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ABSTRACT: Concrete is a material whose performance is governed by the subtle interaction of its cohesive
and frictional constituents. Since the theories of plasticity, damage mechanics, and fracture mechanics cannot,
by themselves, capture both of these phenomena, a novel constitutive model is proposed which combines the
theories of plasticity and damage mechanics in a multi-surface formulation. Synthesis of these two constitutive
concepts describes not only the hardening/softening behavior of concrete under compressive loading, but also
the decrease of material strength and stiffness under tension. The characteristics and behavior of the concrete
model are presented through performance studies of specimens under monotonic and cyclic loading in tension,
compression, and shear.

1 INTRODUCTION
The objective of this paper is to present a novel con-
stitutive concept for concrete, that merges the advan-
tages of damage mechanics and plasticity into one
formulation. Concrete loaded in tension experiences
the formation of microcracks due to loss of cohesion
between the concrete aggregate and matrix. This de-
cohesion results in a reduction of both strength and
stiffness on the macroscopic material level. Damage
mechanics captures not only loss of material strength,
but also deterioration of the material stiffness. On the
other hand, concrete loaded in compression is much
more ductile than in tension. The inelastic hardening
response up to peak is followed by a ductile soften-
ing response if the confining pressures are low. Under
high confinement the initial elastic material stiffness
degrades only little in the pre-peak response regime.
Thus plasticity provides a natural formulation to cap-
ture the degradation of frictional strength of concrete
and the so-called Reynolds effect, the dilatant behav-
ior of materials when subjected to shear.

The proposed constitutive model uses a two-surface
damage/plasticity formulation to capture these very
different responses under tension and compres-
sion. The damage formulation is a Rankine-type
anisotropic damage model, based on the Pseudo-
Rankine anisotropic damage model of Carol et al.
(2001) . The plasticity formulation is a parabolic ex-

tension of the classic two-invariant model of Drucker
and Prager (Drucker and Prager 1952). To allow for
interaction between the two inelastic processes, both
models are formulated in terms of the effective stress
and strain in damage space. Since it is assumed that
the material stiffness degrades due to tensile load-
ing only, stiffness recovery/degradation is controlled
through the use of projection operators which modify
the damage tensor. At the intersection of the damage
and plasticity surfaces the solution is attained by en-
forcing consistency for both surfaces in order to deter-
mine which surface(s) is (are) activated by the current
loading condition.

2 INDEPENDENT DAMAGE AND
PLASTICITY FORMULATIONS

2.1 Anisotropic damage model of Rankine-type

For the description of elastic degradation a Rankine-
type anisotropic damage model is adopted, which has
been recently proposed in Carol et al. (2001). It uses
second-order damage tensors to express direction-
dependent material damage. The damage tensors are
used to define the relation between the externally
measured nominal stress and strain and the effective
stress and strain inside the region of microcracking.
The onset and progression of material degradation is
based upon the strain energy associated with the ef-
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fective stress and strain. The essential aspects of the
model are summarized in the following section.

2.1.1 Nominal/effective stress-strain relations
Material degradation may be thought of as the av-
erage effect of distributed microcracking. Effective
stresses and effective strains are those experienced by
the material skeleton between microcracks. In con-
trast, stresses and strains observed externally are the
nominal stresses and strains. The relations between
nominal and effective stress and strain are established
by the damage variables and their evolution laws.

In this formulation, anisotropic damage is repre-
sented by a second-order damage tensor. This can be
for example the traditional damage tensor Dij which
varies from 0 to δij or, more conveniently, the integrity
tensor φij (φij = δij −Dij), varying from δij to zero,
or its inverse φij, varying from δij to ∞.

Product-type symmetrization is applied to insure
symmetry of the nominal and effective stress and
strain tensors, resulting in

σij = wikσ
eff
kl wlj (1)

where wik is the square root of the integrity ten-
sor. If equivalence of the strain energy in terms of
nominal and effective stress/strain is assumed (W =
W eff,W = 1/2σ : ε), the effective/nominal strain re-
lation takes the dual form

εeff
ij = wikεklwlj (2)

These relations and their inverses may be rewritten
in a more convenient manner introducing the fourth
order ‘damage-effect tensor’ αijkl:

αijkl =
1

2
(wikwjl + wilwjk) (3)

σij = αijklσ
eff
kl ; εeff

ij = αijklεkl (4)

σeff
ij = αijklσkl ; εij = αijklε

eff
kl (5)

where αijkl is the inverse of αijkl. Additionally, the
damage-effect tensor αijkl and its inverse may be ex-
tended to obtain expressions for the secant stiffness
and secant compliance. For simplicity, it is assumed
that the effective stress-strain relations are linear elas-
tic, i.e.

