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ABSTRACT

The goal of singular value decomposition analysis (SVD) and canonical correlation analysis (CCA) is to
isolate important coupled modes between two geophysical fields of interest. In this paper the relationship between
SVD and CCA is clarified. They should be considered as two distinct methods (possibly) suitable for answering
two different questions. Some problems associated with interpreting results of both SVD and CCA are discussed.
Both methods have a high potential to produce spurious spatial patterns. Caution is always called for in inter-

preting results from either method.

1. Introduction

Bretherton et al. (1992, hereafter BSW) discuss
methods of ‘‘isolating important coupled modes of
variability between time series of two fields.”” A com-
parison of two methods, Singular-Value Decomposi-
tion Analysis (SVD) and Canonical Correlation Anal-
ysis (CCA), constitutes a majority of the paper. SVD
is based on a singular value decomposition of the ma-
trix whose elements are sample covariances between
observations made at different grid points in two geo-
physical fields. The first use of SVD in climatology was
apparently by Prohaska (1976). Other examples of its
use can be found in Lanzante (1984), Wallace et al.
(1992; hereafter WSB), Hsu (1994), and Lau and
Nath (1994).

SVD is known, though not by that name, and prac-
ticed in other fields. In the social sciences it is one of
a class of methods of matching matrices. Van de Geer
(1984) referred to it as the MAXDIFF criterion. In an
unpublished manuscript, Muller (1982, personal com-
munication) refers to SVD as Canonical Covariance
Analysis, which is perhaps a more descriptive name.
Tucker (1958) also discusses SVD as a method of find-
ing common factors in two batteries of tests presented
to the same group of subjects (interbattery factor anal-
ysis) and comments on the fact that the method results
in linear combinations with maximum covariance.
SVD is also used in ecology where it is known as co-
inertia analysis (Dolédec and Chessel 1994 ).
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SVD is recommended by BSW on the grounds of its
simplicity and ease of interpretation of its results. How-
ever, in a recent paper, Newman and Sardeshmukh
(1995) raised questions about the usefulness of SVD.
In particular, they argued that SVD was capable of de-
tecting coupled patterns only under very special cir-
cumstances.

This paper has two goals. One is to show that SVD
and CCA should not be considered as competing tech-
niques; they are different techniques with different
goals. The second goal is to illustrate some potential
difficulties with interpreting the results of both meth-
ods. Such difficulties are well documented in the sta-
tistical literature for CCA (Kendall 1975; Rencher
1992). SVD shares many of those problems and has a
high potential to produce spurious patterns and corre-
lations.

To set the stage, suppose there are two geophysical
fields. BSW called these the left and right fields. There
arei = 1, - - -, N, grid points in the left field and j = 1,
-+, N, grid points in the right field. Let s = (s, 5,
“ooysy) and z = (21, 22, * 7, zv,)  be Ny X 1 and N,
X 1 random vectors. The notation (') means the trans-
pose of a vector or matrix. Each element of s and z is
a random variable of interest; for example, s; might
represent sea surface temperature at grid point i in the
left field and z; might be the 500-mb height anomaly at
the jth grid point in the right field. For convenience it
will be assumed that these vectors have mean 0; that
is, (s;) = (z;) = O forall i and j.

Suppose these two random fields are observed over
T time units. Then at each grid point there is a time
series of T observations. Let S be a T X N, data matrix
in which the ith column contains the T observations of
s; and let Z be a T X N, data matrix whose jth column
contains the T observations of z;.
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Let
C —;S'S N, X N,
ss_(T_l) ( s :)
Cu=mzz (N, X N)
1 ’
Csz_ms Z (NsXNz)
Cs=Cs,

denote the indicated sample covariance matrices based
-on recorded observations in the two fields. The com-
bined sample covariance matrix is

C(C) — CSS CSZ .
Cs C
Section 2 discusses CCA and SVD, respectively.

Section 3 contains a discussion, and some conclusions
are presented in section 4.

