#### CLEAR MEMORY
rm(list=ls())
#### Prevent Warnings
options(warn=-1)
#### SOURCE LIBRARIES (suppress package loading messages) AND SET WORKING DIRECTORY
setwd("C:/Users/Billy/Google Drive/CU Boulder Courses (CVEN)/CVEN 6833 Advanced Data Analysis/Homework/Howework 2")
suppressPackageStartupMessages(source("hw2_lib.R"))
Read in data
######################
#### Read in Data ####
######################
## Read data as table from local directory
precip = read.table("data_files/climatol_ann.txt") # ann avg precip 246 x 4
grid = read.table("data_files/india_grid_topo.txt") # high res DEM 3384 x 3
rajeevan = read.table("data_files/rajeevan_grid.txt") # rajeevan grid 357 x 2
## Organize data into a data frame with names for columns/variables:
precip_dt = data.frame(precip) # ann avg precip at 246 locations
colnames(precip_dt) = c("lon", "lat", "elev", "pmm")
india_grid = data.frame(grid) # high resolution DEM (more than just India)
colnames(india_grid) = c("lon", "lat", "elev")
raj_grid = data.frame(rajeevan[,2], rajeevan[,1]) # lat/lon for just India
colnames(raj_grid) = c("lon","lat")
Fit generalized linear model
######################################
#### i. Fit Best Regression Model ####
######################################
# Define variables Y and X
pmm = precip_dt[,4]/10 # indepedent variable ## WJR in cm
X = precip_dt[,1:3] # all the predictor set
elev = X$elev # just elevation
X = as.data.frame(X)
family = "gamma"
# Find GLM model
glmfit = glm(pmm ~ elev, data=X)
Fit variogram on GLM residuals
# obtain initial estimate of effective range (phi)
geod = as.geodata(cbind(glmfit$residuals,X$lon,X$lat),data.col=1)
vg = variog(geod,breaks=seq(50,10000,50))
## variog: computing omnidirectional variogram
sigma.sq = median(vg$v)
sigma.sq.lo = 0.25*sigma.sq
sigma.sq.hi = 1.75*sigma.sq
phi.val = median(vg$u)
phi.lo = 0.25*phi.val
phi.hi = 1.75*phi.val
# Input number of samples
n.samples <- 1000
# coordinates of observations
coords <- cbind(X$lon,X$lat)
# prior distributions defined (limited distributions available... see help(spLM)
# NUGGET SET TO ZERO
priors <- list("beta.flat", "phi.unif"=c(phi.lo,phi.hi),
"sigma.sq.ig"=c(sigma.sq.lo,sigma.sq.hi))
# starting values for MCMC resampling
# NUGGET SET TO ZERO
starting <- list("phi"=phi.val, "sigma.sq"=sigma.sq)#, "tau.sq"=100)
# adjustment factor for MCMC sampling routine
# NUGGET SET TO ZERO
tuning <- list("phi"=1, "sigma.sq"=1)#, "tau.sq"=100) # WJR why set these to 1??
Perform Monte Carlo Markov Chain Analysis and plot posterior values
# THIS MAY TAKE A WHILE
bat.fm <- spLM(formula=pmm~elev, data=X, coords=coords, priors=priors, tuning=tuning, starting=starting, cov.model = "exponential", n.samples = n.samples, verbose = FALSE, n.report = 50)
# burn-in samples
bat.fm <- spRecover(bat.fm, start=((1/3)*n.samples)+1, thin=1, verbose=F)
# plot posterior pdfs
beta = bat.fm$p.beta.recover.samples
theta = bat.fm$p.theta.recover.samples
plot(beta)

plot(theta)

## predict precipitation on Rajeevan grid
# get rajeevan grid
xv1=data.frame(india_grid[,1:2])
xv2=data.frame(raj_grid[,1:2])
zzint=row.match(xv2,xv1)
indexnotna = which(!is.na(zzint))
indexna = which( is.na(zzint) )
## create the new rajeevan grid
rajeevgridel = cbind(raj_grid[indexnotna,1:2],india_grid[zzint[indexnotna],3])
# 1) try doing it from 1st principles instead of using spPredict() (check homework 1. Do the sample but with in an ensemble...)
