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Chapter 1

Preliminaries

The mathematical tools behind stress and strain are housed in Linear Algebra and Vec-
tor and Tensor Analysis in particular. For this reason let us revisit established concepts
which hopefully provide additional insight into matrix analysis beyond the mere mechanics
of elementary matrix manipulation.

1.1 Vector and Tensor Analysis

(a) Cartesian Description of Vectors:

Forces, displacements, velocities and accelerations are objects F ,u,v,a ∈ <3 which
may be represented in terms of a set of base vectors and their components. In the
following we resort to cartesian coordinates in which the base vectors ei form an or-
thonormal set which satisfies

ei · ej = δij ∀ i, j = 1, 2, 3 where [δij] = 1 =

 1 0 0
0 1 0
0 0 1

 (1.1)

where the Kronecker symbol [δij] = 1 designates the unit tensor. Consequently, the
force vector may be expanded in terms of its components and base vectors,

F = F1e1 + F2e2 + F3e3 =
3∑
i

Fiei → Fiei (1.2)

The last expression is a short hand index notation in which repeated indices infer
summation over 1,2,3.

In matrix notation, the inner product may be written in the form,

F = [F1, F2, F3]
t

 e1

e2

e3

 → [Fi] =

 F1

F2

F3

 (1.3)
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where we normally omit the cartesian base vectors and simply represent a vector in
terms of its components (coordinates).

(b) Scalar Product (Dot Product) of Two Vectors: (F · u)∈ <3

The dot operation generates the scalar:

W = (F · u) = (Fiei) · (ujej) = Fiujδij = Fiui (1.4)

Using matrix notation, the inner product reads F tu = Fiui, where F t stands for a row
vector and u for a column vector. The mechanical interpretation of the scalar product
is a work or energy measure with the unit [1 J = 1Nm]. The magnitude of the dot
product is evaluated according to,

W = |F ||u| cos θ (1.5)

where the absolute values |F | = (F ·F )
1
2 and |u| = (u ·u)

1
2 are the Euclidean lengths

of the two vectors. The angle between two vectors is defined as

cos θ =
(F · u)

|F ||u|
(1.6)

The two vectors are orthogonal when θ = ±π
2
,

(F · u) = 0 if F 6= 0 and u 6= 0 (1.7)

In other terms there is no work done when the force vector is orthogonal to the dis-
placement vector.

Note: Actually, the mechanical work is the line integral of the scalar product between
the force vector times the displacement rate, W =

∫
F · du. Hence the previous

expressions were based on the assumption that the change of work along the integration
path is constant.

(c) Vector Product (Cross Product) of Two Vectors: (x× y)∈ <3:

The cross product generates the vector z which is orthogonal to the plane spanned by
the two vectors x,y according to the right hand rule:

z = x× y = xiyj(ei × ej) where |z| = |x||y| sin θ (1.8)

In 3-d the determinant scheme is normally used for the numerical evaluation of the cross
product. Its components may be written in index notation with respect to cartesian
coordinates

zp = εpqrxqyr (1.9)
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The permutation symbol εpqr = 0, 1,−1 is zero when any two indices are equal, it is
one when p, q, r are even permutations of 1, 2, 3, and it is minus one when they are
odd.

The geometric interpretation of the cross product is the area spanned by the two
vectors, |z| = A. In other terms the determinant is a measure of the area subtended
by the two vectors x× y, where

z = det

 e1 e2 e3

x1 x2 x3

y1 y2 y3

 (1.10)

The scalar triple product V = z · (x × y) measures the volume spanned by the three
vectors:

V = |z|cosψ|x||y|sinθ = det

 x1 x2 x3

y1 y2 y3

z1 z2 z3

 (1.11)

(d) Tensor Product (Dyadic Product) of Two Vectors: u⊗ v∈ <3:

The tensor product of two vectors generates a second order tensor (i.e. a matrix of
rank-one) A(1):

A(1) = u⊗ v = uiei ⊗ vjej = uivjei ⊗ ej = [uivj] (1.12)

In matrix notation the tensor product writes as u⊗ v = [uivj] = uvt. Expanding, we
have

u⊗ v = [uivj] =

 u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 (1.13)

The linear combination of three dyads is called a ‘dyadic’ which may be used to generate
a second order tensor of full rank three, A(3):

A(3) =
3∑

k=1

akuk ⊗ vk (1.14)

Spectral representation of a second order tensor A(3) expresses the tensor in terms
of eigenvalues λi and eigenvectors. They form an orthogonal frame which may be
normalized by ei · ej = 1 such that,

A(3) =
3∑

i=1

λiei ⊗ ei (1.15)
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Note: the tensor product increases the order of of the resulting tensor by a factor two.
Hence the tensor product of two vectors (two tensors of order one) generates a second
order tensor, and the tensor product of two second order tensors generates a fourth
order tensor, etc.

