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Abstract� In this paper we examine the loss of symmetry in mechanics of mate�
rial� To this end we �rst review the so�called Bromwich bounds of eigenvalues in
linear algebra� For illustration we revisit the hierarchy of di�erent failure diagnos�
tics when the material properties loose symmetry� Subsequently� we examine the
lack of symmetry in the stress and strain measures which appears in �nite deforma�
tion analysis and in micropolar continua� For de�niteness� we evaluate maximum
and minimum values of the non�symmetric second order tensors� which no longer
coincide with the principal eigenvalues� and we discuss the special format of the
trace invariants� For geometric visualization we generalize Mohr�s circle and the
underlying transformation relations which account for the loss of symmetry in two
dimensions� To conclude� we consider two examples of shear failure which serve as
model problems to address the intricate di�erences of symmetric and non�symmetric
stress and deformation measures�

Key words� non�symmetric operators� material level� stress and strain level� princi�
pal eigenvalues� maximum and minimum values of normal and shear stresses� stress
invariants� Mohr circle of non�symmetric second order tensors�

� INTRODUCTION

Traditionally� we assume that the world of structures and materials is highly
symmetric� i�e� the sti�ness and compliance properties of structures are symmetric�
and the underlying stress�strain relations are normally symmetric� Symmetry in the
large is lost only at rare occasions� when non�conservative force systems are consid�
ered� or when convective transport terms are considered e�g� in �uid � structures
interaction problems� Symmetry in the small is lost� when the material properties
loose normality� e�g� due to non�associated plastic �ow� or when they violate On�
sager�s principle of reciprocity in the absence of potentials� Even in these rare cases
of non�symmetric material laws we resort to symmetric stress and strain measures
to formulate the underlying constitutive relations� There are however a number
of instances when the underlying measures of stress and strain themselves loose
symmetry� such as in
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a� polar media� when couple stresses and micro�rotations enter the description of
motion within the format of Cosserat continua� and in


b� �nite deformation problems� when the deformation gradient or the velocity
gradient are used to describe �nite deformations� and when the �rst Piola�
Kirchho� stress or the Mandel stress are used in the balance equations or as
stress measure in the intermediate con�guration�

The fundamental properties of symmetric versus non�symmetric operators may
be best explained in terms of the Bromwich Bounds �	��� of linear algebra ����
Though it applies to any complex matrix we consider here a real non�symmetric
matrix which may be decomposed into symmetric and skew�symmetric components�

A � Asym �Askew �
	

�
�A�At� �

	

�i
�A�At� 
	�

Consequently� the characteristic roots of A are in the complex plane� whereby the
lowest and the highest eigenvalues of the symmetric and the skew�symmetric com�
ponents bound the real and imaginary eigenvalues of the non�symmetric matrix� In
short� the following eigenvalue bounds must hold�

Bromwich Bounds�

�min
A
sym� � �
�i
A�� � �max
A

sym� 
��

and
�min
A

skew� � �
�i
A�� � �max
A
skew� 
��

whereby the non�vanishing eigenvalues of the skewed symmetric matrix occur in
conjugate pairs� i�e�

P
i �i
A

skew� � �� Considering D � IR	� one�out of the three
eigenvalues is therefore always real�valued� while the other two might either be
complex conjugate or real�valued in the case of real non�symmetric second order
tensors�

� HIERARCHY OF FAILURE INDICATORS

The Bromwich bounds help to explain the fundamental features of failure diagnos�
tics which have occupied the mechanics community for a long period of time� when
non�symmetric material properties were considered� �� � E tan � �� with E tan �� E

t
tan�

In this case� the singularities of di�erent failure indicators ��� become active at
di�erent stages of the response history 
see �gure 	 for a schematic stress�strain
diagram��

��� Loss of Material Stability

The traditional scalar product format of second order work density infers that
only the symmetric components of the tangential material law are mobilized by the
quadratic form�

d�W � �� � �� � �� � E tan � �� �
	

�
�� � �E tan � E

t
tan� � �� 
��

When all possible deformation rates are considered� a zero value of the second
order work density�

