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ABSTRACT: In this paper we examine the degradation of interface transition zones in heterogeneou:
materials due to thermal and mechanical damage. After a brief introduction of zero-thickness interface
models, we will address three topics, (a) the interaction of normal and tangential damage at the interfac
level of observation, (b) the interaction of thermal and mechanical damage when thermal softening is
coupled with mechanical degradation, and (c) the effect of interface damage on the load resistance c
heterogeneous composites such as concrete when thermal softening leads to massive degradation of tt
load resistance.

1 INTRODUCTION

Ever since Charles A. Coulomb articulated the classical law of dry friction over 200 years ago, a pre-
cise mathematical description of material interface behavior has been one of the central themes in er
gineering mechanics and materials. Interfaces are normally the weak link in heterogeneous media. /
successful predictive model will have enormous implications for design, analysis, fabrication, and life
cycle performance of multi-material structures. It also has a strategic role in capturing discontinuous
failure processes in materials which are considered homogeneous at the macroscale. The main proble
is that current interface models are calibrated not directly but indirectly by inverse identification since
no established theory exists how to construct zero-thickness interface properties from micro-structura
features of the adherent materials.

Interface adhesion, cohesion and friction are important in many technological realms ranging from
the scales of kilometers in geosciences to micro- and nanometers in microelectronics and nano devic
applications. In all cases, computationally-efficient modeling strategies are lacking that pass informatior
between lower and higher length scales and thus facilitate the rational analysis and design of engineerir
systems. In the back of these fundamental issues on multiscale analysis and design of material systems
the field of material failure where degradation of material interfaces play a central role in multi-materials
under extreme events. Specifically, this paper will examine high temperature effects on heterogeneot
materials and the fields of fire protection and fire resistance of cement-based materials. Thereby, th
exploratory study is intended as a proof of concept for multi-scale multi-physics engineering to reduce
ablation and spall effects in thermal shock problems when fire safety issues are considered.

*accepted for publication in Special WCCMYV Issue on Computational Failure Mechanics in CMAME, 2003
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2 SCOPE

In the paper we examine thermal and mechanical deterioration effects of interfacial transition zones
in heterogeneous two-phase materials such as concrete. After a brief introduction we consider speci
forms of damage in zero-thickness interface models. To this end we present a systematic discussic
of normal and tangential interface damage and their interaction as well as the coupling of elastic anc
thermal degradation when heat transfer takes place in a heterogeneous material system subject to stra
discontinuities along some of the interfaces. For illustration the thermal degradation formulation is ap-
plied to model-based simulations of two-phase composites considering a single inclusion problem an
the thermal sweep analysis of a two-phase particle composite. The first application shows the effects ¢
degradation when thermo-mechanical mismatch of the two-phase material introduces localized degre
dation at the interfaces between the constituents. The second application is motivated by experiment
observations on concrete specimens that were subjected to the combined thermal and mechanical lo
histories leading to overall degradation of load resistance during thermal sweeps.

3 BACKGROUND

Traditionally, material interfaces are considered to exhibit tensile bond and shear resistance at the macrt
scopic continuum level. While in most applications this approach may be adequate, progressive decc
hesion processes can only be explained properly by considering micro-structural details at the interface
This requires characterization of the two adherent constituents and the interface bond conditions. Thes
types of studies are very demanding in terms of manpower and computing power, in spite of the recen
development of high performance modeling of materials at the micro- and macroscopic levels in 3-D
space and time.

3.1 Zero-Thickness Interface Behavior

The notion of a zero-thickness interface results in elastic stiffness properties which relate surface trac
tions to relative displacements. In 2-D the normal and tangential shear components lead in local coordi
nates to the elementary stiffness relationship,
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Thereby it is understood that the relative displacements are discontinuous across the zero-thickness inte
face. In other terms we should writeu,, = vt — v, = [|u,|] andAus = u} — u; = [|u,|]. Considering

an interfacial transition zone of the thickngsswe may interpret the relative displacements as normal
strain and shear strain, whefe., = ¢, ¢,; andAu, = v, (.. Consequently, the elastic finite thickness

interface relation results in,
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This implies that zero-thickness interface stiffness properties are related to the elastic moduli of elasticity

by,
kpn = E/gel and koo = G/gel (3)

This asymptotic argument illustrates the fundamental role of the elastic interface thi¢gnétsspur-
pose is to account for the dimensional reduction when we map the elastic moduli of the bulk material
onto zero-thickness interface properties with the help of the length &¢akeside from the dimensional



reduction process of volume vs surface dominated energy arguments, the elastic interface stiffness pr
vides the repository for elastic damage when tensile separation and shear slip are considered in terms
a surface dominated degradation process governed by constant fracture energy rele@aratés’,

in mode | and mode Il (as well &7 in Mode Il in 3-D). Thereby, the volume dominated degradation
process is transformed into a surface dominated fracture process. The dimensional reduction localize
degrading softening phenomena to the interface surface thereby regularizing the failure process wit
regard to fracture energy release rate. The role of the interface is to trap the formation of large gradi
ents in the continuum into a discontinuous interface similariyadl-laws’ in fluid-structure interaction
problems.