(e) Coordinate Transformations:

Transformation of the components of a vector from a proper orthonormal coordinate
system e1, e2, e3 into another proper orthonormal system E1,E2,E3 involves the op-
erator Q of direction cosines. In 3-d we have,

Q = cos(Ei · ej) (1.16)

where the matrix of direction cosines is comprised of,

e1 e2 e3

E1 cos(E1e1) cos(E1e2) cos(E1e3)
E2 cos(E2e1) cos(E2e2) cos(E2e3)
E3 cos(E3e1) cos(E3e2) cos(E3e3)

(1.17)

The Q-operator forms a proper orthonormal transformation, Q−1 = Qt i.e. it satisfies
the conditions,

Qt ·Q = 1 and det Q = 1 (1.18)

In the case of 2-d, this transformation results in a plane rotation around the x3-axis,
i.e.

Q =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (1.19)

where θ ≥ 0 for counterclockwise rotations according the right hand rule. Conse-
quently, the transformation of the components of the vector F from one coordinate
system into another,

F̃ = Q · F and inversely F = Qt · F̃ (1.20)

The (3× 3) dyadic forms an array A of nine scalars which follows the transformation
rule of second order tensors,

Ã = Q ·A ·Qt and inversely A = Qt · Ã ·Q (1.21)

This distinguishes the array A to form a second order tensor.

4



(f) The Stress Tensor:

Considering the second order stress tensor as an example when A = σ then the linear
transformation results in the Cauchy theorem, that mapping of the stress tensor onto
the plane with the normal n results in the traction vector t:

σt · n = t or σjinj = ti (1.22)

This transformation may be viewed as a projection of the stress tensor onto the plane
with the normal vector nt = [n1, n2, n3], where

σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (1.23)

with the understanding that σ = σt is symmetric in the case of Boltzmann continua.
The Cauchy theorem states that the state of stress is defined uniquely in terms of the
traction vectors on three orthogonal planes t1, t2, t3 which form the nine entries in the
stress tensor. Given the stress tensor, the traction vector is uniquely defined on any
arbitrary plane with the normal n, the components of which are,

t = σt · n =

 σ11n1 + σ21n2 + σ31n3

σ12n1 + σ22n2 + σ32n3

σ13n1 + σ23n2 + σ33n3

 (1.24)

The traction vector t may be decomposed into normal and tangential components on
the plane n,

σn = n · t = n · σt · n (1.25)

and
(τn)2 = |t|2 − σ2

n = t · t− (n · t)2 (1.26)

which are the normal stress and the tangential stress components on that plane.

(g) Eigenvalues and Eigenvectors:

There exist a nonzero vector np such that the linear transformation σt ·np is a multiple
of np. In this case n‖t we talk about principal direction n = np in which the tangential
shear components vanish,

σt · np = λnp (1.27)

The eigenvalue problem is equivalent to stating that

[σt − λ1] · np = 0 (1.28)
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For a non-trivial solution np 6= 0 the matrix (σt−λ1) must be singular. Consequently,
det(σt − λ1) = 0 generates the characteristic polynomial

p(λ) = det(σt − λ1) = λ3 − I1λ
2 − I2λ− I3 = 0 (1.29)

where the three principal invariants are,

I1 = trσ = σii = σ1 + σ2 + σ3 (1.30)

I2 =
1

2
[trσ2 − (trσ)2] =

1

2
[σijσij − σ2

ii] = −[σ1σ2 + σ2σ3 + σ3σ1] (1.31)

I3 = det σ = σ1σ2σ3 (1.32)

According to the fundamental theorem of algebra, a polynomial of degree 3 has exactly
3 roots, thus each matrix σ ∈ <3 has 3 eigenvalues λ1 = σ1, λ2 = σ2, λ3 = σ3. If a
polynomial with real coefficients has some non-real complex zeroes, they must occur
in conjugate pairs.

Note: all three eigenvalues are real when the stress tensor σ = σt is symmetric.

Further, det(σt − λ1) = (−1)3 det(λ1 − σt), thus the roots of both characteristic
equations are the same.

(i) Similarity Equivalence:

Similarity transformations, i.e. triple products of the form

σ̃ = S−1 · σ · S (1.33)

preserve the spectral properties of σ. In other terms, if σ̃ ∼ σ, then the characteristic
polynomial of σ̃ is the same as that of σ.

p(λ) = det(σ̃ − λ1) = det(S−1 · σ · S − λS−1 · S) = det(σ − λ1) (1.34)

(j) Orthonormal or Unitary Equivalence:

A matrix U ∈ <3 is unitary (real orthogonal) if

U t ·U = 1 and U t = U−1 (1.35)

with det U = 1 for proper orthonormal transformations. Consequently each unitary
transformation is also a similarity transformation, σ̃ ∼ σ, where

σ̃ = U−1 · σ ·U = U t · σ ·U (1.36)

but not vice versa.

Note: Unitary equivalence distinguishes second order tensors from matrices of order
three, since it preserves the length of the tensor σ in any coordinate system. In other
terms, a zero length tensor in one coordinate system will have zero length in any other
coordinate system.