2. CCA and SVD

CCA is a multivariate statistical technique whose
goal is to examine the strength of the linear association
between two sets of random variables or, in the cli-
matological context, between two geophysical fields.
CCA, and some modified versions of it, have been used
for this purpose in the past in climatology (Glahn 1968;
Nicholls 1987; Barnett and Preisendorfer 1987). The
subsequent presentation essentially follows that in Se-
ber (1984, 256—-268) and Morrison (1990, 305-309).

There is considerable evidence about the association
between s and z in C,,. However, large (small) values
in C,, do not necessarily mean strong (weak) associa-
tions. An adequate study of the association between
fields requires a consideration of the within-field cor-
relation structure (Morrison 1990). CCA attempts to
quantify the association between s and z by finding a
reduced set of variables derived from them with the
highest possible correlations. Because correlation is a
linear concept, the most natural way to derive these
new variables is by taking linear combinations of s and
Z, respectively.

. To accomplish this reduction the following problem
is solved. Find linear combinations of the form

xp=ais y =bjz

X, =a3s y,=Dbjiz

xa=ags y;=bgz

that have the properties that x; and y, have maximum
sample correlation (r,), x, and y, have maximum sam-
ple correlation (r,) among all linear combinations that
are uncorrelated with x; and y;, and so on for all

JOURNAL OF CLIMATE

VOLUME 9

d = min(N;, N,) pairs. The solution to this problem is
such that x; is uncorrelated with x;, y; is uncorrelated
with y;, and x; is uncorrelated with y; for i # j. The
variables x; and y; are referred to as the ith canonical
variables, the vectors a; and b; are the ith canonical
vectors, and r; is the ith canonical correlation coeffi-
cient.

One method of solving this problem, described in -
terms of the sample covariance matrices, is to take the
singular-value decomposition of

CL1PC,C51, ey

In this expression, C;"*/? is the inverse of
C(l/2) — UE(I/Z)UI
S5 *

where U is a matrix whose columns are the eigenvec-
tors of C,; and E"/? is a diagonal matrix whose diag-
onal elements are the positive square roots of the ei-
genvalues of C,. Note that C{//?C{'? = C. Term
C{’® is handled similarly. Writing (1) as

CS—S(I/Z)CSZCZ—Z(I/Z) — ADf} I’

then the ith columns of A = C-("»A and B
= C,¥B contain the ith pair of canonical vectors
and the ith diagonal element of the diagonal matrix
D contains the square of the ith canonical correlation
coefficient.

The solution actually results in T realizations of the
d canonical variables: Sa; and Zb; fori =1, ---,d. In
the climatological setting these vectors will frequently
be a time series and correspond to the CCA expansion
coefficients of BSW.

The sample correlation matrix of the canonical vari-
ables has the form

I, R
Reca = o)
e (g )

where I, is a d X d identity matrix and R, isad X d
diagonal matrix with r, = r, = ... = r; on the diag-
onal. CCA has channeled all the correlation between s
and z through the d canonical variables.

SVD is a method of finding linear combinations of
the form x; = a/sandy, =b/zfori =1, ---, d such
that the covariance ¢; = cov(a/s, b/ z) is maximized.
Given this data, the problem is to find a; and b; to
maximize a; C;b; subject to the constraints that a; a;
=b/b;, =1anda/a; =b;b; = 0fori+j. A solution
is found by taking the singular-value decomposition of
C,, written here as C;, = ADB’. The variables x; and
y; are the singular variables. The ith columns of A and
B, respectively, contain the ith pair of SVD vectors and
the ith diagonal element of D contains the squared ith
canonical covariance. As described above for CCA,
the solution actually results in T realizations of the d
singular variables; Sa; and Zb;, i = 1, - - -, d. These
are the SVD expansion coefficients of BSW.
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Note that, in general, the singular variable x; is cor-
related with x;, x5, . . ., x;_; with similar results holding
for y;. The singular variables x; are uncorrelated with
y;jfori + j.

