#### Problem 5 - Homework 1 for CVEN6833 - Fitting a local GLM model for July
#### Author: Alvaro Ossandon
#### CLEAR MEMORY
rm(list=ls())
#### Clear the R console
cat("\f")
#### Prevent Warnings
options(warn=-1)
#data required:
Month=7 # 1: Monthly precipitation of January; 7: Monthly precipitation of July
save=FALSE # True for saving figure as pdf file
#### SOURCE LIBRARIES (suppress package loading messages) AND SET WORKING DIRECTORY
mainDir="C:/Users/DELL/Dropbox/Boulder/Courses/Advance data analysis/HW/HW1"
setwd(mainDir)
suppressPackageStartupMessages(source("Lib_HW1.R"))
source("Lib_HW1.R")
#### create a folder to save the figures
if (Month==1){
diraux=paste(mainDir,"/Montly_Precep_January",sep = "")
}else{
diraux=paste(mainDir,"/Montly_Precep_July",sep = "")
}
setwd(diraux)
subDir="LOC_GLM_FIT"
if (file.exists(subDir)){
setwd(file.path(diraux, subDir))
} else {
dir.create(file.path(diraux, subDir))
setwd(file.path(diraux, subDir))
}
## Read data as table (data frame)
test = read.table(paste("http://cires1.colorado.edu/~aslater/CVEN_6833/colo_monthly_precip_0",Month,".dat",sep=""))
#assign names for columns/variables:
names(test)=c("Lat","Long","Elev","Pm")
test1=test
#filtering the -999 values
non_values<- which(test[,4]<0)
test[non_values,4]=NaN
test=na.omit(test)
Pm = test[,4] #Dependent Variable
X = test[,1:3]# Independent variable.
lon = X[,1]
lat = X[,2]
elev = X[,3]
precip =Pm
# Basic Scatterplot Matrix
if(save==TRUE){
pdf("Simple Scatterplot Matrix.pdf") # save figure
pairs(~lon+lat+elev+precip,data=test,
main="Simple Scatterplot Matrix")
dev.off()
}else{
pairs(~lon+lat+elev+precip,data=test,
main="Simple Scatterplot Matrix")
}

##############################################
######## II Local GLM method ##############
################################################
##gamma distribution
links = c("log", "inverse","identity")
N = length(Pm)
combs = leaps(X,Pm, nbest=25) # GEt upto 25 combinations for each
# number of predictors
combos = combs$which
ncombos = length(combos[,1])
gcvs_m=1:ncombos
glm_gcv=vector(length = length(links))
best_comb=vector(length = length(links))
for(j in 1:length(links)) { sprintf("j",j)
for(i in 1:ncombos) {
xx = X[,combos[i,]]
xx=as.data.frame(xx)
zz=locpoly_fit(Pm, xx,family="gamma", link=links[j], glm=TRUE,plot=TRUE)
gcvs_m[i] = zz$call$gcv
}
# Test using GCV objective function
glm_gcv[j]=min(gcvs_m)
best_comb[j]=which.min(gcvs_m)
}
bestmod1=locpoly_fit(Pm, X[,combos[best_comb[which.min(glm_gcv)],]],family="gamma",
link=links[which.min(glm_gcv)], glm=TRUE,plot=TRUE)
bestmod1$combo=combos[best_comb[which.min(glm_gcv)],]
### gaussian distribution
gcvs_m=1:ncombos
for(i in 1:ncombos) {
xx = X[,combos[i,]]
xx=as.data.frame(xx)
zz=locpoly_fit(Pm, xx,family="gaussian", link="identity", glm=TRUE,plot=TRUE)
gcvs_m[i] = zz$call$gcv
}
bestmod2=locpoly_fit(Pm,X[,combos[which.min(gcvs_m),]],family="gaussian", link="identity", glm=TRUE,plot=TRUE)
bestmod2$combo=combos[which.min(gcvs_m),]
if (bestmod2$call$gcv>bestmod1$call$gcv){
bestmod=bestmod1
}else{
bestmod=bestmod2
}
X=X[,bestmod$combo]
summary(bestmod)
## Estimation type: Local Likelihood - Gamma
##
## Call:
## locfit(formula = Pm ~ ., data = X, alpha = 0.6, maxk = 10000,
## deg = 2, kern = "bisq", scale = T, family = "gamma", link = "identity",
## gcv = 0.066441842309433)
##
## Number of data points: 446
## Independent variables: Lat Long Elev
## Evaluation structure: Rectangular Tree
## Number of evaluation points: 123
## Degree of fit: 2
## Fitted Degrees of Freedom: 25.155
Pmhat=predict(bestmod,X,se.fit=T)
#Estimate the value of the function at the observed locations..
if(save==TRUE){
pdf("Precipitation_Scatterplot.pdf", width = 8, height = 6) # save figure
# Observed versus estimates
par(mfrow=c(1,1))
lim=range(Pm,Pmhat$fit)
plot(Pm,Pmhat$fit,xlab="Actual Precipitation",ylab="Estimated Precipitation",main="Actual vs Estimated Precipitation", xlim=lim, ylim=lim)
abline(a=0,b=1)
dev.off()
}else{
# Observed versus estimates
par(mfrow=c(1,1))
lim=range(Pm,Pmhat$fit)
plot(Pm,Pmhat$fit,xlab="Actual Precipitation",ylab="Estimated Precipitation",main="Actual vs Estimated Precipitation", xlim=lim, ylim=lim)
abline(a=0,b=1)
}