6



(k) Cayley-Hamilton Theorem:

This theorem states that every square matrix satisfies its own characteristic equation.
In other terms the scalar polynomial p(λ) = det(λ1 − σt) also holds for the matrix
polynomial p(σ). One important application of the Cayley-Hamilton theorem is to
express powers of the matrix σk as linear combination of 1,σ,σ2 for k ≥ 3. In short,
the tensor satisfies its characteristic equation.

p(λ) = σ3 − I1σ
2 − I2σ − I3 = 0 (1.37)

(l) Examples of Unitary (Proper Orthonormal) Transformations:

1. Plane Rotation:

U (θ, i, j) is the identity matrix where the ii, jj entries are replaced by cos θ and
the ij entry by − sin θ and ji by sin θ.

U (θ, i, j) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (1.38)

It is apparent that this corresponds to the plane coordinate rotation discussed
earlier on, where Q = U t.

Note: Successive application of plane rotations reduces σ to diagonal form (Jacobi
and Givens method to extract eigenvalues).

2. Householder Transformation:

Uw = 1− twwt is a rank one update of the unit matrix in the form of a reflection
such that

Uw = 1− 2wwt with t = 2(wtw)−1 and wtw = 1 (1.39)

Consequently, the Householder transformation acts as identity transformation,
Uwx = x if x ⊥ w and Uww = −w is a reflection.

Note: Successive application of Householder transformations reduces σ to Hes-
senberg form (in case of symmetry to a tri-diagonal form).
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Chapter 2

Differential Equilibrium:

The balance laws of continuum mechanics comprise statements as follows:

1. Balance of Linear Momentum.

2. Balance of Angular Momentum.

3. Balance of Mass.

4. Balance of Energy (First Law of Thermodynamics).

“ Forces” are measured indirectly through their action on deformable solids.
Distributed forces include:

• b : body force/unit volume(i. e. density).

• tn : surface traction.

Integrating the distributed forces over part I of the body B defines the resultant force vector

fI =
∫
BI

b dv +
∫

∂BI
tn da (2.1)

The Cauchy Lemma : states pointwise balance of surface tractions across any surface in
the interior of the body.

tn(x,n) + tn(x,−n) = 0 (2.2)

or
tn(x,n) = −tn(x,−n) (2.3)

2.1 The Cauchy Theorem:

The stress tensor is a linear mapping of the stress vector tn onto the normal vector n.

tn = σσσσt(x) · n (2.4)
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In indicial notation,
ti = σji nj (2.5)

Considering elementary tetrahedron:

tn = n1 t1 + n2 t2 + n3 t3 (2.6)

The stress tensor σσσσ is simply composed of the coordinates of stress vectors on three mutually
orthogonal planes

σσσσ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.7)

In our notation of σij, the first subscript i refers to normal direction of the area element and
the subscript j refers to the direction of the traction.

Considering the equilibrium in x1 direction :
∑
fx1 = 0.

t1da = σ11n1da+ σ21n2da+ σ31n3da (2.8)

then
t1 = σ11n1 + σ21n2 + σ31n3 (2.9)

With the help of the Divergence Theorem we find

∫
∂B σji nj da =

∫
B σji,j dv (2.10)

The equation of motion by Cauchy states the balance between the body forces and surface
tractions when inertia forces remain negligible:∫

B
bidv +

∫
∂B
tni da = 0 (2.11)

can be rewritten as
σji,j + bi = 0 (2.12)

“Cauchy’s First Theorem” states pointwise equilibrium in the interior of the body.

In the dynamic case, the balance equations generalize to

σji,j + bi =
D

Dt
(ρẋi) (2.13)
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2.2 Balance of Linear Momentum:

Linear momentum is defined as:
i =

∫
BI
ρ u̇ dv (2.14)

Application of Newton’s second law
∑

f = m · a to the control volume of the body

D

Dt
i = f (2.15)

“Dynamic equilibrium” or the balance of linear momentum may be expressed as∫
BI

D

Dt
(ρu̇)dv =

∫
∂BI

b dv +
∫
BI

tn da (2.16)

or in terms of ∫
BI

(b − D

Dt
(ρẋ))dv +

∫
∂B

tn da = 0 (2.17)

2.3 Balance of Angular Momentum

Angular momentum involves

h0 =
∫
BI

(x× ρu̇) dv (2.18)

where the pole is assumed to coincide with the origin x0 = 0. The moment of the distributed
forces is

m0 =
∫
B
(x× b)dv +

∫
∂B

(x× tn) da (2.19)

The balance of angular momentum states

Dh0

Dt
= m0 (2.20)

D

Dt

∫
B
(x× ρu̇)dv =

∫
B

(x× b)dv +
∫

∂B
(x× tn) da (2.21)

The divergence theorem yields for the last term above∫
B
[x× (b + div σσσσt − ρü)]dv + 2

∫
B
(1× σσσσt)dv = 0 (2.22)

Application of the first theorem of Cauchy : b + div σσσσt − ρ D
Dt

u̇ = 0, we get

1× σσσσt = 0 → σσσσ = σσσσt (2.23)

which states that the stress tensors symmetric, i.e. σσσσt = σσσσ, i.e. the “Boltzmann Postulate”
of a symmetric stress tensor.