3.2 Elastic Interface Damage Based on Two Damage Variables

The nature of material interfaces is inherently local when the strong kinematic discontinuities of zero-
thickness interfaces are considered. Conceptually, there are two points of view possible:

(a) the interface properties are projections of the adherent material bulk properties. This concept is nor
mally adopted in embedded crack methodologies where localization of kinematic discontinuities
leads to an appropriate dimensional reduction of the bulk properties, see Simo, Oliver and Armera
[1993], Oliver, Huespe, Pulido and Chaves [2001].

(b) the interface properties have a life of their own, Rots & Schellekens [1990], Stankowski, Runesson
and Sture [1993], Lofti & Shing [1994], Carol, Prat and Lopez [1997]. The interfacial transition
zone of bimaterials are an example where the thickness is normally so small that it may be assume
to be zero when compared to the scale of adjacent bulk materials. This concept is normally adoptet
for the formulation of joint elements, fictitious crack models and zero-thickness cohesion models,
see Xu & Needleman [1994], Camacho & Ortiz [1996] and Espinosa & Zavattieri [2003], which
have been motivated by binding forces at the atomistic level.

In what follows we adopt the latter philosophy with focus on zero-thickness interface elements for de-
cohesion and frictional slip based on microstructural features of the adherent materidliclitieus

Crack Approachf Hillerborg, Modeer and Petersson [1976] is well established to formulate the loss of
cohesion in a zero-thickness bond layer in mode |. An additional aspect of constitutive interface model-
ing arises when we consider the geometry of contact surfaces which is rarely smooth and planar, but fu
of asperities providing localized points of contact. Consequently, the classical interpretation of contin-
uum damage mechanics of Kachanov [1958] is highly appropriate, where the effective load bearing are
provides the skeleton for stress transfer as opposed to the nominal surfade-atea, A. ;7 /Ayom With

0 < d < 1. In this context, théDisturbed State Conceptf Desai [2001] introduced some innovative

but still intuitive ideas to the field of interface modeling.

Although the thermodynamic setting of interface constitutive models is not well established, one can
start from the postulate that there exists a free surface energy in the spirit of Helmholtz. There are ¢
number of issues related to tfeupling’ effects when dissipative interface processes are subjected to
decohesion and frictional slip in a transient thermomechanical environment. For illustration we consider
the free Helmholtz energy format in a 2-D setting omitting for the time being thermal and inelastic
dissipation effects for the sake of argument.

Redefining the specific free surface energy per unit mass in terms of a potential per unit surface, the
additive expansion of damage in the normal and tangential energy components,
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([|unll], [|usl], dn, ds) = 5[1 - dn]knon“unHZ + 5[1 - dS]kss[|US|]2 (4)
yields the normal and tangential interface tractions :
ov ov
t, = =[1—d,)k2, [lus]] and ts= = [1 — dg] k2, [|us (5)
5y = [ el Sy = 1L ]
and the thermodynamic conjugate forces :
o1, 9 _ov 1, 9
Vn = “ad §knn[|un|] and Y, = ad. §kssUUsH (6)
The mechanical dissipation inequality for isothermal conditions,

is satisfied as long as the damage parameters are monotonically increasing fudgtiofsandd, > 0,
since the thermodynamic forc@s, ), are strictly positive.

Introducing two independent damage functions,
Fo,=Y,—1r.(d,) <0 and Fy;=Y,—rs(ds) <0 (8)

the internal energy demand due to the load is expressed in terms of the thermodynami@’fodées
and the resistance by the scalar function of the damage varidllg, r;(d,). Under persistent damage
in the normal and tangential components the two consistency conditions,
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yield the evolution equations of normal and tangential damage:

) 1 . 1
dy = ot ((Jinl)) where £/ = k7, [Ju,|] and d = -t [li]) where 17 = k2 [Ju.]

where the hardening/softening parameft&(s H, characterize the rate of damage evolution of the nor-
mal and tangential interface properties. The hardening/softening maduli,, define the rate of
change of degradation of the cohesive properties in tension and shear which may be expressed by
exponential function of the damage variable leading to the traction relation illustrated in Figure 1.

In what follows, normal damage is considered to be a unilateral process of crack closure. It is active
only in tension but not in compression inferred by the Macaulay brackgts,||), used to activate
positive values of interface opening in the normal direction.