σeff
ij = E0

ijklε
eff
kl ; εeff

ij = C0
ijklσ

eff
kl (6)

Combining these relations with those of Eqs. 4 and 5
leads to the secant relations for the nominal stresses
and strains:

Eijkl = αijpqE
0
pqrsαklrs;Cijkl = αpqijC

0
pqrsαrskl (7)

Substituting Eqns.3–5 into Eqn.7 and simplifying the
equations, one finally obtains the same expression of
secant stiffness as proposed in (Valanis 1990).

2.1.2 Loading function and strain evolution
To insure consistency between the damage and plas-
ticity formulations, damage is formulated in the spirit
of plasticity. The total strain increment is thus de-
composed into elastic and degrading strain compo-
nents, ε̇ = ε̇e + ε̇d. The boundary between the regions
of elastic behavior and progressive damage is gov-
erned by the damage condition, Fd = Fd (σ,qd) = 0,
where qd are the damage history variables which de-
scribe the evolution of the damage surface. The dam-
age rule and the consistency condition may be de-
rived in a manner similar to elastoplasticity, such that
ε̇d = λ̇dmd and Ḟd = nd : σ̇−Hdλ̇d = 0 (Carol, Rizzi,
and Willam 1994).

The associated loading function for the Rankine-
type anisotropic damage model is defined in terms of
modified (principal tensile) conjugate forces ŷ as

Fd = max(−ŷ(1),−ŷ(2),−ŷ(3))− r(L) (8)

Note that the initial damage surface in conjugate
force space follows the maximum stress hypothesis
of Rankine. The conjugate force −yij of this formula-
tion is a second order energy tensor:

−yij =
1

2
σeff

ik εeff
kj (9)

These forces are the conjugate variables to the
‘pseudo-logarithmic’ rate of damage defined as L̇ij =

2w̄ikφ̇klw̄lj . Both, L̇ij , and the conjugate force −yij

exhibit a number of intriguing properties. For in-
stance, the first invariant represents the elastic energy,
−yii = 1

2
σeff

ik εeff
ki . L̇ij is in general a non-holonomic

rate (not an exact differential), while its first invari-
ant has a well defined path-independent integral L =
Lkk/3, which is related to the principal values of the
inverse integrity tensor:

L =
1

3
(lnφ2

(1) + lnφ2
(2) + lnφ2

(3)) =
2

3
ln(φ(1)φ(2)φ(3))

(10)
The exponential resistance function r(L) takes the
form of the complementary energy,

r(L) = roe
−3kL; ro =

(f ′
t )2

2Eo

; k = ro/gf (11)

Thereby the exponential rate of decay is controlled
by L and the Mode I fracture energy per unit volume
gf , i.e. the area under the complete uniaxial stress-
strain curve, Fig. 1. The parameter ro in Eq. 11 and
Fig. 1 denotes the elastic strain energy at the peak of
the uniaxial tension test. These simple relations may
be obtained because the model exhibits closed-form
solutions for loading in uniaxial tension. In analogy
to plasticity, the evolution of damage strain is defined
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Figure 1: Uniaxial stress-strain curve defining ro, gf

by ε̇d = λ̇dmd, where λ̇d is the damage multiplier and
md the evolution direction. A similar argument can be
made to define the pseudo-log damage rate tensor L̇rs:

L̇rs = λ̇dMrs (12)

where Mrs defines the direction of damage evolution.
For associated flow,Mrs =Nrs, where Nrs is the nor-
mal to the damage surface, ∂Fd

∂(−yrs)
. From Eqn.12 the

inverse integrity tensor φpq can be updated by deter-
mining its rate.

φ̇pq =
1

2
wprL̇rswsq (13)

where wij is the square root tensor of the inverse in-
tegrity φij. Once φij is updated, the rest of the dam-
age tensors as well as the damage-effect tensors can
be evaluated, as well as the nominal stress and strain
and the secant stiffness and compliance.