The sample covariance matrix of the singular vari-
ables is given by

C. C
Coo={ " ).
P < C)’x C)’.V )

where C,, is a d X d diagonal matrix with the canonical
covariances ¢; = ¢; = - - = ¢, on the diagonal. The
d X d matrices C,, and C,, are the sample covariance
matrices for the singular variables. The off-diagonal
elements of C,, and C,, need not be zero. Further, the
corresponding correlation matrices R,, and R, need not
have zero off-diagonal elements, and the correlation
coefficients on the diagonal of R,, will not be ordered.
That is, even though ¢, = ¢, = -+ = ¢, it need not
be true, and in general will not be true, that ¥ = r¥
= - = r¥ where

r;k = Ci/[(ail Cssai)(bi, szbi)](]/Z)-

Note that the canonical covariances and the SVD
vectors computed for standardized data (i.e., correla-
tion matrices) will be different from those computed
using nonstandardized data.

The key point is that CCA is a method of analyzing
correlation structure, whereas SVD is a method of an-
alyzing covariance structure. Generally, correlation is
a better measure of linear association or importance,
and so CCA would seem to be more appropriate. How-
ever, if the units of measurement and differences in
(co)variation are important, then CCA may obscure
relevant information, yielding highly correlated but sci-
entifically uninteresting pairs of canonical variables. It
is in precisely these circumstances that Muller (1982,
personal communication) recommends SVD. He sug-
gests that SVD is more appropriate for analyzing co-
variance matrices rather than correlation matrices.

BSW discuss some extensions of CCA and SVD that
are used to enhance interpretability. The most impor-
tant of these are the left and right covariance and cor-
relation maps. These maps are constructed from the
covariances and correlations between the observations
in the respective fields and the expansion coefficients
from the same field (homogeneous maps) and the other
field (heterogeneous maps). For data with a normal-
ized series of observations, BSW showed that the ith
(i =1, ---, d) sample left homogeneous and hetero-
geneous correlation maps for CCA that are equal to
C.a; and r,C,a,, respectively. For SVD the corre-
sponding maps have the form

Cs:ai /(al, Cssai ) 12
and

cia/ (b} szbi)llz-
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The right maps, with obvious notational differences,
are computed the same way. The correlations in these
vectors are assigned to their corresponding variables
( grid points ) and maps are produced analogous to maps
of EOFs plotted for principal components analysis. The
d maps (or some subset of them) are examined for geo-
physically relevant spatial patterns.

3. Discussion

CCA has a long history of abuse in statistics. The
purely mathematical optimization operation always has
a solution, but it is often an act of faith or naiveté that
results in that solution being given scientific validity.
Kendall (1975) writes, ‘‘the difficulties of interpreta-
tion are such that not many examples of convincing
applications of canonical correlation analysis appear in
the literature,”” although one example of a nice appli-
cation of CCA he does mention is Glahn (1968). There
is no reason to suppose that the results of SVD will be
any more amenable to interpretation.

Subsequent sections will discuss some of these prob-
lems. First a set of examples will be described. The
results of those examples will be used to illustrate the
potential for SVD to produce spurious results. SVD is
sometimes viewed as being superior to CCA because
it does not require invertibility of the within field co-
variance matrices. It seems appropriate to briefly ad-
dress the problem of singular covariance matrices and
small sample sizes; that is also done below. Also, the
results of the example presented in BSW will be re-
examined.

a. Examples

The examples are based on simulations of seven
pairs of fields with different correlation structures.
There are 36 stations in both fields located on a one-
dimensional transect. In all cases random samples were
normally distributed with means of 0 and variances of
1. All of the matrices being considered below are cor-
relation matrices. As stated above, SVD is more prop-
erly viewed as a method of analyzing covariance ma-
trices, but the examples are more in line with that pre-
sented in BSW, allowing for greater comparability. The
conclusions reached below hold for analyses conducted
on covariance matrices.

ExaMPLE 1: The observations at the stations are spa-
tially and temporally uncorrelated. A total of 100 in-
dependent observations was simulated at each of the 72
stations.

