#### Problem 6 ### Obtain summer (Jun-Sep, JJAS) average rainfall over India #### and average sea surface temperature (SST) over the tropics 25N - 25S library(maps) library(akima) library(fields) ### Read in JJAS SST average and JJAS AISMR nrows=72 ncols=36 ntime = 59 #JJAS 1951 - JJAS 2009 ntimep = 59 # JJAS 1951 - JJAS 2009 N = nrows*ncols ### Lat - Long grid.. ygrid=seq(-87.5,87.5,by=5) ny=length(ygrid) xgrid=seq(27.5,382.5,by=5) #xgrid[xgrid > 180]=xgrid[xgrid > 180]-360 #longitude on 0-360 grid if needed xgrid[xgrid > 180]=xgrid[xgrid > 180] nx=length(xgrid) xygrid=matrix(0,nrow=nx*ny,ncol=2) i=0 for(iy in 1:ny){ for(ix in 1:nx){ i=i+1 xygrid[i,1]=ygrid[iy] xygrid[i,2]=xgrid[ix] } } # REad Kaplan SST data.. for 1951 - 2009 data=readBin("Kaplan-SST-JJAS1951-JJAS2009.r4",what="numeric", n=( nrows * ncols * ntime), size=4,endian="swap") data <- array(data = data, dim=c( nrows, ncols, ntime ) ) data1=data[,,1] # Missing value is NaN, put it to a large number.. data1[data1 == "NaN"]=1e+30 # the lat -long data grid.. index=1:(nx*ny) index1=index[data1 < 20] # only non-missing data. xygrid1=xygrid[index1,] x1=xygrid1[,2] #x1[x1 < 0]= x1[x1 < 0] + 360 #xygrid1[,2]=x1 nsites=length(index1) # locations with data -i.e. global locations data2=data1[index1] ### SSTdata matrix - rows are years and columns are locations on the globe with data sstdata=matrix(NA,nrow=ntimep, ncol=nsites) for(i in 1:ntimep){ data1=data[,,i] data1[data1 == "NaN"]=1e+30 index1=index[data1 < 20] data2=data1[index1] sstdata[i,]=data2 } ## Index of locations corresponding to Global Tropics ### grids with non-missing data and between 25N-25S xlongs = xygrid[,2] ylats = xygrid[,1] indextrop = index[data1 < 20 & ylats >= -25 & ylats <= 25] rm("data") #remove the object data to clear up space ### global Tropics xlongs = xygrid1[,2] ylats = xygrid1[,1] xlong = xlongs[ylats >= -25 & ylats <= 25] ylat = ylats[ylats >= -25 & ylats <= 25] index1=1:length(xlongs) index = index1[ylats >= -25 & ylats <= 25] ### Tropical seasonal average.. - the data already is seasonal average sstanavgtrop = sstdata[,index] xygridgp=cbind(ylat,xlong) ## write out the grid locations.. if needed #write(t(xygridp),file="kaplan-sst-pac-locs.txt",ncol=2) ### set the data grid and the index xygridtemp = xygrid indextemp = indextrop ##replace with index if you want global ###################### REAd in RAjeevan JJAS AISMR ### Read in Rajeevan Data (summer JJAS average) 1951 - 2009 and perform PCA nrows=35 ncols=33 ntime = 59 #JJAS 1951 - JJAS 2009 ntimep = 59 # JJAS 1951 - JJAS 2000 N = nrows*ncols ### Lat - Long grid.. ygrid=seq(6.5,38.5,by=1) ny=length(ygrid) xgrid=seq(66.5,100.5,by=1) nx=length(xgrid) xygrid=matrix(0,nrow=nx*ny,ncol=2) i=0 for(iy in 1:ny){ for(ix in 1:nx){ i=i+1 xygrid[i,1]=ygrid[iy] xygrid[i,2]=xgrid[ix] } } # REad Rajeevan seasonal average data.. data=readBin("Rajeevan-AISMR-JJAS1951-JJAS2009.r4",what="numeric", n=( nrows * ncols * ntime), size=4,endian="swap") data <- array(data = data, dim=c( nrows, ncols, ntime ) ) data1=data[,,1] # Missing value is NaN, change it to a negative number. data1[data1 == "NaN"]=-99999. # the lat -long data grid.. index=1:(nx*ny) index1=index[data1 >= 0] # only non-missing data. xygrid1=xygrid[index1,] x1=xygrid1[,2] nsites=length(index1) # locations with data -i.e. global locations data2=data1[index1] ### Rain data matrix - rows are years and columns are locations on the grid over India raindata=matrix(NA,nrow=ntimep, ncol=nsites) for(i in 1:ntimep){ data1=data[,,i] data1[data1 == "NaN"]=-99999. index1=index[data1 >= 0] data2=data1[index1] raindata[i,]=data2 } indexgrid = index1 rm("data") #remove the object data to clear up space ## set the data grid and index raingrid = xygrid1 xygridrain = xygrid indexrain = index1 #################################################### ########## sstanavgtrop and raindata are the matrices of ####### tropical SST anomalies and grid rainfall, respectively. ########## both for the summer season Jun-Sep average ####### indextrop and indexrain are the grid indices with data ######## ########################################################## ### (i) ###################### PCA ## PCA on the global tropical summer SST #get variance matrix.. zs=var(sstanavgtrop) #do an Eigen decomposition.. zsvd=svd(zs) #Principal Components... pcs=sstanavgtrop %*% zsvd$u sstpcs = pcs #Eigen Values.. - fraction variance lambdas=(zsvd$d/sum(zsvd$d)) ### Plot the first 25 modes plot(1:25, lambdas[1:25], type="l", xlab="Modes", ylab="Frac. Var. explained") points(1:25, lambdas[1:25], col="red") #plots.. #plot the first four spatial component or Eigen Vector pattern.. and the ## time seris of the first four PCs # the data is on a grid so fill the entire globaal grid with NaN and then populate the ocean grids with # the Eigen vector xlong = sort(unique(xygridtemp[,2])) ylat = sort(unique(xygridtemp[,1])) nrows=length(xlong) ncols=length(ylat) nglobe = nrows*ncols # also equal to 72*36 zfull = rep(NaN,nglobe) zfull[indextrop]=zsvd$u[,2] ###### replace this with zsvd$u[,2] for second Eigen Vector etc. zmat = matrix(zfull,nrow=nrows,ncol=ncols) image.plot(xlong,ylat,zmat,ylim=range(-40,40),xlab="longitude",ylab="latitude") contour(xlong,ylat,(zmat),ylim=range(-40,40),add=TRUE,nlev=6,lwd=2) map('world2',add=TRUE,ylim=range(-40,40)) grid(col="black",lty=1) ## Plot PC1. Similarly, plot PCs 2 through 4 plot(1951:2009, pcs[,1],xlab="Year",ylab="PC1",type="b") title(main="PC1 of summer SSTs - Global tropic") ### Similarly plot the other three Eigen vectors.. ########################################################## ### (ii) ################# Now perform the PCA on the summer rainfall #get variance matrix.. raindata1=scale(raindata) zs=var(raindata1) #do an Eigen decomposition.. zsvd=svd(zs) #Principal Components... pcs=raindata1 %*% zsvd$u rainpcs = pcs #Eigen Values.. - fraction variance lambdas=(zsvd$d/sum(zsvd$d)) ### Plot the first 25 modes plot(1:25, lambdas[1:25], type="l", xlab="Modes", ylab="Frac. Var. explained") points(1:25, lambdas[1:25], col="red") e first four spatial component or Eigen Vector pattern.. and the ## time seris of the first four PCs # the data is on a grid so fill the entire globaal grid with NaN and then populate the ocean grids with # the Eigen vector xlong = sort(unique(xygridrain[,2])) ylat = sort(unique(xygridrain[,1])) nrows=35 ncols=33 nglobe = nrows*ncols # also equal to 35*33 zfull = rep(NaN,nglobe) zfull[indexrain]=zsvd$u[,1] ###### replace this with zsvd$u[,2] for second Eigen Vector etc. zmat = matrix(zfull,nrow=nrows,ncol=ncols) image.plot(xlong,ylat,zmat,ylim=range(2,40)) contour(xlong,ylat,(zmat),ylim=range(2,40),add=TRUE,nlev=6,lwd=2) map('world2',add=TRUE) grid(col="black",lty=1) ## Plot PC1. Similarly, plot PCs 2 through 4 plot(1951:2009, pcs[,1],xlab="Year",ylab="PC1",type="b") title(main="PC1 of summer rainfall over India") ### Similarly plot the other three Eigen vectors.. ################## ### (iii) ########### scatterplot the rainfall PCs against SST PCs #### and plot a smooth line through them plot(sstpcs[,1],rainpcs[,1],xlab="SST PC1", ylab="Rain PC1") plot(sstpcs[,1],rainpcs[,2],xlab="SST PC1", ylab="Rain PC2") ### similarly for PCs 2 through 4 ### ######### #### (iv) correlate rainfall PC with SST data and vice versa ############# zcorr = cor(rainpcs[,1],sstanavgtrop) xlong = sort(unique(xygridtemp[,2])) ylat = sort(unique(xygridtemp[,1])) nrows=72 ncols=36 nglobe = length(xlong)*length(ylat) # also equal to 72*36 zfull = rep(NaN,nglobe) zfull[indextrop]=zcorr zmat = matrix(zfull,nrow=nrows,ncol=ncols) image.plot(xlong,ylat,zmat,ylim=range(-40,40),xlab="longitude",ylab="latitude") contour(xlong,ylat,(zmat),ylim=range(-40,40),add=TRUE,nlev=6,lwd=2) map('world2',add=TRUE,ylim=range(-40,40)) grid(col="black",lty=1) ### similarly correlate the next three PCs and plot the correlation maps ### likewise correlate SST PC with rainfall zcorr = cor(sstpcs[,1],raindata1) xlong = sort(unique(xygridrain[,2])) ylat = sort(unique(xygridrain[,1])) nrows=35 ncols=33 nglobe = length(xlong)*length(ylat) # also equal to 35*33 zfull = rep(NaN,nglobe) zfull[indexrain]=zcorr zmat = matrix(zfull,nrow=nrows,ncol=ncols) image.plot(xlong,ylat,zmat,ylim=range(2,40)) contour(xlong,ylat,(zmat),ylim=range(2,40),add=TRUE,nlev=6,lwd=2) map('world2',add=TRUE) grid(col="black",lty=1) #### similarly correlate the next three PCCS andd plot the correlation maps