Differentiating the constitutive relationship of interface tractions,

tw | _ | [1—du]ky, 0 ([Junl])
J— 0 [%M%HHM] )
leads to the tangential traction relationship,
i?n _ ntan <[|Un|]>
l i ] = kea [ HUSH ] (12)
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Figure 1. Schematics of free energy release due to cohesive degradation

where the tangential elastic damage stiffness reads,

1
B Etsztiff 0
0 H%tgfftsz

“ 0 [1 = dyJk,

(13)

Note the decoupling of the normal and shear components in the tangential stiffness relation if two inde-
pendent damage variables are used without interaction.

3.3 Coupling of Normal-Tangential Interface Damage

In what follows let us consider coupling between the two damage processes in the form of a single
damage mechanism. Assuming isotropic interface stiffness propértiesk’ , = k2,, we recognize the

physical meaning of the thermodynamic force as fracture energy release rates in mode | and mode Il w
consider the normalized interaction relation in 2-D,

Yn Vs
"+

This format suggests that we introduce an equivalent thermodynamic force which corresponds to the
critical fracture energy release rate in mod@J, = G.. Lettinga = 1 for the sake of simplicity we find,

)+ (=) =1 (14)

I

Ve = V0= 2 ([l + (] where b= O (15)
The fracture energy ratib defines the relationship of the critical fracture energy release rates in mode
| and in mode Il. This type of interaction relation was originally proposed by Brewer-Lagace [1988]
and adopted for delamination analysis by Corigliano and Allix [2000]. A similar approach was adopted
by Carol, Rizzi and Willam [2002] for introducing volumetric-deviatoric components in terms of single
damage variable in an otherwise orthotropic damage model.

As noted above, the reduced dissipation inequality in Equation 7 is satisfied as long as the damag
variables are monotonically increasing functions since the thermodynamic forces are strictly positive.
Constraining the normal and tangential degradation in terms of a single scalar damage vérable,

d, = bd,, the dissipation inequality reduces to the compact form,
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Figure 2: Fracture energy-based separation law of interface traction

Dm:yndn+ysds:yeqd20 (16)
In this case the evolution of scalar damage is activated by the single damage function,

Fi=Ye—1(d)=0 a7)
Thus, under persistent loading the consistency condifipes; 0, furnishes the rate of damage,
i j}eq 1 ff . fri. 8Fd Gr(d)
=" =t ¢ h =—— = 1
=3 =7 [t ([lin]]) + bt [ins])] - where H, 57 = 5 (18)
The hardening functioft, is calibrated from mode | decohesion experiments conceptually shown in
Figure 2.
Introducing damage in the form of an exponential function,
d=1- [0V (19)
r
where,y = Gi’fro, ro = 3k°[|uo|]?, 7 = $k°[|ul]%, then the tangential relation reads:
b= (1—d)k°ul] — dtegy (20)
yvhere,él = S oy = Hidteff_ﬂzll], with ;- =31 and i = tes¢]|ul]. In this case the harden-
ing/softening damage law is described by,

1 roe V) WGV(I_E)\/?
- __° +
Ha 27’2\/§ 2r, %

In summary, the evolution law involves three parameters, the elastic interface stifhesg//.;,
the cohesive strengtfi, and through the exponential softening paramettre fracture energy release

rateG§ in mode I. They determine the resistance in terms of the elastic surface energy at crack initiation,
r°, and the exponential softening response due to damage thereatfter.

(21)
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The tangential stiffness properties result from differentiation of the interface traction relations in
Equation 11,

1 0% d
[ktan —_[1—d o _ t. 22
T ]  T=d ! (22)
In expanded form this results in the tangential stiffness for elastic damage,
pan _ | L=dlke 0] 1 bt e (23)
“ 0 - dlke | H | bl Bl ]

which is symmetric as opposed to the formulation proposed by Tijssens [2000]. The coupled format
should be compared with the uncoupled format in Equation 13 which involves the two independent dam-
age variable$l — d,,] and[1 — d,]. It might be surprising that the simple format of a single scalar damage
variable leads to the coupled format above. However, the interaction of normal and tangential damag
properties in the tangential format simply reflects the nonlinearity during loss of cohesion, whereby, the
single damage variablé — d] introduces the interaction among normal and tangential damage.

3.4 Computational Aspects

Beside the challenge of capturing the main features of interface behavior, there are several significar
mathematical issues which are central to this paper and the entire field of interface analysis.
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Figure 3: Zero-thickness interface element strategy

For the sake of argument let us consider the linear case in which the inter-element stiffness contri:
butions play the role of penalty functions to enforce adherence among the two subdomains shown i
Figure 3. In physical terms, the stiffness assembly is comprised of disconnected solid elements whicl
are interacting through interface elements. Consequently the interface stiffness properties must not onl
be sufficiently large to remove rigid body modes of the connected material structure, but they must alsc
minimize displacement discontinuities among adherent solid elements during initially intact conditions.
This is achieved by values of the interface stiffness which are normally three orders of magnitude largel
than the bulk stiffness in order to separate the low frequency content of the bulk behavior from the high
frequency content of the interface elements. In other terms, the elastic length scale of the dimensional re
duction infers that the physical dimension of the interface thickness is three orders of magnitude smalle
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than that of the adherent solid domain. Considering degradation of the thickness of the elastic interfac
is initially ¢, = 7% ~ 107% in the appropriate length units whei= 0. For increasing damage the
elastic length scale, or in other terms, the width of the interface increages-als

