# Various aspects of 1-D histogram #read in data.. test=matrix(scan("Leesferry-mon-data.txt"),ncol=13,byrow=T) test=matrix(scan("http://civil.colorado.edu/~balajir/r-session-files/Leesferry-mon-data.txt"),ncol=13,byrow=T) flows=test[,2:13] * 0.0004690502 #get it into CMS flows=test[,2:13]/10^6 #get it into MAF #look at the May PDF X = flows[,5] library(Rlab) par(mfrow=c(2,2)) N=length(X) # of Bins based on Sturge's formula ncls = round(log(N,2) + 1) library(sm) #Default histogram over a wider range hplot(X,xlab="Flow cms",main="Default Histogram") points(X,rep(0,length(X))) sm.density(X, add=T, col="red") #ncls bins based on Struge's formula - divided between max and min of the data hplot(X, nclass = ncls, xlab="Flow cms", main="Histogram - Sturge's #of Bins") points(X,rep(0,length(X))) sm.density(X, add=T, col="red")