In index notation :
eijkσjk = 0 → σjk = σkj (2.24)

this results in
σ23 − σ32 = 0; σ31 − σ13 = 0; σ12 − σ21 = 0 (2.25)

10



2.4 Alternative Stress Measures:

Consider that the force vector is the same on the deformed and undeformed surface areas

f = tn da = σσσσt n da = ΣΣΣΣt N dA (2.26)

then ΣΣΣΣ denotes the “First Piola-Kirchhoff” stress tensor with respect to the undeformed
surface area.

From Nanson’s formula n da = J F−t N dA we get

J σσσσt F−t N dA = ΣΣΣΣt N dA (2.27)

or
ΣΣΣΣ = J F−1 σσσσ (2.28)

which shows the loss of symmetry of the first Piola-Kirchhoff stress, ΣΣΣΣ 6= ΣΣΣΣt .

The “Second Piola-Kirchoff” stress is defined as

S = ΣΣΣΣ F−t = J F−1 σσσσ F−t (2.29)

or
S = F−1 ττττ F−t (2.30)

in which ττττ = J σσσσ denotes the Kirchoff stress. From σσσσ = 1
J

F S Ft , we can relate the

Kirchhoff stress to the second Piola-Kirchhoff stress

ττττ = F S Ft (2.31)

Balance of Linear Momentum:

In the current reference configuration

D

Dt
(
∫
B
ρ ẋ dv) =

∫
B

b dv +
∫

∂B
tn da (2.32)

in which tn = σσσσt · n. In the initial undeformed reference configuration this reads∫
B0

ρ0
Dẋ

Dt
dV =

∫
B0

b0 dV +
∫

∂B0

ΣΣΣΣt N dA (2.33)

2.5 Mechanical Stress Power:

Conjugate forms of kinematic and static measures lead to an inner product form of stress
and deformation rate. Using the divergence theorem the spatial description of momentum
balance leads to the local statement of differential equilibrium :

div σσσσt + b = ρ Dv
Dt

(2.34)
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If this equation of motion is scalar multiplied with v and integrated over the entire body,
we get ∫

B
(div σσσσt) · v dv +

∫
B

b · v dv =
∫
B
ρ v̇ · v dv (2.35)

With (div σσσσt) · v = div(σσσσt · v) − σσσσ : d, we get∫
B

b · v dv +
∫

∂B
t · v da =

∫
B
σσσσ : d dv +

D

Dt

∫
B
ρv̇.v dv (2.36)

Using the divergence theorem the material description of momentum balance leads to the
local statement of differential equilibrium :

Div Σt + b0 = ρ0
D V
Dt

(2.37)

If this equation is multiplied with the weighing function v and integrated over the entire
body in the reference configuration, we find∫

B0

(Div ΣΣΣΣt) · v dV +
∫
B0

b0 · v dV =
∫
B0

ρ0
D

Dt
V̇ · v dV (2.38)

After analogous calculation to the spatial description we get∫
B0

b0 · v dV +
∫

∂B0

(Σt ·N) · v dA =
∫
B0

ΣΣΣΣt : Ḟ dV +
∫
B0

ρ0 V̇ · v dV (2.39)

Stress Power:

Considering ττττ = ρ σσσσ, the inner product of stress and the rate of deformation leads to
alternative representations in terms of conjugate values

Ẇσ =
1

ρ0

ττττ : d =
1

ρ
σσσσ : d =

1

ρ0

ΣΣΣΣt : Ḟ =
1

ρ0

S : ĖG (2.40)
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Chapter 3

Kinematics of Continua

Abstract

In this Chapter, the motion and deformation of continua will be reviewed:

• Kinematics of Motion : X,x,u.

• Kinematics of Deformation: F,E, e.

3.1 Kinematics of Motion:

The motion of continua may be described in two ways:

(a) In the Lagrangean description the continuous medium is considered to be comprised of
particles the motion of which is of primary interest. The Lagrangean coordinates describe
the spatial variation of a field variable in terms of the particle position X in the initial ref-
erence configuration.

(b) In the Eulerian description the location is of primary interest which is occupied by parti-
cles at the time t. The Eulerian coordinates describe the spatial variation of a field variable
in terms of the spatial domain x occupied by the continuum.

Usually, Eulerian coordinates are used to study the motion of fluids through a fixed spatial
domain, while Lagrangean coordinates are primarily used to follow the particle motion of
solids. In sum, every function expressed in Lagrangean coordinates may be transformed into
Eulerian coordinates and vice-versa.

• In Lagrangean coordinates, which are known as material coordinates, the initial posi-
tion of a particle is used to label the material particle under consideration:

– Lagrange Coordinates : (Material Description)

X = XAeA where A = 1, 2, 3 (3.1)

where eA denote the orthogonal material base vectors.
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• In Eulerian coordinates, which are known as spatial coordinates, the location is used
to label the material position of a material particle at the time t:

– Euler Coordinates : (Spatial Description)

x = xiei where i = 1, 2, 3 (3.2)

where ei denote the orthogonal spatial base vectors.