In this context we should be aware that Irwin’s characteristic dimersion EftGQ is a measure of the
length of the fracture process zone, Hillerborg et al [1976]. In quasi-brittle materials this length scale is
sufficiently small such that fracture initiation and propagation is governed by the stress intensity factor at
the crack tip. In cement-based materials typical values are in the rarige-ofi0? [mm], partly because
of the heterogeneous nature of concrete materials with aggregate sizes in the rabgel0b [mm).
This strongly suggests that self-similarity arguments for crack propagation are no longer valid and that
concrete fracture is a NLFM process governed by decohesion and loss of frictional resistance in the
interfacial transition zones. In fact, considering the elastic interface length scale éheve;~ d}ko, we

can correlate the two length scales in the fdim= 3/.;, wherej = %. For concrete materials

this length ratio initially is in the rangé ~ 10° whend = 0. During progressive degradation, as the
fictitious crack’ widens the ratio of the fracture process zgne ; L decreases ab— 1. In other terms,

the degradation of the cohesive-frictional process zone is emulated quite realistically in the interface
layer of zero-thickness.

Aside from the modeling aspects of interface computations there is also an exciting theoretical aspec
which changes the normal conformity argument&ompatible’finite element displacement methods.
This is the field of'Discontinuous Galerkin Methodsihich has received considerable attention by
the mathematically-oriented finite element community. In this case the discretization of bulk elements
is freed from conformity arguments when displacement as well as traction continuity is enforced by
Lagrange multipliers.

On the numerical side, there are issues of interdependent interpolation when we consider the variatio
of interface tractions and the variation of bulk stresses in adherent solid elements, see Gens, Carol ar
Alonso [1990] and Schellekens & de Borst [1993]. Using conforming displacement expansions for the
interface and adherent solid elements, it is apparent that the variation of interface tractions is of highe
order than the variation of stresses in neighboring solid elements. Consequently, provisions have t
made to suppress oscillations in the interface traction field. In our case of linear interpolants, Lobattc
integration is used which results in interface stiffness properties which turn out to be diagonal (including
the coupling partitions) if a natural numbering of nodes is used.

4 THERMOMECHANICAL MODEL OF INTERFACE DAMAGE

The zero-thickness interface transition zone is illustrated in Figure 4, where the jumps in the normal anc
tangential displacement introduce the kinematic discontinuities,

luj=ut—u"#£0 and [t]=tF -t~ =0 (24)

while the interface tractions are assumed to remain continuous. Moreover, we assume that the temper
ture field will develop jump conditions across the interface due to strong discontinuities of the interface
kinematics.

AT =T" =T~ #0 (25)
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Figure 4. Mechanical jump conditions across zero-thickness interface

4.1 Free Energy Potential for Thermoelastic Interface Damage

In what follows we introduce the effect of temperature in the elastic damage formulation. To this end
we consider the free energy potential to be a function of the discontinuous interface displacements
[|lun|], [Jus|], the temperature jump across the interfap®7’|] = [|T' — 7,|], and the single damage vari-
abled,

U = U([lunl], [[us]], [[ATI], d) (26)

For definiteness, we expand the free surface energy into a quadratic polynomial in the primal variable:
with the understanding that the nonlinear mechanical and thermal response will be embedded in th
thermomechanical damage varialile

W = g0 AT g1 ] 2 sl + 595 a1+ 500 2+ (27)

g5 [al] l1sl) + g6 leal} AT + go 1l [ ATT] = Ze. [ AT (28)

2
Hereby, the response functiofs= g;(d) are functions of the thermomechanical damage varibblé =
[1—d,][1 — dr], while ¢, denotes the heat capacity per unit surface area.

The gradients of the surface energy potential with regard to the displacement jumps furnish the
nominal interface tractions,

ov
t=1[1-d (29)
SR
which read in component form :
tn = g1+ g3 [[ual] + g5 [|usl] + g6 [|AT] (30)
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te = g2 + gallusl] + g5 [lun[] + g7 [|ATY] (31)

For the sake of argument we assume isotropic interface behavior, where the damage interface stif
nessgs = g4 = [1 — d]k°, and where the initial thermal stress is the same in the normal and tangential
directionsgs = g7 = —[1 — d]a2k®. Thereby, we understand that the coefficient of thermal surface expan-
sion depends on the characteristic length= « ¢.;, because of the definition of the interface stiffness
k°. This assures consistent units similarly to the heat capacity per unit surface mass which is subject t
thermomechanical damage,= [1 — d|c. Further, we omit initial interface tractiong, = g, = 0, and
we delete anisotropic coupling of the normal and tangential components in the interface jump conditions
assumingy; = 0. In this case, the normal and tangential interface traction expressions reduce to,

tn = [1 = dlk*[lunall  where [Juyql] = [[un]] — oS [|AT]] (32)

ts=[1 = dk{[lusall where [fugal] = [lus|] = o7 [|AT]] (33)

In matrix form, the tractions are a linear map of the interface displacement and temperature jumps,

ts 0 &% || [lusl] = of [IATY]

which highlights the isotropic features of the thermoelastic damage model.