2.2 Parabolic Drucker-Prager model
The parabolic Drucker-Prager model is an extension
of the classic two-invariant plasticity model (Drucker
and Prager 1952).

2.2.1 Yield function
The yield function for the parabolic extension of the
Drucker-Prager model takes the form

Fp(σ) = αI1 + J2 − β (14)

where I1 = σkk is the first stress invariant and J2 =
sijsij/2 is the second deviatoric stress invariant (sij =
σij−σkkδij/3). The strength parameters α and β may
be expressed in terms of the uniaxial tensile and com-
pressive strengths values of concrete,

α =
f ′

c − f ′
t

3
; β =

f ′
c f ′

t

3
(15)

2.2.2 Hardening and softening
The parabolic Drucker-Prager yield surface defined
by Eq. 14 expands and contracts isotropically through
the use of hardening and softening functions. These
functions modify the two strength parameters α and
β, changing the material limit point, depending on the
magnitude of the plastic strains εp. The yield function
then becomes Fp(σ,εp) = αhsI1 + J2 − kcβ where
k is the hardening parameter, (ko < k < 1.0), c the
softening parameter, (1 ≥ c ≥ co), and αhs the mod-
ified α parameter for hardening/softening, defined by
αhs = kc1

3
(f ′

c − f ′
t ).

The hardening function adopted for the parabolic
Drucker-Prager model was originally outlined by Etse
et al. (Etse and Willam 1994) in the context of their
three invariant Extended Leon model. It defines the
hardening parameter evolution as

k(εp) =
2

hD

(1− ko)
(√

2hDεp − εp

)
+ ko (16)

where εp is the equivalent plastic strain defined by
εp =

∫
t

√
ε̇p : ε̇p dt and ko defines the onset of harden-

ing behavior. Parameter hD defines the material duc-
tility,

hD = Ah

(
I1

f ′
c

)2

+ Bh

(
I1

f ′
c

)
+ Ch (17)

where Ah, Bh, and Ch are constants. Since hD is de-
pendent upon I1, it is able to reflect the effects of con-
fining pressures.

Once the material reaches peak at f ′
c , it may begin

to soften if the confining pressures are low. In this case
the softening function is a Gaussian decay function,
defined by

c(εp
t) =

1

exp
(

ξ
sD

)2 ; c > co (18)

Softening under plastic behavior is assumed to be
caused by the tensile components of the plastic
strain, represented by the equivalent tensile plastic
strain, εp

t =
∫
t

√
< ε̇p >:< ε̇p >, where the McCaulay

brackets <> extract only the tensile components of
the plastic strains. Furthermore, εp

t represents the ten-
sile plastic strains which accumulate after the material
reaches peak, so εp

t = 0 in the pre-peak regime. ξ in
Eq. 18 is a scaling parameter, while sD is the ductility
function for softening, which determines the variation
of softening based upon the confinement,

sD = −4.3((σp − γf ′
t )/(γf ′

t ) + 1.0) + 0.7 (19)

where σp is the sum of the confining pressures, and
where γ is a constant. The constants are chosen such
that the material softens completely under unconfined
loading and is perfectly plastic under high confine-
ment.
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3 TWO-SURFACE ANISOTROPIC
DAMAGE/PLASTICITY FORMULATION

3.1 Strain and stress variables
One principal issue of the damage/plasticity combina-
tion is which stresses and strains enter the formulation
in each part of the model. To this end, the following
stresses and strains are defined. First, a decomposition
of strain rate in three parts for elastic, degrading and
plastic parts is assumed:

ε̇ = ε̇e + ε̇d + ε̇p (20)

Plastic strains are irreversible in nature and can be in-
tegrated εp =

∫
ε̇pdt. Then the elastic-damage strain

is introduced in the total value, εed, as:

εed = ε− εp (21)

Finally, the effective counterparts of all these
strains and stresses are introduced:

σeff
ij = αijklσkl , εeff

ij = ᾱijklεkl = εeff,ed
ij + εeff,p

ij (22)

εeff,ed
ij = ᾱijklε

ed
kl , εeff,p

ij = ᾱijklε
p
kl (23)

3.2 Stiffness recovery
The inverse integrity tensor φij reflects the current
state of damage due to microcracks without distin-
guishing which microcracks may be open or closed
under the current loading state. As suggested by Or-
tiz (1985) , one way of representing stiffness recovery
due to microcrack closure consists of defining an ‘ac-
tive’ damage tensor, in this case, φact

ij , based on the
concept of positive and negative projection operators.

