# This file was generated by Rcpp::compileAttributes # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 #' Row-wise quantile of a matrix #' #' This is a C++ speed-optimized version. It is equivalent to R version #' \code{quantile(data, q, na.rm = TRUE)} #' #' @author Viliam Simko #' #' @param data Numeric matrix whose row quantiles are wanted. #' @param q Probability with value in [0,1] #' @return A vector of length \code{nrows(data)}, where each element represents #' row quantile. rcpp_row_quantile <- function(data, q) { .Call('biwavelet_rcpp_row_quantile', PACKAGE = 'biwavelet', data, q) } #' Optimized "wt.bases.dog" function. #' #' This si a C++ version optimized for speed. #' Computes the wavelet as a function of Fourier frequency #' for "dog" mother wavelet. #' #' @author Viliam Simko #' #' @param k vector of frequencies at which to calculate the wavelet. #' @param scale the wavelet scale. #' @param param nondimensional parameter specific to the wavelet function. #' @return Returns a list containing: #' \item{daughter}{wavelet function} #' \item{fourier.factor}{ratio of fourier period to scale} #' \item{coi}{cone of influence} #' \item{dof}{degrees of freedom for each point in wavelet power} #' #' @note This c++ implementation is approx. 50% faster than the original R code rcpp_wt_bases_dog <- function(k, scale, param = -1L) { .Call('biwavelet_rcpp_wt_bases_dog', PACKAGE = 'biwavelet', k, scale, param) } #' Optimized "wt.bases.morlet" function. #' #' This si a C++ version optimized for speed. #' Computes the wavelet as a function of Fourier frequency #' for "morlet" mother wavelet. #' #' @author Viliam Simko #' #' @param k vector of frequencies at which to calculate the wavelet. #' @param scale the wavelet scale. #' @param param nondimensional parameter specific to the wavelet function. #' @return Returns a list containing: #' \item{daughter}{wavelet function} #' \item{fourier.factor}{ratio of fourier period to scale} #' \item{coi}{cone of influence} #' \item{dof}{degrees of freedom for each point in wavelet power} #' #' @note This c++ implementation is approx. 60% faster than the original R code rcpp_wt_bases_morlet <- function(k, scale, param = -1L) { .Call('biwavelet_rcpp_wt_bases_morlet', PACKAGE = 'biwavelet', k, scale, param) } #' Optimized "wt.bases.paul" function. #' #' This si a C++ version optimized for speed. #' Computes the wavelet as a function of Fourier frequency #' for "paul" mother wavelet. #' #' @author Viliam Simko #' #' @param k vector of frequencies at which to calculate the wavelet. #' @param scale the wavelet scale. #' @param param nondimensional parameter specific to the wavelet function. #' @return Returns a list containing: #' \item{daughter}{wavelet function} #' \item{fourier.factor}{ratio of fourier period to scale} #' \item{coi}{cone of influence} #' \item{dof}{degrees of freedom for each point in wavelet power} #' #' @note This c++ implementation is approx. 59% faster than the original R code rcpp_wt_bases_paul <- function(k, scale, param = -1L) { .Call('biwavelet_rcpp_wt_bases_paul', PACKAGE = 'biwavelet', k, scale, param) }