The scalar temperature field may be represented by :

– Lagrangean Coordinates : T = T (X, t) - material description.

– Eulerian Coordinates : T = T (x, t) - spatial description.

In Lagrangean coordinates the temperature at every material point is studied, while in
Eulerian coordinates the temperature at a fixed location which the material occupies
is of primary interest.

During the motion, the deformation gradient is defined as:

F =
∂x

∂X
⇒ dx = F · dX (3.3)

where X denotes the position of a arbitrary material particle in the (initial) reference con-
figuration, and x its position in the current configuration. The determinant detF is known
as the Jacobian of the deformation gradient. Therefore the mapping of the material line
element dX from the reference into the current configuration is defined by : dxi

dxj

dxk

 =


dxi

dXA

dxi

dXB

dxi

dXC
dxj

dXA

dxj

dXB

dxj

dXC
dxk

dXA

dxk

dXB

dxk

dXC


 dXA

dXB

dXC

 (3.4)

Restriction: it can be shown that the Jacobian J = detF 6= 0 defines the volume change.

In other terms, for rigid body motions, J = 1 in the absence of deformation. For a unique
one-to-one defomation map detF 6= 0 must hold.

3.2 Polar Decomposition:

The polar decomposition theorem states that the deformation gradient F may be decomposed
uniquely into a positive definite tensor and a proper orthogonal tensor, i.e. the right U or
left V stretch tensor plus the rotation R tensor.
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1. Right Polar Decomposition: F = R ·U
where: detR = 1, Rt ·R = 1, R ·Rt = 1,

Note, U = Ut such that λU > 0 and

U2 = Ut ·Rt ·R ·U = Ft · F (3.5)

2. Left Polar Decomposition: F = V ·R
where:

V2 = F · Ft = V ·R ·Rt ·V (3.6)

Note V = Vt such that λV > 0 and λV = λU

The Physical Meaning of U and V is:

• Right Decomposition: dx = R · U · dX, which means that dX is first stretched and
then rotated.

• Left Decomposition: dx = V ·R · dX, which means that dX is first rotated and then
stretched.

If F is non-singular ⇒ detF 6= 0 and positive, then there exists a unique decomposition into
a proper orthogonal tensor R and a positive definite tensor U or V.

3.3 Strain Definition:

In this section alternative strain measures are introduced to define strain.

Extensional Engineering Strain:

In the uniaxial case the engineering strain is simply the length change normalized by the
original length:

εeng =
∆L

L0

=
L− L0

L0

. (3.7)

The triaxial extension of the engineering strain will be dicussed later on in the context of
infinitesimal deformations.

Extensional Logarithmic Strain [Hencky, 1928]:

In the uniaxial case the logarithmic strain is defined by integrating the stretch rate:

εln =
∫ L

L0

d`

`
= ln

L

L0

= lnλ where λ =
L

L0

. (3.8)
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The Triaxial extension of the logarithmic strain may be described in two ways:

• Lagrangean format : εεεεUln = lnU, with principal coordinates which are defined by eU

• Eulerian format : εεεεVln = lnV, with principal Coordinates which are defined by eV where
the two base triads are related by the rotation eV = R · eU .

Spectral Representation :

U =
3∑

i=1

λi e
i
U ⊗ ei

U and εεεεUln =
3∑

i=1

(lnλi) ei
U ⊗ ei

U (3.9)

V =
3∑

i=1

λi e
i
V ⊗ ei

V and εεεεVln =
3∑

i=1

(lnλi) ei
V ⊗ ei

V (3.10)

3.3.1 Lagrangean Strain Measures:

If dS is the infinitesimal line element measuring the initial distance of two points, and if ds
is the current length of the line element between those two points, then one can define the
extensional deformation is defined as:

ds2 − dS2 = dxt · dx− dXt · dX = dXt · [Ft · F− 1] · dX (3.11)

The term in bracket defines the Green strain which is related to the right stretch tensor by:

EG = 1
2

[Ft · F− 1] = 1
2

[U2 − 1] (3.12)

In indicial form,

F =
∂xi

∂XA

ei ⊗ eA (3.13)

U2 =
∂xi

∂XA

· ∂xi

∂XB

(3.14)

EG
AB =

1

2
(
∂xi

∂XA

· ∂xi

∂XB

− δAB) (3.15)

Generalized Lagrangean Strain [Doyle-Erickson 1956]:

The generalized format of Lagrangean strain is defined as:

Em = 1
m

[Um − 1] (3.16)

where m is an integer, where

m=0, defines the logarithmic strain:

E0 = lnU (3.17)
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m=1, defines the Biot strain:
E1 = [U− 1] (3.18)

m=2, defines the Green strain:

E2 = 1
2

[U2 − 1] (3.19)

Using the definition of stretch λ = L
L0

, then 1-dim examples of extensional strain measures
include :

E0 = lnλ = ln L
L0

E1 = λ− 1 = L−L0

L0

E2 = 1
2

[λ2 − 1] = 1
2

[
L2−L2

0

L2
0

]

(3.20)

We see that E0 reduces to the logarithmic Hencky strain, E1 to the engineering strain ,
and E2 to the Green strain.