# 2) after you get the parameters, use the krig() command
n.samples2 = floor(n.samples*(2/3))
y = matrix(nrow=length(rajeevgridel[,1]), ncol=n.samples2)
yse = matrix(nrow=length(rajeevgridel[,1]), ncol=n.samples2)
for (i in 1:n.samples2){
print(i)
zz = Krig(precip_dt[,1:2],glmfit$residuals,rho=theta[i,1],theta=theta[i,2],m=1)
y2 = predict.Krig(zz,x=rajeevgridel[,1:2],drop.Z=TRUE)
yse[,i] = predictSE(zz, x=rajeevgridel[,1:2], drop.Z=TRUE)
y1 = beta[i,1] + beta[i,2]*rajeevgridel[,3]
y[,i] = y1+y2
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15
## [1] 16
## [1] 17
## [1] 18
## [1] 19
## [1] 20
## [1] 21
## [1] 22
## [1] 23
## [1] 24
## [1] 25
## [1] 26
## [1] 27
## [1] 28
## [1] 29
## [1] 30
## [1] 31
## [1] 32
## [1] 33
## [1] 34
## [1] 35
## [1] 36
## [1] 37
## [1] 38
## [1] 39
## [1] 40
## [1] 41
## [1] 42
## [1] 43
## [1] 44
## [1] 45
## [1] 46
## [1] 47
## [1] 48
## [1] 49
## [1] 50
## [1] 51
## [1] 52
## [1] 53
## [1] 54
## [1] 55
## [1] 56
## [1] 57
## [1] 58
## [1] 59
## [1] 60
## [1] 61
## [1] 62
## [1] 63
## [1] 64
## [1] 65
## [1] 66
## [1] 67
## [1] 68
## [1] 69
## [1] 70
## [1] 71
## [1] 72
## [1] 73
## [1] 74
## [1] 75
## [1] 76
## [1] 77
## [1] 78
## [1] 79
## [1] 80
## [1] 81
## [1] 82
## [1] 83
## [1] 84
## [1] 85
## [1] 86
## [1] 87
## [1] 88
## [1] 89
## [1] 90
## [1] 91
## [1] 92
## [1] 93
## [1] 94
## [1] 95
## [1] 96
## [1] 97
## [1] 98
## [1] 99
## [1] 100
## [1] 101
## [1] 102
## [1] 103
## [1] 104
## [1] 105
## [1] 106
## [1] 107
## [1] 108
## [1] 109
## [1] 110
## [1] 111
## [1] 112
## [1] 113
## [1] 114
## [1] 115
## [1] 116
## [1] 117
## [1] 118
## [1] 119
## [1] 120
## [1] 121
## [1] 122
## [1] 123
## [1] 124
## [1] 125
## [1] 126
## [1] 127
## [1] 128
## [1] 129
## [1] 130
## [1] 131
## [1] 132
## [1] 133
## [1] 134
## [1] 135
## [1] 136
## [1] 137
## [1] 138
## [1] 139
## [1] 140
## [1] 141
## [1] 142
## [1] 143
## [1] 144
## [1] 145
## [1] 146
## [1] 147
## [1] 148
## [1] 149
## [1] 150
## [1] 151
## [1] 152
## [1] 153
## [1] 154
## [1] 155
## [1] 156
## [1] 157
## [1] 158
## [1] 159
## [1] 160
## [1] 161
## [1] 162
## [1] 163
## [1] 164
## [1] 165
## [1] 166
## [1] 167
## [1] 168
## [1] 169
## [1] 170
## [1] 171
## [1] 172
## [1] 173
## [1] 174
## [1] 175
## [1] 176
## [1] 177
## [1] 178
## [1] 179
## [1] 180
## [1] 181
## [1] 182
## [1] 183
## [1] 184
## [1] 185
## [1] 186
## [1] 187
## [1] 188
## [1] 189
## [1] 190
## [1] 191
## [1] 192
## [1] 193
## [1] 194
## [1] 195
## [1] 196
## [1] 197
## [1] 198
## [1] 199
## [1] 200
## [1] 201
## [1] 202
## [1] 203
## [1] 204
## [1] 205
## [1] 206
## [1] 207
## [1] 208
## [1] 209
## [1] 210
## [1] 211
## [1] 212
## [1] 213
## [1] 214
## [1] 215
## [1] 216
## [1] 217
## [1] 218
## [1] 219
## [1] 220
## [1] 221
## [1] 222
## [1] 223
## [1] 224
## [1] 