The thermodynamic conjugate forces follow the interaction relation between normal and tangential
components developed in Equation 15. In this case the thermodynamic){grég equivalent to the
fracture energy release rate for mode | fracture,

ltn ] _—d [ B0 ] [ G -

ov 1 Ge
Ve = =57 = kAl +b[lusal’} where b= = (35)

4.2 Clausius-Duhem Inequality

Recalling the local form of the second law of continuum thermodynamics and writing the Clausius-
Duhem inequality in terms of the Helmholtz free energy we find,

a‘:é—p@—ps@—%ﬁezo (36)

wheres denotes the local entropy afidhe absolute temperature. A sufficient condition of the inequality
may be expressed in terms of the modified dissipation inequality,

Dl =g é—pl—psd >0 (37)

when the contribution of the conduction inequality is strictly negative using the Fouriel%\KK 0.

Forming the total differential of the free energy, and invoking the Coleman relations for the surface
tractions, Equations 32, 33, a sufficient condition for mechanical dissipation may be developed in the
reduced form in analogy to Equation 16,

Dt = Y,.d >0 (38)
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Thereby, elastic interface damage is a function of the interface displacementdumpl, — k,gﬁ‘), and
thermal damage is a function of the mean value of the temperature jump across the intgrface,

1— % The combined damage factor is the product of thermal and mechanical damage,

[1—d =[1—d,[1—ds] suchthat d=d,[1—dr]+dr[l —d,] (39)
The two-way coupling of mechanical and thermal degradation becomes more apparent if we conside
the entropy,
B ov
T olaT]
This raises the issue of positive entropy production which is satisfied only wken and ||, |] >
0, [|tsal] > 0 and HATH > 0, and when damage decreases for positive values of displacement and
temperature jumps;d > 0.

= —go + (1 = d|ak® [Junal] + [1 = daZh®[lusal] + cs[1 = d [[AT]]  (40)

4.3 Rate Form of Interface Tractions

The tangential damage relations are obtained from differentiating the traction expressions in Equatior
34,

ty=[1— dk [inal] — dts/], where 77 = k{[|unql] (41)
b =[1—dk®[[isul] — dtl] where 2] = k*{[Jusql] (42)

For persistent thermoelastic damage, the consistency conditions furnish the evolution law for the rate
of mechanical damage in analogy to Equation 18,

. 1 . 1 . ) effry
A= 77V = 5 i) + 0 i} *3)

Consequently, the rate of normal and tangential interface tractions is driven by the rate of interface
displacement and temperature jumps, such that

t= ke {juf] - Bl [|AT]] (44)

The tangential interface stiffness for elastic degradation expands into,

- [1_d]]€0 L0 _i ti{gtnreleff b[tij,ce];t:,fe{] (45)
e 0 1] Ha [ b[ieli] vt
and the thermal interface tractions associated with the temperature rate read :
(1 gaore| L 0] 4 28 (00, o1 B[] (46)
red L0 M | ol vl
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Figure 5: Thermal jump condition across zero-thickness interface

4.4 |nterface Heat Transfer

The zero-thickness interface transition zone is illustrated in Figure 5, where the jump in temperature

leads to a discontinuity of the primal field quantity,

|AT[] = AT* — AT~ #£0

while the heat flux normal to the interface surface remains continuous if no strong kinematic discontinu-

ity develops.
The Clausius-Duhem inequality in Equation 36 expands for the interface,

t:[Juf) = pe¥ — pos [|AT]] — 23 > 0

we deduce the heat transfer inequality,

Qn’ HATH <

0
AT —

(47)

(48)

(49)

which is satisfied by a convective heat transfer condition across the interface surfack whetrh..,

Gn= —Fknn HATH — —h, HATH

Recalling the definition of the local heat capacity:

0%
e =~ =gy

we obtain the local equation of heat balance from the first law of thermodynamics:

AT]] + 4, =Qr — st - (1]

|
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Figure 6: Degradation of convective heat transfer coefficient across zero-thickness interface

where(Q+ denotes the heat sources in the interface and whetel denotes the conversion factor of
mechanical energy into heat.
Heat transfer across an opening interface is governed by the convective interface condition:

o= —h.[|AT] (53)

which varies betweet,k,,,, > h. > h;,; depending on the separation of the interface shown in Figure
6. Herebyh,,; denotes the convective heat transfer coefficient for an open crackard,,k,, the
thermal conductivity across the closed interface.