The original projection operator concept was intro-
duced in the form of fourth-order tensors. For our pur-
poses, a second-order projection operator for stiffness
recovery suffices which is defined as

P+
ij =

3∑
k=1

H[ε
(k)+

ed ]n
(k)
i n

(k)
j (24)

where ε
(k)+

ed are the principal tensile components of
the elastic-damage strain and ni are its principal di-
rections.

Using this projection operator, the active inverse in-
tegrity tensor is defined as

φact
ij = δij + P+

ik∆φklP
+
lj ; ∆φkl = φkl − δkl (25)

where φkl is the total inverse integrity tensor. A few
basic properties of the active integrity tensor may be
identified as

• at initial, undamaged state

φact
ij = φij = δij (26)

• under triaxial tension (damage in all directions)

φact
ij = φij > δij (27)

• under triaxial compression (stiffness recovery in
all directions)

φact
ij = δij (28)

3.3 Loading functions for the two-surface model
According to the previous sections, the loading func-
tions for the damage-plasticity model may be ex-
pressed as

Fd = max(−ŷed
(1),−ŷed

(2),−ŷed
(3))− rd(L) (29)

Fp = αIeff
1 + Jeff

2 − rp(εp) (30)

where the conjugate forces of the damage surface
−ŷed

(i) are defined in terms of the elastic-damage effec-
tive strains, and the stress invariants in the plasticity
surface in terms of effective stress:

−ŷed
ij =

1

2
< σeff

ik >< εeff,ed
kj > (31)

Ieff
1 = tr(σeff) ; Jeff

2 =
1

2
seff : seff (32)

where seff = σeff − 1/3Ieff
1 I2.

Likewise, plastic strains produced by the plastic
model are interpreted as effective plastic strains, εeff,p.
In this way, both loading surfaces may be represented
in the same space of effective stress, which is conve-
nient and intuitive. At this stage it is assumed that the
resistance functions rd and rp exhibit no interaction
between damage and plasticity. Nevertheless, while
the two failure mechanisms are not explicitly coupled,
they are implicitly linked by plasticity formulated in
effective space and damage dependent upon the elas-
tic/reversible strains (which are based on the plastic
strains).

The resulting failure envelope for the two-surface
formulation in plane effective stress space is shown
in Fig. 2. The bounds of material failure are de-
fined by the inner surfaces, so damage controls in
the tension/tension quadrant while plasticity governs
the compression/compression quadrant. In the ten-
sion/compression regions, the damage model controls
the response behavior as far as the intersection of the
two surfaces. At this point, both formulations are ac-
tive, while beyond this point plasticity controls. Note
that the surfaces pass through both, the uniaxial ten-
sile strength f ′

t and the compressive strength f ′
c .
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Figure 2: Plane stress envelope for the two-surface
model

3.4 Active surface(s) and integration
Plastic integration is performed using the elastic trial
-plastic corrector scheme. If the elastic trial only vi-
olates one of the two surfaces, standard techniques
for one surface are used. If the trial stresses violate
both conditions Fd > 0 and Fp > 0, the program starts
the two-surface integration algorithm, the first step of
which is to determine the correct set of active sur-
faces. This may involve two different types of checks.

The first type of check is to ensure whether a ‘cor-
ner’ situation is really reached, since this is not nec-
essarily implied by having both failure functions vio-
lated at the trial state of a large increment, especially
if one of the surfaces lies inside the other. A condition
as such as this is easily detected by subincrementing
the strain step ∆ε and checking the failure functions
at each subincrement.

If subincrementation still shows that a corner sit-
uation is reached, a second type of check is applied
to find out whether, for the specific strain increment
prescribed, the situation is resolved with two surfaces
active or only one (i.e. the new one activated, while
the one initially active, deactivates). This can only be
solved by trial and error, by assuming the set of active
surfaces and then verifying whether it was correct,
and if not changing the initial assumption and veri-
fying again (Carol and Prat 1995). The verification it-
self also requires two steps. For each surface assumed
active, the consistency condition should hold:

Ḟi = ni : σ̇ −Hiλ̇i = 0;ni =
∂Fi

∂σ
;Hi = −∂Fi

∂λi
(33)

Solving the linear system (or single equation) implied
by this condition leads to the scalar multiplier(s) λ̇i

of the surface(s) assumed active. These should be all
positive; if not, the assumption was wrong. But even
if all turn out positive, a second check is needed. For
the surface(s) assumed inactive, we must also verify

that Ḟi ≤ 0. If not, the assumption on the active set
was also wrong.

