# retain top 20 variables to.retain=20 imp.vars.energy=as.character(read.csv("gbm.importance.50.energy.csv",header=TRUE)[1:to.retain,"var"]) imp.vars.inj.type=as.character(read.csv("gbm.importance.50.code.csv",header=TRUE)[1:to.retain,"var"]) imp.vars.body=as.character(read.csv("gbm.importance.50.body.csv",header=TRUE)[1:to.retain,"var"]) imp.vars.severity=c("crane","heavy.material.tool","stairs","unpowered.tool","exiting.transitioning","heavy.vehicle","uneven.surface","drill","ladder","object.at.height","improper.procedure.inattention","unpowered.transporter","machinery","improper.security.of.materials","working.at.height","no.improper.PPE","small.particle","steel.steel.sections","stripping","scaffold") # find column numbers corresponding to the important variables (where binary is some attribute and outcome data set) ## Read Body part data and select the important variables data = read.csv("data.body.part.csv") index=which(colnames(data)%in%imp.vars.body) Xpredictors = data[,index] bpart=data[,1] bpart=as.character(bpart) bpart[bpart == "head"]=1 bpart[bpart == "neck"]=2 bpart[bpart == "trunk"]=3 bpart[bpart == "upper extremities"]=4 bpart[bpart == "lower extremities"]=5 ### create binary vector bpartbin=as.numeric(bpart) ### Now fit Multinomial logistic regression using Xpredictors and ## bpartbin