For steady state conditions the heat balance reduces to,

he [[AT|] = —Qr + s(t-[[U]) (54)

where the mechanical and thermal heat sources on the right hand side are normally neglected. This resu
in a thermal barrier condition across the interface which depends on the strength of the convective hes
transfer coefficienk..

5 INCLUSION PROBLEM

To illustrate the effects of internal and external restraints we consider the simple model problem of a
circular inclusion embedded in a cement matrix. This permits us to examine the fundamental aspects c
heterogeneity in a thermal environment when mismatch of thermal expansion and the elastic stiffnes
leads to differential slip along the interfacial transition zone of the two materials and subsequent damag
in the cement matrix. For the sake of argument we assume a unit 2-D dom@imm x 100 mm

in a state of plane stress. The contrast ratios of the elastic stiffneds,areév, = 1 : 3, with E,, =

25G Pa, E, = 75G Pa, and thermal expansiom,, : o, = 15 : 9, with o, = 15.0 x 1075, o, = 9.0 x

10~°. The unstructured mesh of three node CST elements in the cement matrix are connected by fou
node interface elements with the cohesive strerfgth 6 M Pa and the fracture energy release rate for
interface separatiof’. = 0.22 N/mm. The initial width of the elastic interface &5; = 1073 [mm)] in
relation to the elastic matrix stiffness while the initial characteristic length of the fracture process zone
iS {e, = 153 [mm)].
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Assuming that the two-phase assembly is subjected to a temperaturé\idiseT — T, = 50°C
we examine two limiting cases: (a) thermal expansion and mismatch stresses for the case of no extern
restraint, and (b) thermal expansion and thermal stresses for the case of full external restraint. In bot
cases a state of plane stress with 0.2 determines the in-plane response which adheres to symmetry
boundary conditions along the x-y axes. This infers that we actually analyze the upper right quadrant o
an assembly comprised of four inclusions.

5.1 Thermoelastic Response with no External Restraint

Figure 7 illustrates the undeformed and the deformed mesh of the two-phase assembly. The therm:
expansion of the mortar matrix dominates the overall expansion of the two-phase composite which is
magnified by the factor 200. It also exhibits a contraction of the inclusion due to the internal restraint
leading to crack opening along the interfacial transition zone and along several interfaces in the morta
matrix.
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Figure 7: Inclusion problem (without external restraint): (a) undeformed, (b) deformed mesh

Figure 8 shows the distribution of volumetric and deviatoric von Mises stresses in the two con-
stituents. Note that the thermoelastic mismatch leads to significant stress levels reaching nearly the lev
of tensile strength of the interface layer and a quarter of the thermal stress level in the fully restrainec
case. In other terms, the internal restraints of the heterogeneous model problem induce stress leve
which would normally be zero in the homogeneous case using equivalent material properties. Also notc
that the state of stress in the elastic inclusion is uniform according to Eshelby, and that the largest shez
stresses are concentrated along the interfacial transition zone. We conclude, that the thermoelastic mi
match introduces considerable stress levels which are omitted from consideration if the heterogeneot
material structure of the two-phase particle composite is not included.
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Figure 8: Inclusion problem (without external restraint): (a) volumetric, (b) von Mises stress

5.2 Thermoelastic Response with full External Restraint

Figure 9 illustrates the undeformed and the deformed mesh of the assembly subject to full externa
restraints. In this case the thermoelastic effect of the inclusion dominates the overall deformation of the
two-phase composite which is magnified by the factor 200. It exhibits swelling of the inclusion which is
caused by the three-fold stiffness of the aggregate leading to extensive crack opening along the interfaci
transition zone and along all interfaces in the mortar matrix.
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Figure 9: Inclusion problem (with full external restraint): (a) undeformed, (b) deformed mesh

Figure 10 shows the distribution of volumetric and deviatoric von Mises stresses in the two con-
stituents. We observe that the external restraints lead to significant thermal stress levels especially in tf
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aggregate inclusions because of the three-fold value of their stiffness. Recall that the interface cohesic
and shear stresses are only limited foy= 6 M Pa in tension but not in compression, and that biaxial
compression may induce considerable deviatoric stress levels in the case of plane stress. Note again t
uniform state of stress in the elastic inclusion which fully agrees with the analytical result of Eshelby for
ellipsoidal inclusions.

