% Generated by roxygen2: do not edit by hand % Please edit documentation in R/smooth.wavelet.R \name{smooth.wavelet} \alias{smooth.wavelet} \title{Smooth wavelet in both the time and scale domains} \usage{ smooth.wavelet(wave, dt, dj, scale) } \arguments{ \item{wave}{wavelet coefficients} \item{dt}{size of time steps} \item{dj}{number of octaves per scale} \item{scale}{wavelet scales} } \value{ Returns the smoothed wavelet. } \description{ The time smoothing uses a filter given by the absolute value of the wavelet function at each scale, normalized to have a total weight of unity, which is a Gaussian function for the Morlet wavelet. The scale smoothing is done with a boxcar function of width 0.6, which corresponds to the decorrelation scale of the Morlet wavelet. } \note{ This function is used internally for computing wavelet coherence. It is only appropriate for the morlet wavelet. } \examples{ # Not run: smooth.wt1 <- smooth.wavelet(wave, dt, dj, scale) } \author{ Tarik C. Gouhier (tarik.gouhier@gmail.com) Code based on WTC MATLAB package written by Aslak Grinsted. } \references{ Torrence, C., and P. J. Webster. 1998. The annual cycle of persistence in the El Nino/Southern Oscillation. \emph{Quarterly Journal of the Royal Meteorological Society} 124:1985-2004. }