have o p p o s i t e  

e f f e c t s ;  t h e  compressive s t r e n g t h  i n f l u e n c e s  t h e  l o a d  c a r r y i n g  c a p a c i t y  

w h i l e  t h e  e l a s t i c i t y  r e l a t e s  t o  t h e  f o r c e s  developed by v a r i o u s  r e s t r a i n t s .  

Fo r  t h i s  reason, t h e  thermal  response o f  s e c t i o n s  a t  e l e v a t e d  temperatures 

may be b r a c k e t e d  by u s i n g  t h e  two s e t s  o f  s t r e s s - s t r a i n - t e m p e r a t u r e  curves 

shown i n  F i g u r e s  1 and 2, one o f  which i s  based on l ower  bound and t h e  

o t h e r  on upper bound r e l a t i o n s h i p s  f o r  compressive s t r e n g t h  and e l a s t i c i t y .  
-__ _- 

Some t y p i c a l  b1-g-P curves corresponding t o  t h e  3OO0F Type I 1  tempera- 

t u r e  g r a d i e n t  and t h e  upper and lower  bound cr-E r e l a t i o n s h i p s  a r e  shown i n  

F i g u r e  14. 

z e r o ,  t h e  two se t s  o f  r e l a t i o n s h i p s  r e s u l t  i n  a lmost  t h e  same bending 

These curves show t h a t  when t h e  a x i a l  compression f o r c e  i s  

c a p a c i t i e s  b u t  f o r  h i g h e r  compressive f o r c e s  t h e  upper bound r e l a t i o n s h i p s  

r e s u l t  i n  much h i g h e r  c a p a c i t i e s .  Thermal moments corresponding t o  t h e  

upper bound r e l a t i o n s h i p s  a r e  always h i g h e r  and i n c r e a s e  o r  decrease w i t h  

t h e  compressive f o r c e  i n  a manner s i m i l a r  t o  t h e  c a p a c i t y .  

I n  o r d e r  t o  e s t a b l i s h  which s e t  o f  r e l a t i o n s h i p  r e s u l t s  i n  t h e  most 

severe response w i t h  r e s p e c t  t o  t h e  n e t  bending c a p a c i t y ,  e x t e n s i v e  

r e s u l t s  were o b t a i n e d  i n  t h i s  s tudy  f o r  a l l  t h e  thermal  g r a d i e n t s  shown 

i n  F i g u r e  9 and u s i n g  1% and 2% o f  r e i n f o r c i n g  s t e e l .  I n  summary, t h e  

f o l l o w i n g  b e h a v i o r  was noted:  

-11 



- In a l l  cases 

moment capac 

however, the 

lower bound 

the upper bound  relationships resulted 

t i e s  in the case of f ree  a x i a l  expansion 

difference from the values corresponding 

elat ions i s  generally small ( <  10%) exce 
c 

temperature levels  of 5OO0F a n d  above. 

n lower net 

( P = O )  Y 

t o  the 

t a t  

- In the case of the Type I gradients representing short  duration 

of  heat exposure the net moment capacity corresponding t o  a 

spec i f ic  axial force wa! always lower for  the upper bound  

re la t ionships .  

relationships was generally small par t icular ly  in the region of 

the interact ion diagram governed by tension ( ~ 1 0 % ) .  

The difference in values from the two se t s  of 

- For the gradients representing long duration of heat exposure, 

Types I 1  a n d  111, the net moment capacity corresponding t o  a 

spec i f ic  axial force was lower (by l ess  t h a n  10-152 except for  

temperatures of 500' and albove) fo r  the upper bound relationships 

in the region of the interaction diagram governed by tension, and 

s ign i f icant ly  lower for  the lower bound relationships in the 

region governed by compression except in the case of the 800' 

gradient (Figure 15 ) .  

- The upper bound  relationships always resu l t  in higher compressive 

forces t h a n  the lower bound  relationships when a x i a l  expansion 

i s  res t ra ined.  These higher -compressive forces increase the 

net moment capacity i n  the region of  the interaction diagram 

governed by tension a n d  decrease i t  in the region governed by 

" 12 



compression thus reducing the difference between the values of 

net bending capacity obtained by the two se t s  of  re la t ionships .  

- In the extreme case of f u l l  a x i a l  f i x i t y  the two se t s  o f  

relationships generally resulted in almost identical  values of  
- 

net bending capacit ies (Figure 15) .  Exceptions were noted a t  

low temperature levels  (Type 11, TI = 150°F, T2 = 7OoF) where the 

lower bound relationships resulted in the worse response, and i n  

the case o f  the 8OO0F Type I 1  gradient where the upper bound  

re la t ionships  resulted in the worse response. 

