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ABSTRACT: In this paper we examine the degradation of interface transition zones in heterogeneous
materials due to thermal and mechanical damage. After a brief introduction of zero-thickness interface
models, we will address three topics, (a) the interaction of normal and tangential damage at the interface
level of observation, (b) the interaction of thermal and mechanical damage when thermal softening is
coupled with mechanical degradation, and (c) the effect of interface damage on the load resistance of
heterogeneous composites such as concrete when thermal softening leads to massive degradation of their
load resistance.

1 INTRODUCTION
Ever since Charles A. Coulomb articulated the classical law of dry friction over 200 years ago, a pre-
cise mathematical description of material interface behavior has been one of the central themes in en-
gineering mechanics and materials. Interfaces are normally the weak link in heterogeneous media. A
successful predictive model will have enormous implications for design, analysis, fabrication, and life
cycle performance of multi-material structures. It also has a strategic role in capturing discontinuous
failure processes in materials which are considered homogeneous at the macroscale. The main problem
is that current interface models are calibrated not directly but indirectly by inverse identification since
no established theory exists how to construct zero-thickness interface properties from micro-structural
features of the adherent materials.

Interface adhesion, cohesion and friction are important in many technological realms ranging from
the scales of kilometers in geosciences to micro- and nanometers in microelectronics and nano device
applications. In all cases, computationally-efficient modeling strategies are lacking that pass information
between lower and higher length scales and thus facilitate the rational analysis and design of engineering
systems. In the back of these fundamental issues on multiscale analysis and design of material systems is
the field of material failure where degradation of material interfaces play a central role in multi-materials
under extreme events. Specifically, this paper will examine high temperature effects on heterogeneous
materials and the fields of fire protection and fire resistance of cement-based materials. Thereby, the
exploratory study is intended as a proof of concept for multi-scale multi-physics engineering to reduce
ablation and spall effects in thermal shock problems when fire safety issues are considered.
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2 SCOPE
In the paper we examine thermal and mechanical deterioration effects of interfacial transition zones
in heterogeneous two-phase materials such as concrete. After a brief introduction we consider special
forms of damage in zero-thickness interface models. To this end we present a systematic discussion
of normal and tangential interface damage and their interaction as well as the coupling of elastic and
thermal degradation when heat transfer takes place in a heterogeneous material system subject to strong
discontinuities along some of the interfaces. For illustration the thermal degradation formulation is ap-
plied to model-based simulations of two-phase composites considering a single inclusion problem and
the thermal sweep analysis of a two-phase particle composite. The first application shows the effects of
degradation when thermo-mechanical mismatch of the two-phase material introduces localized degra-
dation at the interfaces between the constituents. The second application is motivated by experimental
observations on concrete specimens that were subjected to the combined thermal and mechanical load
histories leading to overall degradation of load resistance during thermal sweeps.

3 BACKGROUND
Traditionally, material interfaces are considered to exhibit tensile bond and shear resistance at the macro-
scopic continuum level. While in most applications this approach may be adequate, progressive deco-
hesion processes can only be explained properly by considering micro-structural details at the interface.
This requires characterization of the two adherent constituents and the interface bond conditions. These
types of studies are very demanding in terms of manpower and computing power, in spite of the recent
development of high performance modeling of materials at the micro- and macroscopic levels in 3-D
space and time.

3.1 Zero-Thickness Interface Behavior

The notion of a zero-thickness interface results in elastic stiffness properties which relate surface trac-
tions to relative displacements. In 2-D the normal and tangential shear components lead in local coordi-
nates to the elementary stiffness relationship,

[
tn
ts

]
=

[
knn 0
0 kss

][
∆un

∆us

]
(1)

Thereby it is understood that the relative displacements are discontinuous across the zero-thickness inter-
face. In other terms we should write∆un = u+

n − u−n = [|un|] and∆us = u+
s − u−s = [|us|]. Considering

an interfacial transition zone of the thickness`el we may interpret the relative displacements as normal
strain and shear strain, where∆un = εn `el and∆us = γns `el. Consequently, the elastic finite thickness
interface relation results in, [

tn
ts

]
=

[
E 0
0 G

][
εn

γns

]
(2)

This implies that zero-thickness interface stiffness properties are related to the elastic moduli of elasticity
by,

knn = E/`el and kss = G/`el (3)

This asymptotic argument illustrates the fundamental role of the elastic interface thickness`el. Its pur-
pose is to account for the dimensional reduction when we map the elastic moduli of the bulk material
onto zero-thickness interface properties with the help of the length scale`el. Aside from the dimensional
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reduction process of volume vs surface dominated energy arguments, the elastic interface stiffness pro-
vides the repository for elastic damage when tensile separation and shear slip are considered in terms of
a surface dominated degradation process governed by constant fracture energy release ratesGI

c andGII
c ,

in mode I and mode II (as well asGIII
c in Mode III in 3-D). Thereby, the volume dominated degradation

process is transformed into a surface dominated fracture process. The dimensional reduction localizes
degrading softening phenomena to the interface surface thereby regularizing the failure process with
regard to fracture energy release rate. The role of the interface is to trap the formation of large gradi-
ents in the continuum into a discontinuous interface similarly to‘wall-laws’ in fluid-structure interaction
problems.

