% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wclust.R \name{wclust} \alias{wclust} \title{Compute dissimilarity between multiple wavelet spectra} \usage{ wclust(w.arr, quiet = FALSE) } \arguments{ \item{w.arr}{\code{N x p x t} array of wavelet spectra where \code{N} is the number of wavelet spectra to be compared, \code{p} is the number of periods in each wavelet spectrum and \code{t} is the number of time steps in each wavelet spectrum.} \item{quiet}{Do not display progress bar. Default is \code{FALSE}} } \value{ Returns a list containing: \item{diss.mat}{square dissimilarity matrix} \item{dist.mat}{(lower triangular) distance matrix} } \description{ Compute dissimilarity between multiple wavelet spectra } \examples{ library(biwavelet) t1 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100))) t2 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100) + 0.1 * pi)) t3 <- cbind(1:100, rnorm(100)) # white noise ## Compute wavelet spectra wt.t1 <- wt(t1) wt.t2 <- wt(t2) wt.t3 <- wt(t3) ## Store all wavelet spectra into array w.arr <- array(dim = c(3, NROW(wt.t1$wave), NCOL(wt.t1$wave))) w.arr[1, , ] <- wt.t1$wave w.arr[2, , ] <- wt.t2$wave w.arr[3, , ] <- wt.t3$wave ## Compute dissimilarity and distance matrices w.arr.dis <- wclust(w.arr) plot(hclust(w.arr.dis$dist.mat, method = "ward.D"), sub = "", main = "", ylab = "Dissimilarity", hang = -1) } \author{ Tarik C. Gouhier (tarik.gouhier@gmail.com) } \references{ Rouyer, T., J. M. Fromentin, F. Menard, B. Cazelles, K. Briand, R. Pianet, B. Planque, and N. C. Stenseth. 2008. Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. \emph{Proceedings of the National Academy of Sciences} 105:5420-5425. Rouyer, T., J. M. Fromentin, N. C. Stenseth, and B. Cazelles. 2008. Analysing multiple time series and extending significance testing in wavelet analysis. \emph{Marine Ecology Progress Series} 359:11-23. }