Based on the above observations i t  may be concluded t h a t  e i t he r  s e t  of 

relationships may r e su l t  in a more severe response depending on the type of 

thermal gradient ,  the level o f  temperature, and the nature of the a x i a l  

force i . e .  whether i t  i s  a thermal and  hence variable force o r  a spec i f ic  

.~ _-- 

force.  

bending capacity which a re  e i the r  lower (sometimes considerably lower),  

t h a n  the corresponding values from the upper bound  relationships or higher 

by a small percentage (5 10%) and may be used for most  thermal s t r e s s  

The lower bound  relationships generally r e su l t  i n  values of the net 

calculat ions.  The upper bound re la t ionships ,  however, should be considered 

in the case o f  h i g h  temperature levels ( 5 0 O O F  a n d  above) and i n  the case o f  

short  duration o f  heat exposure. 

Effect o f  Reinforcing Steel 

Reinforcing s teel  a f fec ts  s ign i f icant ly  the b e h a v i o r  of reinforced 

concrete sections a t  elevated temperatures a n d  proper selection of the 

13 
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amount and i t s  placement in the s t ruc ture  are  essential  in achieving 

an  optimum design. Results t ha t  show the e f fec t  o f  the a m o u n t  o f  rein- 

forcing s teel  on the sectional properties a t  elevated temperatures are  

shown i n  Figure 16 .  

s tee l  resulted i n  higher thermal moments and bending capaci t ies .  

bending capacity shows a substantial  increase as the a m o u n t  of reinforcing 

As expected, an  increase i n  the amount o f  reinforcing 
c 

The net 

s tee l  increased from 1% t o  2%. This improvement, however, sometimes 

diminishes a t  conditions of fu l l  axial f i x i t y  due t o  the build-up o f  

higher compressive forces t h a t  

Proper d is t r ibu t ion  and p 

section a re  important i n  order 

par t icu lar ly  contribute t o  the 

i l l u s t r a t e d  i n  Figure 16 where 

(compress ion s tee1 ) 1 s reduced 

may tend to  decrease the bending capacity. 

acement of  the reinforcing s teel  in a 

t o  avoid excessive amounts t h a t  do  n o t  

overall capabi l i t i es  o f  a section. This i s  

the amount of  s tee l  near the hot face 

t o  one half the amount without a f f ec t  

s ign i f icant ly  the net bending capacity o f  the sect ion,  which in f ac t  

increased a t  P=O. 

Strain Limits 

I t  i s  well known tha t  the s t ress -s t ra in  curve fo r  concrete descends 

beyond the point o f  maximum s t r e s s  a n d  material f a i lu re  occurs a t  some 

lower s t r e s s  leve l .  A t  normal temperature, the A C I  318-77 Code recommends 

tha t  the maximum usable s t r a i n  be limited t o  0.003 i n / i n  o r  approximately 

50 percent higher t h a n  the value corresponding t o  maximum s t r e s s  while 

Reference 6 examines the behavior a t  elevated temperatures a n d  recommends 

t h a t  the l imi t  f o r  unconfined concrete be extended t o  a t  l e a s t  0.004 i n / i n  

a t  temperatures o f  W O O F  and above. 



..* 

Typical behavior curves presented so f a r  in th i s  study were obtained 

using the s t ress -s t ra in  relationships for  concrete shown in Figures 2 a n d  3 

without jmposing any l imi t  on  the s t r a ins .  The e f f ec t  of s t r a in  l imits  has 

been considered separately using maximum s t r a in  values of 0.003 and 0.004 
c 

in/ in  and typical resu l t s  shown in Figures 16 and 1 7 ,  fo r  the 300°F and the 

5OO0F thermal gradients respectively,  indicate t h a t  when s t r a in  l imits  a re  

imposed the rotational duc t i i i  ty  drops sharply as the temperature level 

increases.  The curves f o r  the 3OO0F gradient show t h a t  f o r  compressive 

forces u p  t o  values much higher t h a n  t ha t  corresponding t o  fu l l  axial r e s t r a i n t  

(600k) there  i s  l i t t l e  or no change in the maximum bending capacity and the 

primary e f f ec t  of the s t r a i n  l imi t s  considered, i s  t o  reduce the d u c t i l i t y  

of  the sect ion.  

t h a t  i n  the range u p  t o  fu l l  f i x i t y  (1080k), a s t r a i n  l imi t  of 0.004 in/in 

has l i t t l e  or no e f fec t  on the bending capacity,  however, the s t r a in  l imi t  

I n  the case of the 500°F thermal gradient,  the resu l t s  show 

o f  0.003 in/ in  resu l t s  i n  capacity reductions u p  t o  almost 20 percent. For 

the 800°F thermal gradient s ign i f icant  reductions in capacity occur with 

both the 0.004 and the 0.003 in/in s t r a i n  l imi t s .  Reduction in the strength 

a n d  d u c t i l i t y  a re  s ign i f icant ly  lower in the case o f  the upper bound  re la t ionship.  