3.2 Elastic Interface Damage Based on Two Damage Variables

The nature of material interfaces is inherently local when the strong kinematic discontinuities of zero-
thickness interfaces are considered. Conceptually, there are two points of view possible:

(a) the interface properties are projections of the adherent material bulk properties. This concept is nor-
mally adopted in embedded crack methodologies where localization of kinematic discontinuities
leads to an appropriate dimensional reduction of the bulk properties, see Simo, Oliver and Armero
[1993], Oliver, Huespe, Pulido and Chaves [2001].

(b) the interface properties have a life of their own, Rots & Schellekens [1990], Stankowski, Runesson
and Sture [1993], Lofti & Shing [1994], Carol, Prat and Lopez [1997]. The interfacial transition
zone of bimaterials are an example where the thickness is normally so small that it may be assumed
to be zero when compared to the scale of adjacent bulk materials. This concept is normally adopted
for the formulation of joint elements, fictitious crack models and zero-thickness cohesion models,
see Xu & Needleman [1994], Camacho & Ortiz [1996] and Espinosa & Zavattieri [2003], which
have been motivated by binding forces at the atomistic level.

In what follows we adopt the latter philosophy with focus on zero-thickness interface elements for de-
cohesion and frictional slip based on microstructural features of the adherent materials. The‘Fictitious
Crack Approach’of Hillerborg, Modeer and Petersson [1976] is well established to formulate the loss of
cohesion in a zero-thickness bond layer in mode I. An additional aspect of constitutive interface model-
ing arises when we consider the geometry of contact surfaces which is rarely smooth and planar, but full
of asperities providing localized points of contact. Consequently, the classical interpretation of contin-
uum damage mechanics of Kachanov [1958] is highly appropriate, where the effective load bearing area
provides the skeleton for stress transfer as opposed to the nominal surface area,1− d = Aeff/Anom with
0 ≤ d ≤ 1. In this context, the‘Disturbed State Concept’of Desai [2001] introduced some innovative
but still intuitive ideas to the field of interface modeling.

Although the thermodynamic setting of interface constitutive models is not well established, one can
start from the postulate that there exists a free surface energy in the spirit of Helmholtz. There are a
number of issues related to the‘coupling’ effects when dissipative interface processes are subjected to
decohesion and frictional slip in a transient thermomechanical environment. For illustration we consider
the free Helmholtz energy format in a 2-D setting omitting for the time being thermal and inelastic
dissipation effects for the sake of argument.

Redefining the specific free surface energy per unit mass in terms of a potential per unit surface, then
additive expansion of damage in the normal and tangential energy components,
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Ψ([|un|], [|us|], dn, ds) =
1

2
[1− dn]k o

nn[|un|]2 +
1

2
[1− ds]k

o
ss[|us|]2 (4)

yields the normal and tangential interface tractions :

tn =
∂Ψ

∂[|un|] = [1− dn]ko
nn[|un|] and ts =

∂Ψ

∂[|us|] = [1− ds]k
o
ss[|us|] (5)

and the thermodynamic conjugate forces :

Yn = − ∂Ψ

∂dn

=
1

2
ko

nn[|un|]2 and Ys = −∂Ψ

∂ds

=
1

2
ko

ss[|us|]2 (6)

The mechanical dissipation inequality for isothermal conditions,

Ḋm = Ynḋn +Ysḋs ≥ 0 (7)

is satisfied as long as the damage parameters are monotonically increasing functions,ḋn > 0 andḋs > 0,
since the thermodynamic forcesYn,Ys are strictly positive.

Introducing two independent damage functions,

Fn = Yn − rn(dn) ≤ 0 and Fs = Ys − rs(ds) ≤ 0 (8)

the internal energy demand due to the load is expressed in terms of the thermodynamic forcesYn,Ys,
and the resistance by the scalar function of the damage variable,r(dn), rs(ds). Under persistent damage
in the normal and tangential components the two consistency conditions,

Ḟn =
∂Fn

∂Yn
Ẏn +

∂Fn

∂dn

ḋn = 0 and Ḟs =
∂Fs

∂Ys
Ẏs +

∂Fs

∂ds

ḋs = 0 (9)

yield the evolution equations of normal and tangential damage:

ḋn =
1

Hn

teff
n 〈[|u̇n|]〉 where teff

n = ko
nn[|un|] and ḋs =

1

Hs

teff
s [|u̇s|] where teff

s = ko
ss[|us|]

(10)
where the hardening/softening parametersHn,Hs characterize the rate of damage evolution of the nor-
mal and tangential interface properties. The hardening/softening moduli,Hn,Hs, define the rate of
change of degradation of the cohesive properties in tension and shear which may be expressed by an
exponential function of the damage variable leading to the traction relation illustrated in Figure 1.

In what follows, normal damage is considered to be a unilateral process of crack closure. It is active
only in tension but not in compression inferred by the Macaulay brackets,〈[|u̇n|]〉, used to activate
positive values of interface opening in the normal direction.

Differentiating the constitutive relationship of interface tractions,
[

tn
ts

]
=

[
[1− dn]ko

nn 0
0 [1− ds]k

o
ss

][
〈[|un|]〉
[|us|]

]
(11)

leads to the tangential traction relationship,
[

ṫn
ṫs

]
= ktan

ed

[
〈[|u̇n|]〉
[|u̇s|]

]
(12)
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Figure 1: Schematics of free energy release due to cohesive degradation

where the tangential elastic damage stiffness reads,

ktan
ed =

[
[1− dn]ko

nn 0
0 [1− ds]k

o
ss

]
−

[
1
Hn

teff
n teff

n 0

0 1
Hs

teff
s teff

s

]
(13)

Note the decoupling of the normal and shear components in the tangential stiffness relation if two inde-
pendent damage variables are used without interaction.