�
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d�W � � � �� �� � 
��

is thus equivalent to a singularity of the symmetrized tangent sti�ness�

det

	

�
�E tan � E

t
tan�� � �� �min


	

�
�E tan � E

t
tan�� � � 
��

According to the Bromwich Bounds� the stability limiter bounds the spectral
properties of �n
E tan� from below when all possible strain rates are considered� In
short� loss of material stability in the form d�W � � precedes loss of uniqueness
�min
E tan� � � if non�symmetric material operators are considered� as

�min

	

�
�E tan � E

t
tan�� � �
�min
E tan�� 
��

d2 =0W
sym

det Etan = 0

Etan = Etan
t Qtan = Q

t

tan, ε

σ

det Q
sym

tan= 0

det Qtan= 0

det E tan = 0

,

Figure �� Hierarchy of Failure Indicators for Non�Symmetric Material Models

��� Loss of Ellipticity

The loss of ellipticity argument leads to the counterintuitive observation that
localization may take place prior to loss of uniqueness� Proceeding along a similar
vane as before� we note that the localization tensor Qtan and its singularity ��� are
a�ected by the symmetrizing e�ect of the quadratic form�

Qtan �N � E tan �N 
��

Here N denotes the normal vector to the singularity surface along which a weak
dicontinuity forms when the localization tensor turns singular� detQtan � �� We
speak of loss of strong ellipticity when the symmetrized localization tensor turns
singular� According to the Bromwich bounds� the loss of strong ellipticity always
precedes the loss of ellipticity as

�min

	

�
�Qtan �Qt

tan�� � �
�min
Qtan�� 
�

�
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Beside the hierarchy of strong ellipticity versus ellipticity� the main issue however
is� whether and how the loss of ellipticity relates to the loss of material stability and
the loss of material uniqueness� Noting that the symmetrizing e�ect of the single
contractions in the quadratic form of the localization indicator eq� � are less severe
than the double contractions in the quadratic form of the stability indicator eq� ��
the loss of ellipticity is bounded below by the loss of stability and may precede loss
of uniqueness in the case of non�symmetric material models�

Figure 	 illustrates the hierarchy of di�erent failure diagnostics� whereby all in�
dicators coincide in the case of symmetric material models taking place at the peak
response�

� THE POLAR CASE

Let us now turn to the issue of second order stress and strain tensors which are
non�symmetric�

��� Equilibrium of Cosserat Continua ��	

Micropolar continua ��� are characterized by a non�symmetric stress tensor since
couple stresses enter the di�erential statements of equilibrium� Omitting body forces
and body couples for the sake of clarity� the local format of linear and angular
momenta in the solution domain D read in direct and index notations�

div
��t � � or �ij�i � � 
	��

and
div
��t � e � � � � or �ij�i � ejkl�kl � � 
		�

From the second equilibrium equation we note that the stress tensor remains sym�
metric only if the couple stresses form a self�equilibrating� divergence�free state�

� � �t 	 e � � � � if div
��t � � 
	��

Here e denotes the third order permutation tensor� while the important details of
the lack of symmetry in the indices are shown in �gure ��
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Figure �� Non�symmetric state stress and couple stress in Cosserat continua
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On the stress boundary �D with the normal vector N � the complementing con�
ditions of surface tractions and couple stresses read�

N � � � t� on �D� or Ni �ij � t�j 
	��

and
N � �t � t� on �D� or Ni �i	 � t�	 
	��

In summary� the non�symmetric stress tensor may be decomposed into symmetric
and skew�symmetric components�

� � �sym � �skew �
	

�
�� � �t� �

	

�i
�� � �t� 
	��

whereby the Bromwich bounds infer�

�min � �min

	

�
�� � �t�� � �
�min
��� � �
�max
��� � �max


	

�
�� � �t�� � �max


	��
and

�min

	

�i
�� � �t�� � �
�min
��� � �
�max
��� � �max


	