Tensile Strength o f  Concrete 

The t ens i l e  strength of concrete i s  a very s igni f icant  factor  in 

thermal calculations involving small increase in the temperature above the 

reference leve l .  However, when thermal gradients r e su l t  in large s t r a i n s ,  

such as those considered in th i s  study, the t ens i l e  strength of the concrete 

has no s igni f icant  e f f ec t  on e i the r  the thermal moment or the capacity a n d  

may be neglected without s ignif icant  e r ror .  

I 
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SUMMARY AND CONCLUSIONS 

A study has been presented concerning the behavior o f  reinforced 

concrete of elevated temperatures. 

s t ructural  properties o f  the component material ,  spec i f ica l ly  the strength 

properties and  the coef f ic ien t  of  thermal expansion, are  reviewed and  

I n  the f i r s t  p a r t  of the paper, the . 

re lat ionships  are  established fo r  the behavior s tudies .  I n  the second p a r t  

of the paper, the charac te r i s t ics  of reinforced concrete sections are  

examined by means o f  moment-curvature-axial force relationships and  the 

e f f e c t  of various factors i s  assessed. 

O f  par t icu lar  i n t e re s t  in the study are the e f fec ts  o f  d i f fe ren t  

strength e l a s t i c i t y  re la t ionships ,  the temperature level and d i s t r ibu t ion  

across the sect ion,  the reinforcing s t e e l ,  s t r a in  l imi t s ,  and the t ens i l e  

strength of  the concrete on the load carrying capacity a n d  the d u c t i l i t y  o f  

sections.  The resu l t s  may be summarized as follows: 

- The e f f ec t  o f  elevated temperatures i s  t o  decrease the section 

capacity when axial forces are  present, and w i t h  the b u i l d -  

u p  of thermal forces decrease s ign i f icant ly  the net carrying 

capacity. 

- In  terms of bending and a x i a l  force capacity, reinforced 

concrete sections can be designed to sustain severe tempera- 

tu re  gradients w i t h  levels of  temperature m u c h  higher t h a n  

allowed by the present codes. 



.. 

- A comparison of resu l t s  on the net moment capacity based on the 

upper bound and lower bound strength and e l a s t i c i t y  relationships 

indicates t h a t  e i t he r  s e t  o f  relationships may govern the design 

depending on the level and d i s t r ibu t ion  o f  temperature across t h e  

sect ion,  and the nature of the axial compression, i . e . ,  whether 

i t  i s  a thermal and hence variable force or a spec i f ic  force. 

- 

The lower bound relationships a re  generally more appropriate fo r  

thermal s t r e s s  calculations b u t  the upper bound  relationships 

should be considered for high temperature levels (50OoF and 

above) and  in the case of short  duration of  heat exposure. 

- The addition of reinforcing s tee l  improves the net capacity of  

sect ions.  Proper placement o f  the s t e e l ,  however, i s  i m p o r t a n t  

and  can r e su l t  in sign 

- When s t r a in  l imits  are  

level resu l t  i n  s ign i f  

f ican t  reduction o f  the amount required. 

imposed, increases in the temperature 

cant reductions i n  rotational d u c t i l i t y .  

- For temperatures of 3OO0F and perhaps u p  t o  a b o u t  4OO0F, using 

l imit ing s t r a ins  as low as 0.003 does n o t  r e su l t  i n  any s igni-  

f i can t  loss o f  strength.  Above these temperatures, there i s  a 

s ign i f icant  loss o f  strength in the presence of compressive 

forces.  

l a t ion  o f  therma 

insignif icant  i n  

considered i n  t h  

- The t ens i l e  strength o f  the concrete i s  important i n  the c a l c u -  

forces . a t  low elevated temperatures b u t  i s  

the case of  severe temperatures as the ones 

s study. 
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NOTATION 

The following symbols a re  used i n  t h i s  paper: 

E = modulus of e l a s t i c i t y  

fb  = 
compressive strength of concrete 

I = moment of i ne r t i a  

M = moment 

M, = thermal moment 

P = axial force 

P t  = 
thermal axial force 

T = temperature 

T1 = 
heated face temperature 

T2 = 
non-heated face temperature 

a = coef f ic ien t  of thermal expansion 

AT = change in temperature 

E , E ~  = s t r a i n  

= thermal s t r a in  t E 

s t r e s s  - 0 - 
$ = curvature 
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