Strain-Displacement Relationship

If X and x are the initial and current position vectors of a particle, then the displacement
vector defines the relation between X and x as:

x = x(X, t) = u(X, t) + X (3.21)

The deformation gradient is related to the displacement gradient,

∂x

∂X
=
∂u

∂X
+ 1 = H + 1 where

∂u

∂X
= H (3.22)

With F = H + 1 the material stretch tensor reads,

U2 = Ft · F = 1 + H + Ht + Ht ·H (3.23)

and the Lagrangean strain-displacement relationship defines the Green strain in terms of:

EG = 1
2
[1 + H + Ht + Ht ·H] (3.24)

3.3.2 Eulerian Strain Measures :

Parallel to the material description, the extensional deformation may be defined in terms of
spatial coordinates,

ds2 − dS2 = dxt · [1− F−t · F−1] · dx (3.25)

The term in the bracket defines the Almansi strain which is related to the left stretch tensor
by,

eA = 1
2

[1− F−t · F−1] = 1
2

[1− (V2)−1] (3.26)

Generalized Eulerian Strain [Doyle-Erickson 1956]:
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The generalized Eulerian strain tensor is defined as:

em = 1
m

(Vm − 1) (3.27)

where m is an integer.

m=0, defines the spatial format of the logarithmic strain:

e0 = lnV (3.28)

m=-1, defines the spatial format of the Biot strain

e−1 = [1−V−1] (3.29)

m=-2, defines the Almansi strain

e−2 = 1
2

[1−V−2] (3.30)

using the inverse stretch measure 1
λ

= L0

L
, then 1-dim examples include:

e0 = −ln 1
λ

= ln L
Lo

e−1 = 1− 1
λ

= L−L0

L

e−2 = 1
2

[1− 1
λ2 ] = 1

2
[
L2−L2

0

L2 ]

(3.31)

We see that in 1-dim e0 coincides with the logarithmic Hencky strain, e1 corresponds to the
engineering strain in which the length change is however normalized by the current length,
while the Almansi strain e−2 corresponds to the Green strain E2.

Strain-Displacement Relationship

In the spatial description the motion is described by the inverse relation:

u(x, t) = x−X(x, t) (3.32)

The spatial displacement gradient is defined as:

h =
∂u

∂x
= 1− ∂X

∂x
= 1− F−1 (3.33)

or
F−1 = 1− h (3.34)

V−2 = F−t · F−1 = 1− h− ht + ht · h (3.35)

Substituting into the expression of the Almansi strain eA renders the Eulerian strain-displacement
relationship in the form,

eA = 1
2
[h + ht − ht · h] (3.36)
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3.3.3 Infinitesimal Deformations and Rotations:

If the displacement gradient H is very small, then detH << 1 ⇒ det(Ht ·H) ' 0. Thus,

εεεε =
1

2
[H + Ht] ' 1

2
[h + ht] (3.37)

In short, in the case of “Infinitesimal Deformations” the spatial and the material displace-
ment gradients coincide,

∂u

∂X
∼ ∂u

∂x
(3.38)

Additive decomposition into symmetric and skew-symmetric components leads to

H =
∂u

∂X
=

1

2
[H + Ht] +

1

2
[H−Ht] (3.39)

where the symmetric part defines the traditional linearized strain tensor

εij =
1

2
[
∂ui

∂Xj

+
∂uj

∂Xi

] (3.40)

and where the skew-symmetric part defines the infinitesimal rotation tensor

ωij =
1

2
[
∂ui

∂Xj

− ∂uj

∂Xi

] (3.41)

such that εij = εji and ωij = −ωji.
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Chapter 4

Elastic Material Models

Linear elasticity is the main staple of material models in solids and structures. The statement
‘ut tensio sic vis’ attributed to Robert Hooke (1635-1703) characterizes the behavior of
a linear spring in which the deformations increase proportionally with the applied forces
according to the anagram ‘ceiiinossstuv’. The original format of Hooke’s law included the
geometric properties of the wire test specimens, and therefore the spring constant did exhibit
a pronounced size effect. The definition of the modulus of elasticity E, where

σ = E ε (4.1)

is attributed to Thomas Young (1773-1829). He expressed the proportional material
behavior through the notion of a normalized force density and a normalized deformation
measure, though the original formulation also did not entirely eliminate the size effect.
The tensorial character of stress was established by Cauchy, who defined the triaxial state
of stress by three traction vectors using the celebrated tetraeder argument of equilibrium.
The state of stress is described in terms of Cartesian coordinates by the second order tensor

σ(X, t) =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (4.2)

The conjugate state of strain is a second order tensor with Cartesian coordinates,