ExampLE 2: The observations at the stations are spa-
tially correlated but temporally uncorrelated. There is
no signal or coupling between the two fields. The cor-
relation structure is described by what geostatisticians
refer to as an exponential covariance function,

c(h) = vexp(—=3h/r).
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In this equation %4 is the spatial lag, v = ¢(0) is the
variance, and r is defined to be the lag at which the
observations become spatially uncorrelated (Issaks and
Srivastava 1989). The grid points are assumed to be
one unit apart so # ranged in value from O to 35. The
variance was assumed to be 1, and r was assumed to
be 21. Data for the left field was simulated as follows.
A 36 X 36 lag matrix H with elements h; = |i — j|
was formed. The covariance function was applied to
the elements of this matrix creating the spatial covari-
ance matrix Xy. This positive-definite matrix can be
decomposed as the product of a unique lower triangular
matrix L’ and upper triangular matrix L such that Zg4
= L'L. This is referred to as a Cholesky Decomposi-
tion (Seber 1984, 522). If uis a 36 X 1 random vector
with elements ; being normally distributed with means
of 0 and variances of 1, then L'u is multivariate nor-
mally distributed with mean 0 and covariance matrix
2x. This method was used to transform random sam-
ples of size 36 drawn from a normally distributed pop-
ulation with mean 0 and variance 1 into Gaussian re-
alizations of the left spatial field with the indicated spa-
tial correlation structure. The process was repeated 100
times giving 100 independent observations at the 36
grid points in each field.

ExaMPLE 3: This example is identical to example 2
except that there were only 20 observations at each
station.

ExAaMPLE 4: The observations at each station are spa-
tially correlated as described above, but there is also a
deterministic signal shared by the two fields. The signal
was incorporated in the left field by adding a signal
matrix to the data matrix. The signal matrix was con-
structed as follows. Let ¢ be a 36 X 1 vector with
elements given by

¢ =exp[—-(i/2)] i=1,---,36

and

(G—-1)

Vi - 1.
Let fbe a T X 1 vector with f; = (2)"? sin(#) and let
7 be a positive scalar. Then the 7 X 36 signal matrix
is equal to nf ¢’. The same process was used to simu-
late the right field, except the signal matrix was sub-
tracted from the resulting data matrix. For this example,
n =04and T = 100.

ExAMPLE 5: This example is identical to example 4
except T = 20. .

ExAMPLE 6: This example is identical to example 4
except that n = 1.

ExaMPpPLE 7: This example is identical to example 6
except that T = 20.

In examples 1, 2, and 3 the true cross-covariance
matrix X, is a zero matrix. In the other examples X,
is nonzero.
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In WSB and Hsu (1994) an important result that is
reported is the correlation between the singular vari-
ables. In terms of the notation used in this paper, the
correlation between the ith pair can be denoted by r( x;,
¥i). Table 1 shows the results of calculating such cor-
relations for the first five modes in the seven examples
described above.

First, compare example 2 with 3, 4 with 5, and 6
with 7. In each case when there are only 20 observa-
tions per grid point (examples 3, 5, and 7), the corre-
lations are higher than when there are 100 observations
(examples 2, 4, and 6). SVD is finding more linear
structure when there is /ess information. Second, com-
pare examples 2, 4, and 6 with one another and 3, 5,
and 7 with one another. There is no appreciable differ-
ence between the correlations within each set, yet there
is no signal in examples 2 and 3, a relatively weak
signal in examples 4 and 5, and a stronger signal in
examples 6 and 7. The only exception is in the first
mode of example 6 where there are 100 observations
and a relatively strong signal. Note that example 1 has
the highest correlations of all and that is the example
with no spatial correlation and no signal. There is, how-
ever, a good deal of spurious linear structure for SVD
to exploit.

As a further illustration of the potential seriousness

" of the problem of small sample sizes, 100 realizations

of the random process described in example 1 were
simulated, but with 40 observations at each of 150 grid
points in each field. These simulated datasets were sub-
jected to an SVD analysis. The means of the correla-
tions between the first five pairs of singular variables
were determined, and these were all ~0.95.