3.3 Coupling of Normal-Tangential Interface Damage

In what follows let us consider coupling between the two damage processes in the form of a single
damage mechanism. Assuming isotropic interface stiffness properties,ko = ko

nn = ko
ss, we recognize the

physical meaning of the thermodynamic force as fracture energy release rates in mode I and mode II we
consider the normalized interaction relation in 2-D,

[(
Yn

GI
c

)a + (
Ys

GII
c

)a]
1
a = 1 (14)

This format suggests that we introduce an equivalent thermodynamic force which corresponds to the
critical fracture energy release rate in mode I,Yeq = GI

c . Lettinga = 1 for the sake of simplicity we find,

Yeq = Yn + bYs =
1

2
ko

[
〈[|un|]2〉+ b [|us|]2

]
where b =

GI
c

GII
c

(15)

The fracture energy ratiob defines the relationship of the critical fracture energy release rates in mode
I and in mode II. This type of interaction relation was originally proposed by Brewer-Lagace [1988]
and adopted for delamination analysis by Corigliano and Allix [2000]. A similar approach was adopted
by Carol, Rizzi and Willam [2002] for introducing volumetric-deviatoric components in terms of single
damage variable in an otherwise orthotropic damage model.

As noted above, the reduced dissipation inequality in Equation 7 is satisfied as long as the damage
variables are monotonically increasing functions since the thermodynamic forces are strictly positive.
Constraining the normal and tangential degradation in terms of a single scalar damage variable,d =
dn = b ds, the dissipation inequality reduces to the compact form,
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Figure 2: Fracture energy-based separation law of interface traction

Ḋm = Ynḋn +Ysḋs = Yeqḋ ≥ 0 (16)

In this case the evolution of scalar damage is activated by the single damage function,

Fd = Yeq − r(d) = 0 (17)

Thus, under persistent loading the consistency condition,Ḟd = 0, furnishes the rate of damage,

ḋ =
Ẏeq

Hd

=
1

Hd

[
teff
n 〈[|u̇n|]〉+ b teff

s [|u̇s|]
]

where Hd = −∂Fd

∂d
=

∂r(d)

∂d
(18)

The hardening functionHd is calibrated from mode I decohesion experiments conceptually shown in
Figure 2.

Introducing damage in the form of an exponential function,

d = 1−
√

ro

r
eγ(1−

√
r
ro

) (19)

where,γ = 2ro

Gf−ro
, ro = 1

2
ko[|uo|]2, r = 1

2
ko[|u|]2, then the tangential relation reads:

ṫ = (1− d)ko ˙[|u|]− ḋteff (20)

where,ḋ = ∂d
∂r

∂r
∂[|u|] = 1

Hd
teff

˙[|u|], with 1
Hd

= ∂d
∂r

, and ∂r
∂[|u|] = teff

˙[|u|]. In this case the harden-
ing/softening damage law is described by,

1

H d
=

roe
γ(1−

√
r
ro

)

2r2
√

ro

r

+
γ eγ(1−

√
r
ro

)
√

ro

r

2ro

√
r
ro

(21)

In summary, the evolution law involves three parameters, the elastic interface stiffnessko = E/`el,
the cohesive strengthft, and through the exponential softening parameterγ the fracture energy release
rateGI

f in mode I. They determine the resistance in terms of the elastic surface energy at crack initiation,
ro, and the exponential softening response due to damage thereafter.
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The tangential stiffness properties result from differentiation of the interface traction relations in
Equation 11,

ktan =
1

2
[1− d]

∂2ψo

∂[|un|]⊗ ∂[|us|] −
ḋ

1− d
teff (22)

In expanded form this results in the tangential stiffness for elastic damage,

ktan
ed =

[
[1− d ]ko 0

0 [1− d ]ko

]
− 1

Hd

[
teff
n teff

n b[teff
n teff

s ]
b[teff

s teff
n ] b2[teff

s teff
s ]

]
(23)

which is symmetric as opposed to the formulation proposed by Tijssens [2000]. The coupled format
should be compared with the uncoupled format in Equation 13 which involves the two independent dam-
age variables[1− dn] and[1− ds]. It might be surprising that the simple format of a single scalar damage
variable leads to the coupled format above. However, the interaction of normal and tangential damage
properties in the tangential format simply reflects the nonlinearity during loss of cohesion, whereby, the
single damage variable[1− d] introduces the interaction among normal and tangential damage.

3.4 Computational Aspects

Beside the challenge of capturing the main features of interface behavior, there are several significant
mathematical issues which are central to this paper and the entire field of interface analysis.