. 24 Mpa . 24 Mpa

0 Mpa 0 Mpa

I -24 Mpa

Figure 10: Inclusion problem (with full external restraint): (a) volumetric, (b) von Mises stress
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6 TRANSIENT THERMOMECHANICAL DAMAGE PROBLEM

The performance of cement-based materials under elevated temperatures are very complicated and d
ficult to characterize. With increasing temperature there is a decrease of compressive strength, densit
thermal conductivity, thermal diffusivity in concrete because of increase of porosity and permeabil-
ity [Anderberg and Thelandersson, 1976, 1987; Schneider 1988; Khoury & Sullivan & Grainger 1985;
Bazant & Chern 1987, Phan 1996; Bazant & Kaplan 1996]. These changes of physical properties ar
caused by three processes taking place at elevated temperatures:

(a) Phase transformation processes - Loss of free water occurs at abot®€.1D@composition of
calcium hydroxide takes place at about 480 The crystal structure of quartz transforms at 373
C from a- to - form.

(b) Evolution processes in pore structure - the volume and surface of pores increase up to a temperatu
of approximately 500C, and decrease with further increase of temperature. Chemical processes
result in changes of the pore pressure which affects the pore structure of concrete and thus th
permeability and diffusivity.

(c) Coupled thermo-hygro-chemo-mechanical processes - The thermo-mechanical coupling is assoc
ated with the temperature gradient upon rapid heating causing severe thermal stress in concret
leading to dehydration and shrinkage of the cement matrix. The thermo-hygral coupling is associ-
ated with multiphase transport of water in the liquid, moisture in the vapor, and air in the gaseous
phases.
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In addition to the thermal softening of the elastic stiffness properties, it is the interaction of the
thermal expansion with the mechanical damage which leads to the dramatic reduction of axial stres
when confined concrete specimens are subjected to high temperature 8weefis< 800°C. Figure
11 which has been reproduced from Anderberg & Thelandersson [1976, 1987] illustrates the dramatic
effect of axial restraint on the thermal stress when the temperature in the concrete sample is increase
to very high levels and when spalling leads to sometimes explosive failures. Figure 12 shows the effec
of axial loading on the thermal expansion of the concrete test article indicating that the free thermal
expansion reverts to contraction under the presence of axial compression.

-OTEST 1'0fmin
B8 TEST 5Cin

Tempedue[

|
=3
(=1

1
08F

>4 7/ o -

Figure 11: Axial stress in restrained concrete specimen subject to temperature sweep [Thelandersso
1986]

Clearly, these experiments exhibit time dependence and inelastic processes, different aspects
which were discussed recently by a number of authors [UIm et al , 1999, Schrefler et al, 2002, Nenecl
et al, 2002]. However, we believe that the interdependence of thermal and mechanical damage is a vel
important effect which needs to be addressed, especially when transient high temperature excursions &
considered.

As a model problem we consider the two-phase composite in Figure 13 following the meso-mechanic.
failure studies of concrete by Willam et al [1990]. The 2-D representative volume element (RVE) of
sizel4mm x 14mm is subjected to a transient temperature sweep considering mechanical and therma
degradation. The objective of the exercise is to explore the effect of temperature dependence of the m
chanical and thermal properties and to compare the numerical results with the experimental observatior
of Anderberg & Thelandersson [1976, 1987] in Figures 11 and 12. The plane stress study permits u:
to investigate the interaction of the thermal and mechanical degradation due to interface damage, an
to compare the thermal stress response with the results of a continuum damage approach reported
Willam, Inkyu and Xi [2003].

In this model problem mechanical degradation is localized along the interfaces which are insertec
among all bi-material surfaces and between most of the matrix-matrix solid elements as illustrated in
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Figure 12: Axial strain in concrete specimen subject to temperature sweep at different confinement level
0. [Thelandersson, 1986]

the right inset of Figure 13. The interface properties are the same irrespective whether they represet
bi-material adhesion or mono-material cohesion. The solid elements consider temperature effects on tr
elastic properties and the coefficient of thermal expansion differently for aggregate inclusions and the
cement matrix.

The thermal stress analysis is carried out with the explicit time marching strategy outlined in the
Appendix. This staggered format decouples the heat transfer analysis from the mechanical degradatic
analysis. Thereby, the Gough-Joule effect of mechanical cooling is neglected in the heat balance equi
tion, however the crack opening of the interfaces is considered in the form of the convection coefficient
which controls heat transfer across the interface as detailed previuosly.

6.1 Solid Material Properties

The thermoelastic properties of the solid elements in the cement matrix and aggregate inclusions ar
listed below:

e Coefficient of Thermal Expansion:

Cement Matrix % =15.5x 107¢/C, and «,,= 0.00555554° (200-T)

Aggregate Inclusionsa?=9.0 x 107¢/C and a,=a,(e*%7/1%0-0.01)

Figure 13 illustrates the effect increasing expansion with increasing temperature for the aggregate
The thermal expansion of the cement matrix was modified to include the effect of drying shrinkage.
This results in an overall decrease of the coefficient of expansion with increasing temperature as
indicated in Figure 14.

e Temperature Dependence of Elastic Modulus:
E=FE,(0.03921+-0902T) with £,,=25 GPa,k,=75 GPa.
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Figure 13: Finite element mesh of RVE and interface layout

Figure 15 illustrates the degradation of the elastic stiffness properties with increasing temperature
Thereby it is assumed that Poisson’s ratio exhibits little temperature sensitjyity,=0.2.