225
## [1] 226
## [1] 227
## [1] 228
## [1] 229
## [1] 230
## [1] 231
## [1] 232
## [1] 233
## [1] 234
## [1] 235
## [1] 236
## [1] 237
## [1] 238
## [1] 239
## [1] 240
## [1] 241
## [1] 242
## [1] 243
## [1] 244
## [1] 245
## [1] 246
## [1] 247
## [1] 248
## [1] 249
## [1] 250
## [1] 251
## [1] 252
## [1] 253
## [1] 254
## [1] 255
## [1] 256
## [1] 257
## [1] 258
## [1] 259
## [1] 260
## [1] 261
## [1] 262
## [1] 263
## [1] 264
## [1] 265
## [1] 266
## [1] 267
## [1] 268
## [1] 269
## [1] 270
## [1] 271
## [1] 272
## [1] 273
## [1] 274
## [1] 275
## [1] 276
## [1] 277
## [1] 278
## [1] 279
## [1] 280
## [1] 281
## [1] 282
## [1] 283
## [1] 284
## [1] 285
## [1] 286
## [1] 287
## [1] 288
## [1] 289
## [1] 290
## [1] 291
## [1] 292
## [1] 293
## [1] 294
## [1] 295
## [1] 296
## [1] 297
## [1] 298
## [1] 299
## [1] 300
## [1] 301
## [1] 302
## [1] 303
## [1] 304
## [1] 305
## [1] 306
## [1] 307
## [1] 308
## [1] 309
## [1] 310
## [1] 311
## [1] 312
## [1] 313
## [1] 314
## [1] 315
## [1] 316
## [1] 317
## [1] 318
## [1] 319
## [1] 320
## [1] 321
## [1] 322
## [1] 323
## [1] 324
## [1] 325
## [1] 326
## [1] 327
## [1] 328
## [1] 329
## [1] 330
## [1] 331
## [1] 332
## [1] 333
## [1] 334
## [1] 335
## [1] 336
## [1] 337
## [1] 338
## [1] 339
## [1] 340
## [1] 341
## [1] 342
## [1] 343
## [1] 344
## [1] 345
## [1] 346
## [1] 347
## [1] 348
## [1] 349
## [1] 350
## [1] 351
## [1] 352
## [1] 353
## [1] 354
## [1] 355
## [1] 356
## [1] 357
## [1] 358
## [1] 359
## [1] 360
## [1] 361
## [1] 362
## [1] 363
## [1] 364
## [1] 365
## [1] 366
## [1] 367
## [1] 368
## [1] 369
## [1] 370
## [1] 371
## [1] 372
## [1] 373
## [1] 374
## [1] 375
## [1] 376
## [1] 377
## [1] 378
## [1] 379
## [1] 380
## [1] 381
## [1] 382
## [1] 383
## [1] 384
## [1] 385
## [1] 386
## [1] 387
## [1] 388
## [1] 389
## [1] 390
## [1] 391
## [1] 392
## [1] 393
## [1] 394
## [1] 395
## [1] 396
## [1] 397
## [1] 398
## [1] 399
## [1] 400
## [1] 401
## [1] 402
## [1] 403
## [1] 404
## [1] 405
## [1] 406
## [1] 407
## [1] 408
## [1] 409
## [1] 410
## [1] 411
## [1] 412
## [1] 413
## [1] 414
## [1] 415
## [1] 416
## [1] 417
## [1] 418
## [1] 419
## [1] 420
## [1] 421
## [1] 422
## [1] 423
## [1] 424
## [1] 425
## [1] 426
## [1] 427
## [1] 428
## [1] 429
## [1] 430
## [1] 431
## [1] 432
## [1] 433
## [1] 434
## [1] 435
## [1] 436
## [1] 437
## [1] 438
## [1] 439
## [1] 440
## [1] 441
## [1] 442
## [1] 443
## [1] 444
## [1] 445
## [1] 446
## [1] 447
## [1] 448
## [1] 449
## [1] 450
## [1] 451
## [1] 452
## [1] 453
## [1] 454
## [1] 455
## [1] 456
## [1] 457
## [1] 458
## [1] 459
## [1] 460
## [1] 461
## [1] 462
## [1] 463
## [1] 464
## [1] 465
## [1] 466
## [1] 467
## [1] 468
## [1] 469
## [1] 470
## [1] 471
## [1] 472
## [1] 473
## [1] 474
## [1] 475
## [1] 476
## [1] 