 

x

y
[|un

|]
1

n

s

[|u s
|]1

ξ[|u n
|]
2

[|us
|]2

Figure 3: Zero-thickness interface element strategy

For the sake of argument let us consider the linear case in which the inter-element stiffness contri-
butions play the role of penalty functions to enforce adherence among the two subdomains shown in
Figure 3. In physical terms, the stiffness assembly is comprised of disconnected solid elements which
are interacting through interface elements. Consequently the interface stiffness properties must not only
be sufficiently large to remove rigid body modes of the connected material structure, but they must also
minimize displacement discontinuities among adherent solid elements during initially intact conditions.
This is achieved by values of the interface stiffness which are normally three orders of magnitude larger
than the bulk stiffness in order to separate the low frequency content of the bulk behavior from the high
frequency content of the interface elements. In other terms, the elastic length scale of the dimensional re-
duction infers that the physical dimension of the interface thickness is three orders of magnitude smaller
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than that of the adherent solid domain. Considering degradation of the thickness of the elastic interface
is initially `el = E

[1−d]ko ∼ 10−3 in the appropriate length units whend = 0. For increasing damage the
elastic length scale, or in other terms, the width of the interface increases asd→ 1.

In this context we should be aware that Irwin’s characteristic dimension`ch = E Gc

(ft)2
is a measure of the

length of the fracture process zone, Hillerborg et al [1976]. In quasi-brittle materials this length scale is
sufficiently small such that fracture initiation and propagation is governed by the stress intensity factor at
the crack tip. In cement-based materials typical values are in the range of`ch ∼ 103 [mm], partly because
of the heterogeneous nature of concrete materials with aggregate sizes in the range of10− 100 [mm].
This strongly suggests that self-similarity arguments for crack propagation are no longer valid and that
concrete fracture is a NLFM process governed by decohesion and loss of frictional resistance in the
interfacial transition zones. In fact, considering the elastic interface length scale above,`el = E

[1−d]ko , we

can correlate the two length scales in the form`ch = β`el, whereβ = [1−d]ko Gc

(ft)2
. For concrete materials

this length ratio initially is in the rangeβ ∼ 105 whend = 0. During progressive degradation, as the
‘fictitious crack’ widens the ratio of the fracture process zoneβ = `ch

`el
decreases asd→ 1. In other terms,

the degradation of the cohesive-frictional process zone is emulated quite realistically in the interface
layer of zero-thickness.

Aside from the modeling aspects of interface computations there is also an exciting theoretical aspect
which changes the normal conformity arguments of‘compatible’finite element displacement methods.
This is the field of‘Discontinuous Galerkin Methods’which has received considerable attention by
the mathematically-oriented finite element community. In this case the discretization of bulk elements
is freed from conformity arguments when displacement as well as traction continuity is enforced by
Lagrange multipliers.

On the numerical side, there are issues of interdependent interpolation when we consider the variation
of interface tractions and the variation of bulk stresses in adherent solid elements, see Gens, Carol and
Alonso [1990] and Schellekens & de Borst [1993]. Using conforming displacement expansions for the
interface and adherent solid elements, it is apparent that the variation of interface tractions is of higher
order than the variation of stresses in neighboring solid elements. Consequently, provisions have to
made to suppress oscillations in the interface traction field. In our case of linear interpolants, Lobatto
integration is used which results in interface stiffness properties which turn out to be diagonal (including
the coupling partitions) if a natural numbering of nodes is used.

4 THERMOMECHANICAL MODEL OF INTERFACE DAMAGE
The zero-thickness interface transition zone is illustrated in Figure 4, where the jumps in the normal and
tangential displacement introduce the kinematic discontinuities,

[|u|] = u+ − u− 6= 0 and [|t|] = t+ − t− = 0 (24)

while the interface tractions are assumed to remain continuous. Moreover, we assume that the tempera-
ture field will develop jump conditions across the interface due to strong discontinuities of the interface
kinematics.

[|∆T |] = T+ − T− 6= 0 (25)
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Figure 4: Mechanical jump conditions across zero-thickness interface

4.1 Free Energy Potential for Thermoelastic Interface Damage

In what follows we introduce the effect of temperature in the elastic damage formulation. To this end
we consider the free energy potential to be a function of the discontinuous interface displacements,
[|un|] , [|us|], the temperature jump across the interface,[|∆T |] = [|T − To|], and the single damage vari-
abled,

Ψ = Ψ([|un|] , [|us|] , [|∆T |] , d) (26)

For definiteness, we expand the free surface energy into a quadratic polynomial in the primal variables
with the understanding that the nonlinear mechanical and thermal response will be embedded in the
thermomechanical damage variabled :

Ψ = g0 [|∆T |]+g1 [|un|]+g2 [|us|]+1

2
g3 [|un|]2 +

1

2
g4 [|us|]2 + (27)

g5 [|un|] [|us|] + g6 [|un|] [|∆T |] + g7 [|us|] [|∆T |]− 1

2
cs [|∆T |]2 (28)

Hereby, the response functionsgi = gi(d) are functions of the thermomechanical damage variable1−d =
[1− du][1− dT ], while cs denotes the heat capacity per unit surface area.