ε(X, t) =

 ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 (4.3)

which is normally expressed in terms of the symmetric part of the displacement gradient, if
we restrict our attention to infinitesimal deformations. In the case of non-polar media we
may confine our attention to stress measures, which are symmetric according to the axiom
of L. Boltzmann,

σ = σt or σij = σji (4.4)

and the conjugate strain measures

ε = εt or εij = εji (4.5)
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where i = 1, 2, 3 and j = 1, 2, 3. As a result, the eigenvalues are real-valued and consti-
tute the set of principal stresses and strains with zero shear components in the principal
eigen-directions of the second order tensor. In contrast, non-symmetric stress and strain
measures may exhibit complex conjugate principal values and maximuum normal stress and
strain components in directions with non-zero shear components characteristic for micropolar
Cosserat continua.
Restricting this exposition to symmetric stress and strain tensors they may be cast into
vector form using the Voigt notation of crystal physics.

σ(X, t) =
[
σ11 σ22 σ33 τ12 τ23 τ31

]t
(4.6)

and
ε(X, t) =

[
ε11 ε22 ε33 γ12 γ23 γ31

]t
(4.7)

where τij = σij, γij = 2εij,∀i 6= j. The vector form of stress and strain will allow us to
formulate material models in matrix notation used predominantly in engineering, (some of
the properties of second order tensors and basic tensor operations are expanded in Appendix
I).

4.1 Linear Elastic Material Behavior:

Generalization of the scalar format of Hooke’s law is based on the notion that the triaxial
state of stress is proportional to the triaxial state of strain through the linear transformation,

σ = E : ε or σij = Eijklεkl (4.8)

Considering the symmetry of the stress and strain, the elasticity tensor involves in general
36 elastic moduli. This may be further reduced to 21 elastic constants, if we invoke major
symmetry of the elasticity tensor, i.e.

E = E t or Eijkl = Eklij with Eijkl = Eijlk and Eijkl = Ejikl (4.9)

The task of identifying 21 elastic moduli is simplified if we consider specific classes of sym-
metry, whereby orthotropic elasticity involves nine, and transversely anisotropic elasticity
five elastic moduli.

1. Isotropic Linear Elasticity

In the case of isotropy the fourth order elasticity tensor has the most general represen-
tation,

E = ao1⊗ 1 + a11⊗̄1 + a21⊗1 or Eijkl = aoδijδkl + a1δikδjl + a2δilδjk (4.10)

where 1 = [δij] stands for the second order unit tensor. The three parameter expres-
sion may be recast in terms of symmetric and skew symmetric fourth order tensor
components as

E = ao1⊗ 1 + b1I + b2Iskew (4.11)
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where the symmetric fourth order unit tensor reads

I =
1

2
[1⊗̄1 + 1⊗1] or Iijkl =

1

2
[δikδjl + δilδjk] (4.12)

and the skewed symmetric one

Iskew =
1

2
[1⊗̄1− 1⊗1] or Iskew

ijkl =
1

2
[δikδjl − δilδjk] (4.13)

Because of the symmetry of stress and strain the skewed symmetric contribution is
inactive, b2 = 0, thus isotropic linear elasticity the material behavior is fully described
by two independent elastic constants. In short, the fourth order material stiffness
tensor reduces to

E = Λ1⊗ 1 + 2GI or Eijkl = Λδijδkl +G[δikδjl + δilδjk] (4.14)

where the two elastic constants Λ, G are named after Gabriel Lamé (1795-1870).

Λ =
E ν

[1 + ν][1− 2ν]
(4.15)

denotes the cross modulus, and

G =
E

2[1 + ν]
(4.16)

designates the shear modulus which have a one-to-one relationship with the modulus
of elasticity and Poisson’s ratio, E, ν.

In the absence of initial stresses and initial strains due to environmental effects, the
linear elastic relation reduces to

σ = Λ[trε]1 + 2Gε or σij = Λεkkδij + 2Gεij (4.17)

Here the trace operation is the sum of the diagonal entries of the second order tensor
corresponding to double contraction with the identity tensor trε = εkk = 1 : ε.

2. Matrix Form of Elastic Stiffness: σ = E ε

Isotropic linear elastic behavior may be cast in matrix format, using the Voigt notation
of symmetric stress and strain tensors and the engineering definition of shear strain
γij = 2εij. The elastic stiffness matrix may be written for isotropic behavior as,

E =



Λ + 2G Λ Λ
Λ Λ + 2G Λ 0
Λ Λ Λ + 2G

G
0 G

G


(4.18)
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3. Matrix Form of Elastic Compliance: ε = C σ

In the isotropic case the normal stress σ11 gives rise to three normal strain contributions,
the direct strain ε11 = 1

E
σ11 and the normal strains ε22 = − ν

E
σ11, ε33 = ν

E
σ11 because

of the cross effect attributed to Siméon Denis Poisson (1781-1840). Using the
principle of superposition, the additional strain contributions due to σ22 and σ33 enter
the compliance relation for isotropic elasticity in matrix format, ε11

ε22

ε33

 =
1

E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1


σ11

σ22

σ33

 (4.19)

