#### Problem 7 ### Obtain summer (Jun-Sep, JJAS) average rainfall over India #### and average sea surface temperature (SST) over the tropics 25N - 25S ### Perform SVD - i.e. joint analysis ### Read in JJAS SST average and JJAS AISMR nrows=72 ncols=36 ntime = 59 #JJAS 1951 - JJAS 2009 ntimep = 59 # JJAS 1951 - JJAS 2009 N = nrows*ncols ### Lat - Long grid.. ygrid=seq(-87.5,87.5,by=5) ny=length(ygrid) xgrid=seq(27.5,382.5,by=5) #xgrid[xgrid > 180]=xgrid[xgrid > 180]-360 #longitude on 0-360 grid if needed xgrid[xgrid > 180]=xgrid[xgrid > 180] nx=length(xgrid) xygrid=matrix(0,nrow=nx*ny,ncol=2) i=0 for(iy in 1:ny){ for(ix in 1:nx){ i=i+1 xygrid[i,1]=ygrid[iy] xygrid[i,2]=xgrid[ix] } } # REad Kaplan SST data.. for 1951 - 2009 data=readBin("Kaplan-SST-JJAS1951-JJAS2009.r4",what="numeric", n=( nrows * ncols * ntime), size=4,endian="swap") data <- array(data = data, dim=c( nrows, ncols, ntime ) ) data1=data[,,1] # Missing value is NaN, put it to a large number.. data1[data1 == "NaN"]=1e+30 # the lat -long data grid.. index=1:(nx*ny) index1=index[data1 < 20] # only non-missing data. xygrid1=xygrid[index1,] x1=xygrid1[,2] #x1[x1 < 0]= x1[x1 < 0] + 360 #xygrid1[,2]=x1 nsites=length(index1) # locations with data -i.e. global locations data2=data1[index1] ### SSTdata matrix - rows are years and columns are locations on the globe with data sstdata=matrix(NA,nrow=ntimep, ncol=nsites) for(i in 1:ntimep){ data1=data[,,i] data1[data1 == "NaN"]=1e+30 index1=index[data1 < 20] data2=data1[index1] sstdata[i,]=data2 } ## Index of locations corresponding to Global Tropics ### grids with non-missing data and between 25N-25S xlongs = xygrid[,2] ylats = xygrid[,1] indextrop = index[data1 < 20 & ylats >= -25 & ylats <= 25] rm("data") #remove the object data to clear up space ### global Tropics xlongs = xygrid1[,2] ylats = xygrid1[,1] xlong = xlongs[ylats >= -25 & ylats <= 25] ylat = ylats[ylats >= -25 & ylats <= 25] index1=1:length(xlongs) index = index1[ylats >= -25 & ylats <= 25] ### Tropical seasonal average.. - the data already is seasonal average sstanavgtrop = sstdata[,index] xygridgp=cbind(ylat,xlong) ## write out the grid locations.. if needed #write(t(xygridp),file="kaplan-sst-pac-locs.txt",ncol=2) ### set the data grid and the index xygridtemp = xygrid indextemp = indextrop ##replace with index if you want global ###################### REAd in RAjeevan JJAS AISMR ### Read in Rajeevan Data (summer JJAS average) 1951 - 2009 and perform PCA nrows=35 ncols=33 ntime = 59 #JJAS 1951 - JJAS 2009 ntimep = 59 # JJAS 1951 - JJAS 2000 N = nrows*ncols ### Lat - Long grid.. ygrid=seq(6.5,38.5,by=1) ny=length(ygrid) xgrid=seq(66.5,100.5,by=1) nx=length(xgrid) xygrid=matrix(0,nrow=nx*ny,ncol=2) i=0 for(iy in 1:ny){ for(ix in 1:nx){ i=i+1 xygrid[i,1]=ygrid[iy] xygrid[i,2]=xgrid[ix] } } # REad Rajeevan seasonal average data.. data=readBin("Rajeevan-AISMR-JJAS1951-JJAS2009.r4",what="numeric", n=( nrows * ncols * ntime), size=4,endian="swap") data <- array(data = data, dim=c( nrows, ncols, ntime ) ) data1=data[,,1] # Missing value is NaN, change it to a negative number. data1[data1 == "NaN"]=-99999. # the lat -long data grid.. index=1:(nx*ny) index1=index[data1 >= 0] # only non-missing data. xygrid1=xygrid[index1,] x1=xygrid1[,2] nsites=length(index1) # locations with data -i.e. global locations