The gradients of the surface energy potential with regard to the displacement jumps furnish the
nominal interface tractions,

t = [1− d]
∂Ψ

∂ [|u|] (29)

which read in component form :

tn = g1 + g3 [|un|] + g5 [|us|] + g6 [|∆T |] (30)
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ts = g2 + g4 [|us|] + g5 [|un|] + g7 [|∆T |] (31)

For the sake of argument we assume isotropic interface behavior, where the damage interface stiff-
nessg3 = g4 = [1− d]ko, and where the initial thermal stress is the same in the normal and tangential
directions,g6 = g7 =−[1−d]αo

sk
o. Thereby, we understand that the coefficient of thermal surface expan-

sion depends on the characteristic length,αo
s = α`el, because of the definition of the interface stiffness

ko. This assures consistent units similarly to the heat capacity per unit surface mass which is subject to
thermomechanical damage,cs = [1− d]c. Further, we omit initial interface tractions,g1 = g2 = 0, and
we delete anisotropic coupling of the normal and tangential components in the interface jump conditions
assumingg5 = 0. In this case, the normal and tangential interface traction expressions reduce to,

tn = [1− d]ko [|un,el|] where [|un,el|] = [|un|]− αo
s [|∆T |] (32)

ts = [1− d]ko{[|us,el|] where [|us,el|] = [|us|]− αo
s [|∆T |] (33)

In matrix form, the tractions are a linear map of the interface displacement and temperature jumps,

[
tn
ts

]
= [1− d]

[
k0 0
0 k0

][
[|un|]− α0

s [|∆T |]
[|us|]− α0

s [|∆T |]
]

(34)

which highlights the isotropic features of the thermoelastic damage model.
The thermodynamic conjugate forces follow the interaction relation between normal and tangential

components developed in Equation 15. In this case the thermodynamic forceYeq is equivalent to the
fracture energy release rate for mode I fracture,

Yeq = −∂Ψ

∂d
=

1

2
ko{[|un,el|]2 + b [|us,el|]2} where b =

GI
c

GII
c

(35)

4.2 Clausius-Duhem Inequality

Recalling the local form of the second law of continuum thermodynamics and writing the Clausius-
Duhem inequality in terms of the Helmholtz free energy we find,

σ : ε̇− ρΨ̇− ρsθ̇− q·∇xθ
θ

≥ 0 (36)

wheres denotes the local entropy andθ the absolute temperature. A sufficient condition of the inequality
may be expressed in terms of the modified dissipation inequality,

Ḋmod = σ : ε̇− ρΨ̇− ρsθ̇ ≥ 0 (37)

when the contribution of the conduction inequality is strictly negative using the Fourier law,q·∇xθ
θ

< 0.

Forming the total differential of the free energy,Ψ̇, and invoking the Coleman relations for the surface
tractions, Equations 32, 33, a sufficient condition for mechanical dissipation may be developed in the
reduced form in analogy to Equation 16,

Ḋmech = Yeqḋ ≥ 0 (38)
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Thereby, elastic interface damage is a function of the interface displacement jump,du = 1− k(u)
ko , and

thermal damage is a function of the mean value of the temperature jump across the interface,dT =
1− αs(∆Tavg)

αo
s

. The combined damage factor is the product of thermal and mechanical damage,

[1− d] = [1− du][1− dT ] such that ḋ = ḋu[1− dT ] + ḋT [1− du] (39)

The two-way coupling of mechanical and thermal degradation becomes more apparent if we consider
the entropy,

s = − ∂Ψ

∂ [|∆T |] = −go + [1− d]αo
sk

o [|un,el|] + [1− d]αo
sk

o [|us,el|] + cs[1− d] [|∆T |] (40)

This raises the issue of positive entropy production which is satisfied only whend ≤ 1 and [|u̇n,el|] >

0, [|u̇s,el|] > 0 and
[∣∣∣∆Ṫ

∣∣∣
]

> 0, and when damage decreases for positive values of displacement and

temperature jumps,−ḋ > 0.

4.3 Rate Form of Interface Tractions

The tangential damage relations are obtained from differentiating the traction expressions in Equation
34,

ṫn = [1− d]ko [|u̇n,el|]− ḋ teff
n,el where teff

n,el = ko{[|un,el|] (41)

ṫs = [1− d]ko [|u̇s,el|]− ḋ teff
s,el where teff

s,el = ko{[|us,el|] (42)

For persistent thermoelastic damage, the consistency conditions furnish the evolution law for the rate
of mechanical damage in analogy to Equation 18,

ḋ =
1

Hd

Ẏeq =
1

Hd

{teff
n,el〈[|u̇n,el|]〉+ b teff

s,el [|u̇s,el|]} (43)

Consequently, the rate of normal and tangential interface tractions is driven by the rate of interface
displacement and temperature jumps, such that

ṫ = ktan
ted [|u̇|]−βtan

ted

[∣∣∣∆Ṫ
∣∣∣
]

(44)

The tangential interface stiffness for elastic degradation expands into,

ktan
ted = [1− d]ko

[
1 0
0 1

]
− 1

Hd

[
teff
n,eltn,el

eff b[teff
n,elt

eff
s,el ]

b[teff
s,el t

eff
n,el] b2[teff

s,el t
eff
s,el ]

]
(45)

and the thermal interface tractions associated with the temperature rate read :

βtan
ted = −[1− d]αo

sk
o

[
1 0
0 1

]
+

αo
s

Hd

[
teff
n,eltn,el

eff b[teff
n,elt

eff
s,el ]

b[teff
s,el t

eff
n,el] b2[teff

s,el t
eff
s,el ]

]
(46)
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Figure 5: Thermal jump condition across zero-thickness interface

4.4 Interface Heat Transfer

The zero-thickness interface transition zone is illustrated in Figure 5, where the jump in temperature
leads to a discontinuity of the primal field quantity,

[|∆T |] = ∆T+ −∆T− 6= 0 (47)

while the heat flux normal to the interface surface remains continuous if no strong kinematic discontinu-
ity develops.