In the case that either the damage or plasticity sur-
face is active, the stress state is returned to the respec-
tive surface by a standard return algorithm based on
the bisection method. If both surfaces are active, a
modified return algorithm is used with applies nested
bisection algorithms to return the stress state to the in-
tersection of the damage and plasticity surfaces. Ad-
ditionally, since the consistency conditions are de-
pendent upon both the normal to the failure surfaces
and the plastic/damage flow directions, adopting non-
associated flow rules for either damage or plasticity
gives greater control over the activation of the fail-
ure surfaces. More details on the implementational as-
pects may be found in (Hansen 2000).

4 PERFORMANCE OF TWO-SURFACE MODEL
4.1 Uniaxial tension
One of the basic principles of the two-surface formu-
lation is that damage controls the material behavior
under tensile loading. Thus, when properly calibrated
with the fracture energy per unit volume gf , the model
shows active damage in tension (Fig. 3), with good
agreement with experimental results. As dictated by
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Figure 3: Uniaxial tension, two-surface model

damage mechanics, unloading and reloading always
occur at the current secant stiffness.

4.2 Uniaxial compression
While damage controls the material behavior under
tensile loading, plasticity controls the behavior under
compression. With the hardening and softening pa-
rameters properly calibrated, the model shows good
agreement with experimental results under uncon-
fined uniaxial compression (Fig. 4). Note that un-
der plastic behavior, unloading and reloading occurs
elastically. Additionally, the hardening and softening
rules are robust enough to capture concrete response
under increasing levels of confinement (Fig. 5).
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Figure 4: Uniaxial compression, two-surface model,
unconfined compression
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Figure 5: Uniaxial compression, two-surface model,
confined compression

4.3 Cyclic uniaxial tension/compression

It was previously mentioned that the presence of plas-
tic strains have a detrimental effect on the damage re-
sponse. However, this problem is resolved if damage
is expressed in terms of the elastic strains instead of
the total strains. This conclusion is tested by cycling
a uniaxial tension/compression load, which produces
both degrading and plastic strains in the same direc-
tion. The results are shown in Fig. 6(a). As shown,
damage controls the response under tension, while
plasticity is active under compression. While the ma-
terial unloads at the degraded secant stiffness under
tension, the elastic stiffness is recovered when the
material compresses, simulating the closing of mi-
crocracks. When the material cycles back to tension,
the degraded secant stiffness is recovered, simulating
the re-opening of the microcracks. Even when plastic
strains are present, the material stiffness degrades at
the boundary between compression and tension, and
material degradation re-commences when the current
stress reaches the previous cycle’s final stress level
(Fig. 6(b)).
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Figure 6: Cyclic uniaxial tension/compression - (a)
Total response, (b) Tensile stress close-up

4.4 Equibiaxial tension/compression

The two-surface model is also capable of capturing
the effects of active damage and plasticity in two
directions. Subjecting the model to equibiaxial ten-
sion and compression (ε̇xx = −ε̇yy) results in active
damage and plasticity in orthogonal directions (Fig.
7). Note that the subsequent analyses assume perfect
plasticity in order to detect the fundamental features
of the combined damage/plasticity model without the
added effects of hardening and softening. Fig. 7(a)
shows the response in the direction of tensile load-
ing. As dictated by the two-surface model, damage
controls the response in the tensile direction, and so
the material loads elastically up to the damage sur-
face, at which point damage commences and the ma-
terial strength degrades. In the compressive direction,
the response is governed by plasticity, so the material
loads elastically up to the yield surface, at which point
perfectly plastic behavior commences. Additional in-
sight into this behavior may be found by observing
the stress path in the effective stress space, Fig. 8. The
material loads elastically up to the damage surface, at
which point damage commences. The stress state then
follows the damage surface until it reaches the inter-
section of the damage and plasticity surfaces. As men-
tioned, the number of active surfaces depends upon
n and m for both failure mechanisms, and assuming
non-associated flow rules gives a level of control over
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Figure 7: Equibiaxial T/C, two-surface model, non-
associated flow - (a) xx-direction, (b) yy-direction
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the surface(s) activation. If a non-associated plastic
flow rule is adopted, the stress state can be confined
to the vertex of the damage and plasticity surfaces,
shown in Fig. 8. This results in perfect damage in ef-
fective space (continuing damage in nominal space)
and perfect plasticity in both effective and nominal
space. If, instead, associate flow is assumed for both
damage and plasticity, the stress path will eventually
move away from the vertex and continue along the