These examples and the information in Table 1 are
open to criticism. SVD involves more than determining
the correlation between pairs of expansion coefficients.
But the point made by the results in Table 1 is still a
valid one. ’

b. Correlation maps

Some of the conclusions drawn in WSB and Hsu
(1994) are based on a simultaneous comparison of the
ith homogeneous and heterogeneous correlation maps.

TAaBLE 1. The mean correlations between the singular variables
from the first five modes in seven examples described in the text. The
means are based on 100 simulations of each example.

Examples
1 2 3 4 5 6 7
r(x;, y1) 074 032 061 033 060 057 0.67
r (x2, ¥2) 073 029 057 030 058 031 059
r (x3, ¥3) 070 029 059 029 058 030 059
r (x4, Ya) 069 030 059 028 059 031 060
r (xs, ys) 068 030 060 030 060 031 0.60
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But the ith left and right homogeneous maps are math-
ematically correlated with the /th left and right hetero-
geneous maps. For CCA, the correlation between the
two maps will always be identically equal to 1 even if
the two fields are completely independent of one an-
other. The two maps will not be perfectly correlated in
SVD but they will be correlated. The seven examples
described above contain a wide range of within-field
and between-field correlation structures. In the 700
simulated random fields generated in these seven ex-
amples 75% of the correlation coefficients between the
first left homogeneous and heterogeneous correlation
maps were in excess of 0.75. With such strong corre-
lations there are going to be recognizable patterns, but
the patterns do not necessarily have any geophysical
interpretation. In fact, the highest correlations were ob-
served between the two fields in example 1 with the
minimum of the 100 correlations being equal to 0.93.

The homogeneous maps also are subject to misin-
terpretation, both in CCA and SVD. The ith left and
right homogeneous maps are correlated with the first,
second, up to (i — 1)th maps, leading to the possibility
of spurious patterns in a manner analogous to that seen
for homogeneous and heterogeneous maps above. The
stronger the correlation between the singular variables
the more of a problem this will be.

The potential for this is illustrated in Table 2. These
results are based on example 2. There is no common
signal, although the two fields do have the same spatial
correlation structure. Table 2 shows the minimum,
maximum, and quartiles of the absolute value of the
100 correlation coefficients estimating the correlation
between the first and second left homogeneous corre-
lation maps. The resuits for both SVD and CCA are
shown. Both sets of maps show a tendency to be con-
founded with one another, even in the absence of any
signal or coupling between the two fields.

The implication of the results presented here is that
the “‘coupled’” spatial patterns seen in the various cor-
relation maps may be due as much to mathematics as
to geophysics, regardless of whether or not there is a
geophysical linkage between the two fields.

c. Small sample sizes

The increased probability of spurious correlations
with small sample sizes was discussed above. But there
is another problem of small sample sizes that needs to
be addressed. One of the supposed strengths of SVD
relative to CCA is that SVD is possible when the num-
ber of observations is less than the number of variables
(grid points), that is, when either C; or C,, (or both)
are singular. As motivated in section 2, CCA requires
invertibility of the within-field covariance matrices. So-
lutions based on generalized inverses can still be found
(Muller 1982), but BSW point out correctly that such
solutions are more difficult to interpret.

As pointed out above, SVD and CCA are two dif-
ferent methods whose use does not necessarily overlap.
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TABLE 2. The minimum, maximum, and quartiles of the absolute
values of 100 correlation coefficients estimating the correlation
between the first and second left homogeneous correlation maps.
Maps were produced from both CCA and SVD analyses of simulated
data in example 2.