The heat transfer properties of the solid elements in the cement matrix and aggregate inclusions are liste
below:

e Aggregate Inclusions:

Thermal conductivityk, = 2.4 x 1073 kW/(mm-C), Convection coefficientj, = 0.0 kW/{nm?
-C), Specific heat;, = 1170 (kW- h)/(kg -C), Mass densityy, = 1.92x 10~¢ kg/mm?.

o Cement Matrix:

Thermal conductivityk,, = 10~% kW/(mm-C), Convection coefficient},, = 2x107° kW/(mm?
-C), Specific heat,,, = 1170 (kW- h)/(kg -C), Mass densityp,, = 1.92 x 10~° kg/mm?.

6.2 Interface Material Properties
For the sake of simplicity all interface properties are assumed to be the same irrespective whether the

connect matrix-matrix, inclusion-inclusion or matrix-inclusion elements.

e Mechanical Interface Properties:
The initial interface stiffness i5° = 10 x 10> GPa/mm which corresponds to a characteristic in-
terface length of,; = 10~3mm. The cohesive strength is assumed to correspond to the tensile
strength of concrete materiafs=6 MPa, and the fracture energy release ra@fjso.ZS N/mm.
The damage evolution follows the exponential growth function in Equations 16 which has been
incorporated into the thermomechanical damage model, Equation 44, assuming different values o
b=0.1,0.5,1.0 in the expression of the equivalent thermodynamic force.
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e Heat Transfer Interface Properties:

The convective heat transfer coefficient is initially for full contagt= 0.1, while the asymptotic
value is for full crack opening., = 0.2 x 1074

Linear expansion(%)
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Figure 14: Coefficient of thermal aggregate expansion [%]
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Figure 15: Coefficient of thermal matrix expansion [%]

6.3 Thermal Sweep Analysis of Two-Phase RVE

The main results of the thermal sweep analysis are shown in Figures 17, 18, 19 and 20. At the left
the figures depict the distribution of the convective interface heat transfer coefficient which provides a
measure of interface opening. At the right, the figures illustrate the axial stress distributions when the
ambient temperature reach&§” = 200, 400, 600, 800° C. The figures show the heterogeneous effects of
the aggregate inclusions and the build up of axial compressjpim the center region of the RVE, while
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Figure 16: Reduction of elastic modulus with rising temperatfre; £ (7))

the cement matrix near the midheight of the outside surfaces exhibits tension indicating the tendency a
cracking and spalling.

Figure 21 shows the influence of the convective heat transfer coefficient on the temperature distri-
bution in the RVE resulting in a high concentration of temperature gradients along the outside surface:
similar to a thermal barrier for low values bf.

The deformed mesh in Figure 22 illustrates the diagonal shear failure mode and the lateral expansio
of the deformed mesh (30-fold magnification), when the ambient temperature resa€he$00°. The
prevalent degradation of mechanical cohesion introduces slip and crack opening primarily at the bi-
material interfaces forming a diagonal failure mechanism across the two-phase composite (the resuls
are shown for the friction ratib = 1.0 with equal normal to tangential energy interaction).

The interface damage leads to an overall release of the axial thermal stress depicted in Figure 23. Th
figure illustrates the axial thermal stresg, near the top left corner of the restrained RVE specimen. It
compares the predictions of different normal to tangential degradation tatios 1, 0.5, 1.0 with the
results of a volumetric-deviatoric damage model without interfaces, see Willam, Rhee and Xi [2003].
Increasing values of the fracture energy ratectivate tangential damage and reduce the thermal stress
effects which reach a maximum value when the ambient temperature apprdg€hre800°. The trends
of interface damage are similar to those of the continuous damage model considering volumetric an
deviatoric degradation due to thermal and mechanical damage. They reproduce rather well the overa
reduction of axial load resistance with increasing temperature and the reversal of axial thermal stres
shown in the experiment, see Figure 11.

7 CONCLUSIONS

The paper addressed model issues of zero-thickness cohesive-frictional interfaces which are subjected
thermal and mechanical damage. The damage model, which incorporates degradation in the normal ar
tangential components, captures degradation effects in heterogeneous media. The two model probler
indicate significant stress levels in heterogeneous composites due to thermal mismatch and the prevale
reduction of thermal stress under high temperature sweeps down to nearly zero resisfanrcgoar.

The combination of both thermal and mechanical degradation mechanisms is the principal feature whicl
drives the reduction process of axial thermal stress.
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Figure 17: Distribution of interface convectién ando,, contours at ambient temperatupgg°C
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Figure 18: Distribution of interface convectidn ando,,, contours at ambient temperatud€g°C
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Figure 19: Distribution of interface convectién ando,, contours at ambient temperatut&s°C'
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