plasticity surface, resulting in the response of Fig. 9.
In this case, the compression continues to increase as
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Figure 9: Equibiaxial T/C, two-surface model, associ-
ated flow - (a) xx-direction, (b) yy-direction

the stress state follows the plasticity surface. The ten-
sile stress, however, exhibits a change from tension to
compression as the stress state moves from the vertex
onto the plasticity surface (Fig. 10). While this change
in the sign of the stress in the direction of tensile strain
seems unnatural at first, a possible explanation can be
offered if the dilatancy of the concrete is considered.
The dilatancy due to the compressive strains is con-
trolled by the plastic flow rule mp and prescribes dila-
tant strains and stresses orthogonal to the direction of
compressive loading. However, the strains orthogonal
to the compressive loading are constrained by the rate
of tensile loading ε̇xx. If the rate of tensile loading is
slower than the rate of dilatancy due to the compres-
sive loading, the tensile strain rate ε̇xx serves to con-
strain the dilatant response, which may result in com-
pressive stresses σxx. Additional information may be
found in (Hansen 2000).

5 CONCLUSIONS
This paper presented a two-surface anisotropic dam-
age/plasticity model which accounts for:
• Damage response under tensile loading, plastic-

ity response under compressive loading.
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• Stiffness recovery when moving from tension to
compression to simulate the closing of microc-
racks.

• Active plasticity and damage where appropriate
in the tension/compression regions.

Damage under tension and plasticity under compres-
sion is achieved through the use of the Rankine-type
anisotropic damage model and the parabolic Drucker-
Prager plasticity model. Formulating both models
in effective stress/strain space allows interaction be-
tween the two surfaces in the same space. Further-
more, damage considers the effects of the elastic
strains, which takes into account the effects of the
plasticity-induced plastic strains on the damage re-
sponse. Material stiffness recovery is based on the use
of second order projection operators P +

ij to form the
active integrity tensor φact

ij , a measure of the current
state of material damage at the current load increment.
Active damage and plasticity occurs when the effec-
tive stress path reaches the intersection of the two sur-
faces. The two-surface consistency condition is used
to determine if one or both of the loading surfaces are
indeed active.

The performance of the model was examined by
observing the model response under monotonic and
cyclic uniaxial tension/compression, and monotonic
equibiaxial tension/compression. The monotonic uni-
axial tension and compression results show that
the model is capable of accurately reproducing the
response of concrete under tension and compres-
sion. The cyclic uniaxial tension/compression results
highlight the stiffness degradation and recovery re-
sponse of the two-surface model. The equibiaxial ten-
sion/compression results show the model response
when both surfaces are active, which is directly con-
trolled by the underlying damage and plastic flow
rules.

Further work includes investigation into the model
behavior at the vertex of damage and plasticity. The

behavior at this point is highly dependent upon the
flow directions of the two loading mechanisms, which
strongly affects the dilatant response. Furthermore,
compressive damage needs to be considered. Strictly
speaking, softening under compression is due to per-
sistent microcracking, not due to plastic strains as in
the current formulation, which leads to the concept of
damage in compression.

6 ACKNOWLEDGEMENTS
E. Hansen and K. Willam would like to thank CASI
(Colorado Advanced Software Institute) for partial
funding of this research. Travel support for the col-
laboration through a grant from the US-Spain Com-
mission for Cultural and Scientific Exchange between
the University of Colorado and ETSECCPB-UPC, is
appreciated. The third author also wishes to acknowl-
edge partial support for this research from MCYT
(Madrid) through grant MAT2000-1007, and funding
for his Fall/2000 stay at the Univ. of Colorado re-
ceived from Generalitat de Catalunya (Barcelona).

REFERENCES
Carol, I. and P. Prat (1995). A multicrack model based

on the theory of multisurface plasticity and two
fracture energies. In D. Owen and E. Oñate (Eds.),
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