�i
�� � �t�� 
	��

This means that the minor and major principal values of symmetrized stress provide
lower and upper bounds of the real valued spectrum of the non�symmetric stress
tensor� Hereby� the principal directions identify those coordinate axes along which
the shear stresses vanish� i�e� when the traction vector is co�axial with the normal
vector�

N � � � �N such that t� � �N 
	��

Therefore� the principal values of the eigenvalue problem coincide with the maximum
and minimum normal stress components only in the case of symmetry� In all other
cases� the coordinates of maximum and minimum normal stress components are no
longer principal coordinates� they exhibit shear stresses which are non�zero when
� �� �t�

On a �nal note� we consider the three trace invariants in oder to examine the
e�ect of skew�symmetry�

I� � tr� � tr�sym with tr�skew � � 
	�

I� �
	

�
tr�� �

	

�
� � � �

	

�
��sym � �sym � �skew � �skew�

I	 �
	

�
tr�	 �

	

�
tr�	

sym � tr
�sym � �
�
skew�

We note that the contribution of the skewed stress component vanishes only in
the linear trace invariant� while the quadratic and cubic trace invariants exhibit
contributions of the skewed�symmetric components�

��� Kinematics of Cosserat Continua ��	

The deformation of micropolar continua is characterized by rotational degrees
of freedom � � D � IR	 of the hidden triad in addition to the translatory motion
described by the displacement �eld u � D � IR	� Thus� the macro�rotations do no
longer coincide with the micro�rotations at each material particle� The in�nitesimal

�
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strain tensor features the traditional contribution of the displacement gradients and
that of the micro�rotations�

� � rt
x u� e �� or �ij � uj�i � eijk�k 
���

In addition to the non�symmetric strain� the micro�curvature is energetically conju�
gate to the couple stresses�

� � rt
x � or �ij � �j�i 
�	�

In analogy to the non�symmetric stress tensor� the strain may be decomposed into
symmetric and skew�symmetric components� � � �sym � �skew� where

�sym �
	

�
�rt

x u�rx u� and �skew �
	

�
�rt

x u�rx u�� e � � 
���

The symmetric components of the displacement gradient de�ne the in�nitesimal
strain tensor of the classical continuum� while the skew�symmetric strain compo�
nents designate the di�erence between the macro� and micro�rotation� If both rota�
tions coincide� the kinematic relations of classical non�polar continua are retrieved�
In view of the decomposition into symmetric and skewed�symmetric components�
the non�symmetric strain tensor exhibits the same properties as the non�symmetric
stress tensor discussed in the previous section�
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Figure �� The e�ect of micro� and macro�rotations in Cosserat continua

Figure � illustrates the basic di�erence between micro�rotations and macro�rotations
which is the cause for the lack of symmetry in the strain measure�


 MOHR�S CIRCLE OF NON�SYMMETRIC STRESS

In what follows� we consider the state of plane stress to illustrate the subtle
features of non�symmetric stress with the aid of Mohr�s circle ���� The transformation
relations for non�symmetric stress in the Mohr plane leads to a circle whose center
is no longer located on the �N �axis� De�ning the normal stress component �N �
N �� �N � and the shear stress components �N �N �� � T for an arbitrary surface
element with the normal N and the tangent vector T 
N � the extended Cauchy
argument in Figure � leads to the following transformation relations of stress and
couple stress�

�
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�
�N � ��� cos� 	 � ��� sin� 	 � 
��� � ���� sin	 cos	
�N � ��� cos� 	 � ��� sin� 	 � 
��� � ���� sin	 cos	


���

� � ��	 cos	 � ��	 sin	 
���

The geometrical representation of the non�symmetric stress transformation results
in the generalization of the traditional Mohr circle construction ���� ����


�N � �c�
� � 
�N � �c�

� � R� 
���

�c �
��� � ���

�

 �c �

��� � ���
�

and R� �
�
��� � ���

�

��
�
�
��� � ���

�

��
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Figure 	� Mohr circle of non�symmetric state of plane stress