###################################################################
######## III. Model diagnostics of your best model
###################################################################
### MODEL DIAGNOSTICS:
#yy = precip_dt[,4] # true value of y based on data
Pmest = Pmhat$fit # model's predicted values of Pm
nvar = 2 # number of variables
mod_diagnostics(Pm, Pmest, nvar,save)

###################################################################
#### IV. Compute cross-validated and fitted estmiates at each ####
#### observation. Plot them against the observed values. ####
###################################################################
loocv_func(bestmod,X,Pm,save)

###############################################################################################
#### V. Drop 10% of obs, fit best model, predict dropped points. Compute RMSE and R2. Boxplot.
## validation nsample times (dropping a new 10% each time), and outputs boxplots of RMSE and R2.
###############################################################################################
#Drop_10_pred(bestmod,X,Pm,bestmod$call$family)
mod_data = X
N = length(Pm)
drop = 10
nsample = 500
i_full = 1:N
# initialize skill score vectors
skill_rmse = vector(mode="numeric", length=nsample)
skill_cor = vector(mode="numeric", length=nsample)
family=bestmod$call$family
for (i in 1:nsample){
i_drop = sample(i_full,N*drop/100) # can add argument replace=TRUE
drop_dt = mod_data[-i_drop,] # drop 10% precip value
# slightly different cases for different probl
Pm1=Pm[-i_drop]
##remove small values
Pm1[Pm1<=0.01]=0.01
drop_mod=locfit(Pm1 ~., data = drop_dt, alpha=bestmod$call$alpha, maxk = 10000, deg=bestmod$call$deg,kern="bisq"
, scale = T, family=bestmod$call$family, link=bestmod$call$link)
drop_pred=predict(drop_mod,newdata=mod_data[i_drop,])
drop_actual = Pm[i_drop]
skill_rmse[i] = sqrt(mean((drop_actual - drop_pred)^2))
skill_cor[i] = cor(drop_actual,drop_pred)
}
# Plot skill of model based on Drop 10% method
if(save==TRUE){
pdf("boxplots.pdf", width = 8, height = 6) # save figure
par(mfrow=c(1,2))
boxplot(skill_rmse, main = "RMSE-Skill", ylim = range(skill_rmse))
boxplot(skill_cor, main = "Cor-Skill", ylim=range(skill_cor))
dev.off()
}else{
par(mfrow=c(1,2))
boxplot(skill_rmse, main = "RMSE-Skill", ylim = range(skill_rmse))
boxplot(skill_cor, main = "Cor-Skill", ylim=range(skill_cor))
}

###################################################################
## VI. Spatially map the model estimates and the standard error ####
###################################################################
# read the topography map
x1 = read.table("http://cires1.colorado.edu/~aslater/CVEN_6833/colo_dem.dat")
names(x1)=c("Lat","Long","Elev")
ypred <- predict(bestmod,newdata=x1,se.fit=T)
#Quilt_plotting(x1[,2],x1[,1],ypred)
plot_surface(x1[,2],x1[,1],ypred,X[,2],X[,1],Pm,save)