In the isotropic case the shear response is entirely decoupled from the direct response
of the normal components. Thus the compliance matrix expands into the partitioned
form

C =
1

E



1 −ν −ν
−ν 1 −ν 0
−ν −ν 1

2[1 + ν]
0 2[1 + ν]

2[1 + ν]


(4.20)

where isotropy entirely decouples the shear response from the normal stress-strain
response. This cross effect of Poisson is illustrated in Figure 2, which shows the
interaction of lateral and axial deformations under axial compression. It is intriguing
that in his original work a value of ν = 0.25 was proposed by S. Poisson based on
molecular considerations. The elastic compliance relation reads in direct and index
notations,

C = − ν

E
1⊗ 1 +

1

2G
I or Cijkl = − ν

E
δijδkl +

1 + ν

2E
[δikδjl + δilδjk] (4.21)

4. Canonical Format of Isotropic Elasticity:

Decomposing the stress and strain tensors into spherical and deviatoric components

s = σ − σvol1 where σvol =
1

3
[trσ] (4.22)

e = ε− εvol1 where εvol =
1

3
[trε] (4.23)

leads to the stress deviator

s(x, t) =


1
3
[2σ11 − σ22 − σ33] σ12 σ13

σ21
1
3
[2σ22 − σ33 − σ11] σ23

σ31 σ32
1
3
[2σ33 − σ11 − σ22]

 (4.24)

and the strain deviator

e(x, t) =


1
3
[2ε11 − ε22 − ε33] ε12 ε13

ε21
1
3
[2ε22 − ε33 − ε11] ε23

ε31 ε32
1
3
[2ε33 − ε11 − ε22]

 (4.25)
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which have the property trs = 0 and tre = 0. The decomposition decouples the
volumetric from the distortional response, because of the underlying orthogonality of
the spherical and deviatoric partitions, s : [σvol1] = 0 and e : [εvol1] = 0. The
decoupled response reduces the elasticity tensor to the scalar form,

σvol = 3Kεvol and s = 2Ge (4.26)

in which the bulk and the shear moduli,

K =
E

3[1− 2ν]
= Λ +

2

3
G and G =

E

2[1 + ν]
=

3

2
[K − Λ] (4.27)

define the volumetric and the deviatoric material stiffness.

Consequently, the internal strain energy density expands into the canonical form of
two decoupled contributions

2W = σ : ε = [σvol1] : [εvol1] + s : e = 9Kε2vol + 2Ge : e (4.28)

such that the positive strain energy argument delimits the range of possible values of
Poisson’s ratio to −1 ≤ ν ≤ 0.5

4.1.1 Linear Isotropic Elasticity under Thermal Strain

In the case of isotropic material behavior, with no directional properties, the size of a repre-
sentative volume element may change due to thermal effects or shrinkage and swelling, but
it will not distort. Consequently, the expansion is purely volumetric, i.e. identical in all
directions. Using direct and index notation, the additive decomposition of strain into elastic
and initial volumetric components, ε = εe +εo, leads to the following extension of the elastic
compliance relation:

ε = − ν

E
[trσ]1 +

1

2G
σ + εo1 or εij = − ν

E
σkkδij +

1

2G
σij + εoδij (4.29)

where εo = α∆T1 denotes the initial volumetric strain e.g. due to thermal expansion when
the temperature changes from the reference temperature, ∆T = T −To. The inverse relation
reads

σ = Λ[trε]1 + 2Gε− 3εoK1 or σij = Λεkkδij + 2Gεij − 3εoKδij (4.30)

Rewriting this equation in matrix notation we have:σ11

σ22

σ33

 =

K + 4
3
G K − 2

3
G K − 2

3
G

K − 2
3
G K + 4

3
G K − 2

3
G

K − 2
3
G K − 2

3
G K + 4

3
G


 ε11ε22
ε33

− 3Kεo

 1
1
1

 (4.31)

Considering the special case of plane stress, σ33 = 0, the stress-strain relations reduce in the
presence of initial volumetric strains to:[

σ11

σ22

]
=

E

1− ν2

[
1 ν
ν 1

] [
ε11
ε22

]
− E

1− ν
εo

[
1
1

]
(4.32)

where the shear components are not affected by the temperature change in the case of
isotropy.

24



4.1.2 Free Thermal Expansion

Under stress free conditions the thermal expansion εo = α[T − To]1 leads to ε = εo, i.e.

ε11 = α[T − To] (4.33)

ε22 = α[T − To] (4.34)

ε33 = α[T − To] (4.35)

Thus the change of temperature results in free thermal expansion, while the mechanical
stress remains zero under zero confinement, σ = E : εe = 0.

4.1.3 Thermal Stress under Full Kinematic Restraint

In contrast to the unconfined situation above, the thermal expansion is equal and opposite
to the elastic strain εe = −εo under full confinement, when ε = 0. In the case of plane stress,
the temperature change ∆T = T − To leads to the thermal stresses

σ11 = − E

1− ν
α[T − To] (4.36)

σ22 = − E

1− ν
α[T − To] (4.37)
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