Note� the center of Mohr�s circle is no longer located on the �N �coordinate axis�
Clearly� the shift of the center along the shear ordinate is a measure of the loss of
symmetry� Figure � illustrates the lack of symmetry in the Mohr coordinates of
normal and shear stress� Note� that the eigenvalues�

���� � �c �

s
	

�

��� � ����� � ������ 
���

are the principal stresses ���� with zero shear� They remain real�valued only as long
as the discriminant is positive� i�e�

�� � � as long as 
��� � ����
� � � ���� ��� 
���

Clearly� for conjugate shear stresses this condition is always satis�ed� However� when
one of the shear components has the opposite sign of the other� then the discriminant
might turn negative� The di�erence in the shear terms between the Mohr circle and
the eigenvalue expressions is responsible for the upper and lower bound properties
�max � �� and �min � ��� When �� � �� then the two eigenvalues turn complex
conjugate� This corresponds to a Mohr circle which no longer intersects the �N �axis�
In this context it is important to recall the Bromwich bounds according to which

�
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the lowest and highest eigenvalues of the symmetrized stress state enclose the lowest
and highest eigenvalues of the non�symmetric state of stress�

�sym� � �min � �
�� � �max � �sym� 
���


�� Pure Shear Example

For illustration we consider �rst the classical example of pure shear ��� where the
conjugate shear stresses are symmetric� and chosen such to satisfy the traditional
J��condition of plastic yielding� In this case the Mohr circle is centered at the origin
of the �� � �� �coordinate system which has been normalized by the J��invariant�

� �

�
�� 		���

		��� ��

�

��

In this symmetric case of stress the maximum and minimum values of normal stress
components coincide with the principal values and the directions shown in �gure ��
In this case� �max � �� � ��� and �min � �� � �����
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Figure 
� Mohr Circle and Localization Properties in Pure Shear

This �gure also includes the localization properties of an elastic perfectly plastic
J��material for which the critical hardening modulus is zero� Hcr � �� at the onset
of discontinuous bifurcation� There are two slip planes which develop at �cr � ���

o

with respect to the direction of maximum normal stress� which corresponds to the
contact points P� and P� of the Mohr circle with the elliptic localization envelope
���� ��� ���� In summary� this well�known result of classical J��plasticity exhibits two
slip planes oriented in the horizontal and vertical directions�


�� Non�Symmetric Shear Example

As a second example we consider a non�symmetric shear case when ��� � � and
��� � �����

� �

�
�� ��

���� ��

�

���

This situation corresponds to the mixed boundary conditions which are often en�
countered in testing shear walls� The non�symmetric state of stress plots as the

�
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Mohr circle shown in �gure �� Its center is located on the negative � �axis such that
the principal stresses vanish� �� � �� � �� while the maximum and minimum normal
stress coordinates �max � ��min � ����� involve also the shear stress component
�m � �������

The underlying Cosserat formulation of the extended J��condition of plastic yield�
ing which includes the e�ect of the skew�symmetric components in the quadratic
invariant of deviatoric stress leads to localization ���� when the critical hardening
modulus reduces to the softening value Hcr � �E�� 
using Gc � G for the mi�
cropolar shear sti�ness�� The normal vector of the single slip direction is oriented
at �cr � ��o with regard to the maximum normal stress direction� Figure � shows
that the elliptic localization envelope contacts the Mohr circle of the non�symmetric
shear state at the points P� � P�� They coincide in this case which indicates loss of
ellipticity and formation of a single horizontal slip plane rather than two�
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Figure �� Mohr Circle and Localization Properties in Non�Symmetric Shear

 CONCLUSIONS

The discussion of the lack of symmetry in mechanics of materials showed a number
of perplexing features which can however be explained well by the common aspects
of the Bromwich bounds� One of the fascinating concepts is the fundamental role
of Mohr�s circle which extends to non�symmetric second order tensors� For illustra�
tion purposes� our attention was con�ned to two�dimensional reductions� with the
understanding� that generalization of the two�dimensional Mohr circle concept to
three�dimensions is by no�means trivial�
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