0% 25% 50% 75% 100%
SVD 0.003 0.20 0.47 0.67 0.93
CCA 0.01 0.22 0.48 0.68 091

If analysis of covariance structure is the goal, then CCA
will not be appropriate even if the number of grid points
is greater than the number of variables; and if analysis
of the correlation structure is important, then SVD will
not be appropriate even if the within-field covariance
matrices are singular. In other words, SVD should not
be viewed as a method of doing CCA when C,; and/or
C,, are singular. Doing so would mean that instead of
choosing a generalized inverse to find a CCA solution,
one is simply assuming that C,, and C,, are proportional
to identity matrices.

d. BSW’s comparative example

BSW presented an example in which SVD per-
formed much better than CCA. Their example is similar
to examples 4 and 6. Their goal was to identify a spatial
signal ¢». BSW argued that the SVD vectors and the
homogeneous correlation maps in CCA were the most
appropriate estimators of the signal. They described a
method of comparing these patterns with the true signal
and attributed the poor performance of CCA in the sim-
ulations involving finite time periods to sampling vari-
ation. But CCA performs so poorly that it seems some-
thing more than mere sampling variability is to blame.

Recall that CCA can be carried out by performing a
singular-value decomposition of C;V?C,C,"?. In
a sense then, CCA can be considered a form of
weighted SVD. The weighting takes into account the
within-field covariance structure. In general, this is a
desirable thing to do. However, if the signal through
which two fields are coupled is masked by the within-
field covariance structure, then the homogeneous cor-
relation maps in CCA may not be able to isolate it. This
is essentially the case in the BSW example. The true
signal is confounded by a temporal nuisance signal, and
the confounding is worse in the within-field covariance
matrices than in the between-field covariance matrices.
In such a situation, CCA may be doing a good job of
estimating the true canonical vectors, variables, and
correlation coefficients, and so its poor performance
would not be due to sampling variability. It is possible
to unweight the patterns in such a way that CCA can
be used to identify the signal, however. This unweight-
ing is accomplished by premultiplying the left and right
homogeneous correlation maps by C{/? and C{/?,
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FiG. 1. Histograms of 100 correlation coefficients measuring the correlation between patterns and a
deterministic signal. The patterns are from an SVD and CCA analysis of 100 simulated datasets.

respectively. The unweighted patterns then have the
form C£#a, and C$'*b,.

A total of 100 realizations of example 4 were sim-
ulated to evaluate how well these unweighted patterns
did in identifying the signal. Left and right SVD vec-
tors, CCA homogeneous correlation maps, and un-
weighted CCA homogeneous correlation maps were
determined and the correlation between these vectors
and the true signal was calculated. This is a different
method of evaluating performance than that used in
BSW; however, it is not an unreasonable one and is
easier to implement. Figure 1 shows histograms of the

absolute value of these correlation coefficients. The un-
weighted CCA patterns do a better job of identifying
the signal.

4. Summary and conclusions

The goal of SVD and CCA is to isolate important
coupled modes between two geophysical fields of in-
terest. SVD is based on an examination of the between-
field cross-covariance piece of the combined covari-
ance matrix and may be appropriate when it is the co-
variances that are of interest. It is suggested that SVD
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be viewed as a method for analyzing covariance ma-
trices and not correlation matrices.

There is a potential for spurious patterns and cor-
relations to show up in SVD, just as there is for CCA.
This potential is increased for small sample sizes. It
is worth noting that Kendall (1975) commented on
the increased potential for spurious patterns in CCA
when the observations are not independent of one an-
other (e.g., if the observations represent a temporally
autocorrelated time series). This is likely to be true
for SVD.

SVD has been justified on the basis of its simplicity
and the supposed ease of interpretation of its results.
The results of SVD can be as difficult to interpret as
those of any other technique and ease of use is not a
justification if the method is not appropriate for the
particular data being analyzed. This paper has focused
on the potential for SVD (and CCA) to produce highly
correlated and seemingly coupled patterns even when
there is no relationship. Further, even when there is
coupling, the patterns seen in the correlation maps may
be due to mathematics rather than geophysics. It com-
plements the results of Newman and Sardeshmukh
(1995), who showed that SVD will identify couplings
only in special circumstances. This latter limitation of
SVD is a consequence of the orthogonality constraints
of the maximization procedure. It is clear that used in-
correctly or carelessly SVD, for all its simplicity, will
produce misleading results.
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