The Clausius-Duhem inequality in Equation 36 expands for the interface,

t : [|u̇|]− ρsΨ̇− ρss
[∣∣∣∆Ṫ

∣∣∣
]
− qn·[|∆T |]

∆T
≥ 0 (48)

we deduce the heat transfer inequality,

qn· [|∆T |]
∆T

≤ 0 (49)

which is satisfied by a convective heat transfer condition across the interface surface whenknn → hc,

qn= −knn [|∆T |]→−hc [|∆T |] (50)

Recalling the definition of the local heat capacity:

cs = −[1− d]
∂2Ψ

∂ [|∆T |])2
(51)

we obtain the local equation of heat balance from the first law of thermodynamics:

ρscs

[∣∣∣∆Ṫ
∣∣∣
]
+ qn=QT − κ(t · [|u̇|]) (52)
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Figure 6: Degradation of convective heat transfer coefficient across zero-thickness interface

whereQT denotes the heat sources in the interface and whereκ ≤ 1 denotes the conversion factor of
mechanical energy into heat.
Heat transfer across an opening interface is governed by the convective interface condition:

qn= −hc [|∆T |] (53)

which varies betweeǹelknn ≥ hc ≥ hinf depending on the separation of the interface shown in Figure
6. Herebyhinf denotes the convective heat transfer coefficient for an open crack andho = `elknn the
thermal conductivity across the closed interface.

For steady state conditions the heat balance reduces to,

hc [|∆T |] = −QT + κ( t · [|u̇|]) (54)

where the mechanical and thermal heat sources on the right hand side are normally neglected. This results
in a thermal barrier condition across the interface which depends on the strength of the convective heat
transfer coefficienthc.

5 INCLUSION PROBLEM
To illustrate the effects of internal and external restraints we consider the simple model problem of a
circular inclusion embedded in a cement matrix. This permits us to examine the fundamental aspects of
heterogeneity in a thermal environment when mismatch of thermal expansion and the elastic stiffness
leads to differential slip along the interfacial transition zone of the two materials and subsequent damage
in the cement matrix. For the sake of argument we assume a unit 2-D domain,100mm × 100mm
in a state of plane stress. The contrast ratios of the elastic stiffness areEm : Ea = 1 : 3, with Em =
25GPa, Ea = 75GPa, and thermal expansionαm : αa = 15 : 9, with αm = 15.0× 10−6, αa = 9.0×
10−6. The unstructured mesh of three node CST elements in the cement matrix are connected by four
node interface elements with the cohesive strengthft = 6MPa and the fracture energy release rate for
interface separationGI

f = 0.22N/mm. The initial width of the elastic interface is̀el = 10−3 [mm] in
relation to the elastic matrix stiffness while the initial characteristic length of the fracture process zone
is `ch = 153 [mm].
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Assuming that the two-phase assembly is subjected to a temperature raise∆T = T − To = 50oC
we examine two limiting cases: (a) thermal expansion and mismatch stresses for the case of no external
restraint, and (b) thermal expansion and thermal stresses for the case of full external restraint. In both
cases a state of plane stress withν = 0.2 determines the in-plane response which adheres to symmetry
boundary conditions along the x-y axes. This infers that we actually analyze the upper right quadrant of
an assembly comprised of four inclusions.

5.1 Thermoelastic Response with no External Restraint

Figure 7 illustrates the undeformed and the deformed mesh of the two-phase assembly. The thermal
expansion of the mortar matrix dominates the overall expansion of the two-phase composite which is
magnified by the factor 200. It also exhibits a contraction of the inclusion due to the internal restraint
leading to crack opening along the interfacial transition zone and along several interfaces in the mortar
matrix.

x

y

x

y

Figure 7: Inclusion problem (without external restraint): (a) undeformed, (b) deformed mesh

Figure 8 shows the distribution of volumetric and deviatoric von Mises stresses in the two con-
stituents. Note that the thermoelastic mismatch leads to significant stress levels reaching nearly the level
of tensile strength of the interface layer and a quarter of the thermal stress level in the fully restrained
case. In other terms, the internal restraints of the heterogeneous model problem induce stress levels
which would normally be zero in the homogeneous case using equivalent material properties. Also note
that the state of stress in the elastic inclusion is uniform according to Eshelby, and that the largest shear
stresses are concentrated along the interfacial transition zone. We conclude, that the thermoelastic mis-
match introduces considerable stress levels which are omitted from consideration if the heterogeneous
material structure of the two-phase particle composite is not included.
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Figure 8: Inclusion problem (without external restraint): (a) volumetric, (b) von Mises stress

5.2 Thermoelastic Response with full External Restraint

Figure 9 illustrates the undeformed and the deformed mesh of the assembly subject to full external
restraints. In this case the thermoelastic effect of the inclusion dominates the overall deformation of the
two-phase composite which is magnified by the factor 200. It exhibits swelling of the inclusion which is
caused by the three-fold stiffness of the aggregate leading to extensive crack opening along the interfacial
transition zone and along all interfaces in the mortar matrix.

x

y

x

y

Figure 9: Inclusion problem (with full external restraint): (a) undeformed, (b) deformed mesh