data2=data1[index1] ### SSTdata matrix - rows are years and columns are locations on the globe with data raindata=matrix(NA,nrow=ntimep, ncol=nsites) for(i in 1:ntimep){ data1=data[,,i] data1[data1 == "NaN"]=-99999. index1=index[data1 >= 0] data2=data1[index1] raindata[i,]=data2 } indexgrid = index1 rm("data") #remove the object data to clear up space ## set the data grid and index raingrid = xygrid1 xygridrain = xygrid indexrain = index1 ########################################################## ### (i) ################### Perform SVD.... C=var(raindata,sstanavgtrop) #note that the variable with fewer columns should be first zz=svd(C) #f1 and g1 are the matrix of time coefficients just like the #PCS f1=raindata %*% zz$u g1=sstanavgtrop %*% zz$v # f1 %*% t(zz$u) will result in the flows. # and of course, t(zz$u) %*% zz$u will result in an identfy matrix I # similarly for g1 #f1[,1] and g1[,1] will have the 'highest' joint covariance and # so on.. Also means, that f1[,1] is highly related to g1[,1] # here it is similar to CCA. #hetrogenous correlation pattern. First time #coefficient of swe is correlated with the flows data and viceversa J=min(length(sstanavgtrop[1,]), length(raindata[1,])) plot(1:25, (((zz$d)^2)/sum((zz$d)^2))[1:25], xlab="Modes", ylab="Sq. Covariance", col="red") # Notice that the first mode captures 'almost' everything of the joint # covariance. AS to be expected.. #### (ii) ### Spatial map the first hetro corrln map. TC of rain correlated on SST corrpats1=cor(f1[,1],sstanavgtrop) # the data is on a grid so fill the entire globaal grid with NaN and then populate the ocean grids with # the Eigen vector xlong = sort(unique(xygridtemp[,2])) ylat = sort(unique(xygridtemp[,1])) nrows=72 ncols=36 nglobe = length(xlong)*length(ylat) # also equal to 72*36 zfull = rep(NaN,nglobe) zfull[indextrop]=corrpats1 zmat = matrix(zfull,nrow=nrows,ncol=ncols) image.plot(xlong,ylat,zmat,ylim=range(-40,40),xlab="longitude",ylab="latitude") contour(xlong,ylat,(zmat),ylim=range(-40,40),add=TRUE,nlev=6,lwd=2) map('world2',add=TRUE,ylim=range(-40,40)) grid(col="black",lty=1) title(main="Hetrogeneous Corr. Map - TC1 of Rain with SST") ### Spatial map the first hetro corrln map. TC of SST correlated on Rain corrpatr1=cor(g1[,1],raindata) # the data is on a grid so fill the entire globaal grid with NaN and then populate the ocean grids with # the Eigen vector xlong = sort(unique(xygridrain[,2])) ylat = sort(unique(xygridrain[,1])) nrows=35 ncols=33 nglobe = nrows*ncols # also equal to 35*33 zfull = rep(NaN,nglobe) zfull[indexrain]=corrpatr1 ###### zmat = matrix(zfull,nrow=nrows,ncol=ncols) image.plot(xlong,ylat,zmat,ylim=range(2,40)) contour(xlong,ylat,(zmat),ylim=range(2,40),add=TRUE,nlev=6,lwd=2) map('world2',add=TRUE) grid(col="black",lty=1) title(main="Hetrogeneous Corr. Map - TC1 of SST with Rain") ### Plot the other hetrogeneous correlation maps.. ################ #### (iii) plot(1951:2009, f1[,1],xlab="Year",ylab="Rainfall Time Component 1", typee="b") plot(1951:2009, g1[,1],xlab="Year",ylab="SST Time Component 1", typee="b") ## similarly the other three Time components ##### (iv) plot(g1[,1],sstpcs[,1],xlab="SST Time component 1", ylab="SST PC1") plot(f1[,1],rainpcs[,1],xlab="Rainfall Time component 1", ylab="Rainfall PC1") ### similarly other three components and