477
## [1] 478
## [1] 479
## [1] 480
## [1] 481
## [1] 482
## [1] 483
## [1] 484
## [1] 485
## [1] 486
## [1] 487
## [1] 488
## [1] 489
## [1] 490
## [1] 491
## [1] 492
## [1] 493
## [1] 494
## [1] 495
## [1] 496
## [1] 497
## [1] 498
## [1] 499
## [1] 500
## [1] 501
## [1] 502
## [1] 503
## [1] 504
## [1] 505
## [1] 506
## [1] 507
## [1] 508
## [1] 509
## [1] 510
## [1] 511
## [1] 512
## [1] 513
## [1] 514
## [1] 515
## [1] 516
## [1] 517
## [1] 518
## [1] 519
## [1] 520
## [1] 521
## [1] 522
## [1] 523
## [1] 524
## [1] 525
## [1] 526
## [1] 527
## [1] 528
## [1] 529
## [1] 530
## [1] 531
## [1] 532
## [1] 533
## [1] 534
## [1] 535
## [1] 536
## [1] 537
## [1] 538
## [1] 539
## [1] 540
## [1] 541
## [1] 542
## [1] 543
## [1] 544
## [1] 545
## [1] 546
## [1] 547
## [1] 548
## [1] 549
## [1] 550
## [1] 551
## [1] 552
## [1] 553
## [1] 554
## [1] 555
## [1] 556
## [1] 557
## [1] 558
## [1] 559
## [1] 560
## [1] 561
## [1] 562
## [1] 563
## [1] 564
## [1] 565
## [1] 566
## [1] 567
## [1] 568
## [1] 569
## [1] 570
## [1] 571
## [1] 572
## [1] 573
## [1] 574
## [1] 575
## [1] 576
## [1] 577
## [1] 578
## [1] 579
## [1] 580
## [1] 581
## [1] 582
## [1] 583
## [1] 584
## [1] 585
## [1] 586
## [1] 587
## [1] 588
## [1] 589
## [1] 590
## [1] 591
## [1] 592
## [1] 593
## [1] 594
## [1] 595
## [1] 596
## [1] 597
## [1] 598
## [1] 599
## [1] 600
## [1] 601
## [1] 602
## [1] 603
## [1] 604
## [1] 605
## [1] 606
## [1] 607
## [1] 608
## [1] 609
## [1] 610
## [1] 611
## [1] 612
## [1] 613
## [1] 614
## [1] 615
## [1] 616
## [1] 617
## [1] 618
## [1] 619
## [1] 620
## [1] 621
## [1] 622
## [1] 623
## [1] 624
## [1] 625
## [1] 626
## [1] 627
## [1] 628
## [1] 629
## [1] 630
## [1] 631
## [1] 632
## [1] 633
## [1] 634
## [1] 635
## [1] 636
## [1] 637
## [1] 638
## [1] 639
## [1] 640
## [1] 641
## [1] 642
## [1] 643
## [1] 644
## [1] 645
## [1] 646
## [1] 647
## [1] 648
## [1] 649
## [1] 650
## [1] 651
## [1] 652
## [1] 653
## [1] 654
## [1] 655
## [1] 656
## [1] 657
## [1] 658
## [1] 659
## [1] 660
## [1] 661
## [1] 662
## [1] 663
## [1] 664
## [1] 665
## [1] 666
mean.y = apply(y, 1, FUN = mean)
mean.yse = apply(yse, 1, FUN = mean)
par(mfrow=c(1,1))
hist(y, main = "Histogram of Precipitation Posterior")

Plot predictions and standard error from Bayesian Hierarchical Spatial Model
# plot precipitation precipitation (mean value from bayesian model)
quilt.plot(rajeevgridel[,1],rajeevgridel[,2],mean.y,xlab="Longitude (m)",ylab="Latitude (m)",main='Predicted Precipitation of Precip. (cm)')
world(add=T,lwd=1)

# plot precipitation precition (mean value of standard error from bayesian model)
quilt.plot(rajeevgridel[,1],rajeevgridel[,2],mean.yse,xlab="Longitude (m)",ylab="Latitude (m)",main='Predicted Standard Error of Precip. (cm)')
world(add=T,lwd=1)