Figure 10 shows the distribution of volumetric and deviatoric von Mises stresses in the two con-
stituents. We observe that the external restraints lead to significant thermal stress levels especially in the
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aggregate inclusions because of the three-fold value of their stiffness. Recall that the interface cohesion
and shear stresses are only limited byft = 6MPa in tension but not in compression, and that biaxial
compression may induce considerable deviatoric stress levels in the case of plane stress. Note again the
uniform state of stress in the elastic inclusion which fully agrees with the analytical result of Eshelby for
ellipsoidal inclusions.
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Figure 10: Inclusion problem (with full external restraint): (a) volumetric, (b) von Mises stress

6 TRANSIENT THERMOMECHANICAL DAMAGE PROBLEM
The performance of cement-based materials under elevated temperatures are very complicated and dif-
ficult to characterize. With increasing temperature there is a decrease of compressive strength, density,
thermal conductivity, thermal diffusivity in concrete because of increase of porosity and permeabil-
ity [Anderberg and Thelandersson, 1976, 1987; Schneider 1988; Khoury & Sullivan & Grainger 1985;
Bazant & Chern 1987, Phan 1996; Bazant & Kaplan 1996]. These changes of physical properties are
caused by three processes taking place at elevated temperatures:

(a) Phase transformation processes - Loss of free water occurs at about 100oC. Decomposition of
calcium hydroxide takes place at about 450oC. The crystal structure of quartz transforms at 573o

C fromα- to β- form.

(b) Evolution processes in pore structure - the volume and surface of pores increase up to a temperature
of approximately 500oC, and decrease with further increase of temperature. Chemical processes
result in changes of the pore pressure which affects the pore structure of concrete and thus the
permeability and diffusivity.

(c) Coupled thermo-hygro-chemo-mechanical processes - The thermo-mechanical coupling is associ-
ated with the temperature gradient upon rapid heating causing severe thermal stress in concrete
leading to dehydration and shrinkage of the cement matrix. The thermo-hygral coupling is associ-
ated with multiphase transport of water in the liquid, moisture in the vapor, and air in the gaseous
phases.
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In addition to the thermal softening of the elastic stiffness properties, it is the interaction of the
thermal expansion with the mechanical damage which leads to the dramatic reduction of axial stress
when confined concrete specimens are subjected to high temperature sweeps20 ≤ T ≤ 8000C. Figure
11 which has been reproduced from Anderberg & Thelandersson [1976, 1987] illustrates the dramatic
effect of axial restraint on the thermal stress when the temperature in the concrete sample is increased
to very high levels and when spalling leads to sometimes explosive failures. Figure 12 shows the effect
of axial loading on the thermal expansion of the concrete test article indicating that the free thermal
expansion reverts to contraction under the presence of axial compression.
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Figure 11: Axial stress in restrained concrete specimen subject to temperature sweep [Thelandersson,
1986]

Clearly, these experiments exhibit time dependence and inelastic processes, different aspects of
which were discussed recently by a number of authors [Ulm et al , 1999, Schrefler et al, 2002, Nenech
et al, 2002]. However, we believe that the interdependence of thermal and mechanical damage is a very
important effect which needs to be addressed, especially when transient high temperature excursions are
considered.

As a model problem we consider the two-phase composite in Figure 13 following the meso-mechanical
failure studies of concrete by Willam et al [1990]. The 2-D representative volume element (RVE) of
size14mm× 14mm is subjected to a transient temperature sweep considering mechanical and thermal
degradation. The objective of the exercise is to explore the effect of temperature dependence of the me-
chanical and thermal properties and to compare the numerical results with the experimental observations
of Anderberg & Thelandersson [1976, 1987] in Figures 11 and 12. The plane stress study permits us
to investigate the interaction of the thermal and mechanical degradation due to interface damage, and
to compare the thermal stress response with the results of a continuum damage approach reported by
Willam, Inkyu and Xi [2003].

In this model problem mechanical degradation is localized along the interfaces which are inserted
among all bi-material surfaces and between most of the matrix-matrix solid elements as illustrated in
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Figure 12: Axial strain in concrete specimen subject to temperature sweep at different confinement levels
σa [Thelandersson, 1986]

the right inset of Figure 13. The interface properties are the same irrespective whether they represent
bi-material adhesion or mono-material cohesion. The solid elements consider temperature effects on the
elastic properties and the coefficient of thermal expansion differently for aggregate inclusions and the
cement matrix.

The thermal stress analysis is carried out with the explicit time marching strategy outlined in the
Appendix. This staggered format decouples the heat transfer analysis from the mechanical degradation
analysis. Thereby, the Gough-Joule effect of mechanical cooling is neglected in the heat balance equa-
tion, however the crack opening of the interfaces is considered in the form of the convection coefficient
which controls heat transfer across the interface as detailed previuosly.

6.1 Solid Material Properties

The thermoelastic properties of the solid elements in the cement matrix and aggregate inclusions are
listed below:

• Coefficient of Thermal Expansion:

Cement Matrix :α0
m=15.5× 10−6 /C, and αm= 0.00555557α0

m(200-T)
Aggregate Inclusions :α0

a=9.0× 10−6 /C and αa=αa(e0.05T/100-0.01)
Figure 13 illustrates the effect increasing expansion with increasing temperature for the aggregate.
The thermal expansion of the cement matrix was modified to include the effect of drying shrinkage.
This results in an overall decrease of the coefficient of expansion with increasing temperature as
indicated in Figure 14.

• Temperature Dependence of Elastic Modulus:

E=E0(0.03921+e−0.002T ) with Em=25 GPa,Ea=75 GPa.
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Figure 13: Finite element mesh of RVE and interface layout

Figure 15 illustrates the degradation of the elastic stiffness properties with increasing temperature.
Thereby it is assumed that Poisson’s ratio exhibits little temperature sensitivity,νm=νa=0.2.

The heat transfer properties of the solid elements in the cement matrix and aggregate inclusions are listed
below:

• Aggregate Inclusions:

Thermal conductivity,ka = 2.4× 10−3 kW/(mm·C), Convection coefficient,ha = 0.0 kW/(mm2

·C), Specific heat,ca = 1170 (kW· h)/(kg ·C), Mass density,ρa = 1.92× 10−6 kg/mm3.

• Cement Matrix:

Thermal conductivity,km = 10−4 kW/(mm·C), Convection coefficient,hm = 2×10−5 kW/(mm2

·C), Specific heat,cm = 1170 (kW· h)/(kg ·C), Mass density,ρm = 1.92× 10−6 kg/mm3.

6.2 Interface Material Properties

For the sake of simplicity all interface properties are assumed to be the same irrespective whether they
connect matrix-matrix, inclusion-inclusion or matrix-inclusion elements.

• Mechanical Interface Properties:

The initial interface stiffness isko = 10× 103 GPa/mm which corresponds to a characteristic in-
terface length oflel = 10−3 mm. The cohesive strength is assumed to correspond to the tensile
strength of concrete materialsft=6 MPa, and the fracture energy release rate isGI

f=0.25 N/mm.
The damage evolution follows the exponential growth function in Equations 16 which has been
incorporated into the thermomechanical damage model, Equation 44, assuming different values of
b = 0.1,0.5,1.0 in the expression of the equivalent thermodynamic force.
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• Heat Transfer Interface Properties:

The convective heat transfer coefficient is initially for full contactho = 0.1, while the asymptotic
value is for full crack openingh∞ = 0.2× 10−4.
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Figure 14: Coefficient of thermal aggregate expansion [%]
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Figure 15: Coefficient of thermal matrix expansion [%]

6.3 Thermal Sweep Analysis of Two-Phase RVE

The main results of the thermal sweep analysis are shown in Figures 17, 18, 19 and 20. At the left,
the figures depict the distribution of the convective interface heat transfer coefficient which provides a
measure of interface opening. At the right, the figures illustrate the axial stress distributions when the
ambient temperature reaches∆T = 200,400,600,800o C. The figures show the heterogeneous effects of
the aggregate inclusions and the build up of axial compressionσyy in the center region of the RVE, while
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Figure 16: Reduction of elastic modulus with rising temperature,E = E(T )

the cement matrix near the midheight of the outside surfaces exhibits tension indicating the tendency of
cracking and spalling.

Figure 21 shows the influence of the convective heat transfer coefficient on the temperature distri-
bution in the RVE resulting in a high concentration of temperature gradients along the outside surfaces
similar to a thermal barrier for low values ofhc.

The deformed mesh in Figure 22 illustrates the diagonal shear failure mode and the lateral expansion
of the deformed mesh (30-fold magnification), when the ambient temperature reaches∆T = 500o. The
prevalent degradation of mechanical cohesion introduces slip and crack opening primarily at the bi-
material interfaces forming a diagonal failure mechanism across the two-phase composite (the results
are shown for the friction ratiob = 1.0 with equal normal to tangential energy interaction).

The interface damage leads to an overall release of the axial thermal stress depicted in Figure 23. This
figure illustrates the axial thermal stressσyy near the top left corner of the restrained RVE specimen. It
compares the predictions of different normal to tangential degradation ratiosb = 0.1,0.5,1.0 with the
results of a volumetric-deviatoric damage model without interfaces, see Willam, Rhee and Xi [2003].
Increasing values of the fracture energy ratiob activate tangential damage and reduce the thermal stress
effects which reach a maximum value when the ambient temperature approaches∆T = 300o. The trends
of interface damage are similar to those of the continuous damage model considering volumetric and
deviatoric degradation due to thermal and mechanical damage. They reproduce rather well the overall
reduction of axial load resistance with increasing temperature and the reversal of axial thermal stress
shown in the experiment, see Figure 11.

7 CONCLUSIONS
The paper addressed model issues of zero-thickness cohesive-frictional interfaces which are subjected to
thermal and mechanical damage. The damage model, which incorporates degradation in the normal and
tangential components, captures degradation effects in heterogeneous media. The two model problems
indicate significant stress levels in heterogeneous composites due to thermal mismatch and the prevalent
reduction of thermal stress under high temperature sweeps down to nearly zero resistance atT = 800o.
The combination of both thermal and mechanical degradation mechanisms is the principal feature which
drives the reduction process of axial thermal stress.
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Figure 17: Distribution of interface convectionhc andσyy contours at ambient temperature=200oC
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Figure 18: Distribution of interface convectionhc andσyy contours at ambient temperature=400oC
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Figure 19: Distribution of interface convectionhc andσyy contours at ambient temperature=600oC
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Figure 20: Distribution of interface convectionhc andσyy contours at ambient temperature=800oC
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Figure 21: Temperature Distribution: convective interface heat transfer(a)hc = 0.0001kW/mm2C,
(b)hc = 0.00001kW/mm2C
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Figure 22: Deformed mesh at ambient temperature=500oC, 30-fold magnification
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Figure 23: Axial thermal stress results of continuum and discrete damage analyses
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