% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wt.R \name{wt} \alias{wt} \title{Compute wavelet transform} \usage{ wt(d, pad = TRUE, dt = NULL, dj = 1/12, s0 = 2 * dt, J1 = NULL, max.scale = NULL, mother = "morlet", param = -1, lag1 = NULL, sig.level = 0.95, sig.test = 0, do.sig = TRUE) } \arguments{ \item{d}{time series in matrix format (\code{n} rows x 2 columns). The first column should contain the time steps and the second column should contain the values.} \item{pad}{pad the values will with zeros to increase the speed of the transform. Default is TRUE.} \item{dt}{length of a time step.} \item{dj}{spacing between successive scales. Default is 1/12.} \item{s0}{smallest scale of the wavelet. Default is \code{2*dt}} \item{J1}{number of scales - 1.} \item{max.scale}{maximum scale. Computed automatically if left unspecified.} \item{mother}{type of mother wavelet function to use. Can be set to \code{morlet}, \code{dog}, or \code{paul}. Default is \code{morlet}.} \item{param}{nondimensional parameter specific to the wavelet function.} \item{lag1}{AR(1) coefficient of time series used to test for significant patterns.} \item{sig.level}{significance level. Default is 0.95.} \item{sig.test}{type of significance test. If set to 0, use a regular \eqn{\chi^2} test. If set to 1, then perform a time-average test. If set to 2, then do a scale-average test.} \item{do.sig}{perform significance testing if \code{TRUE}. Default is \code{TRUE}.} } \value{ Returns a \code{biwavelet} object containing: \item{coi}{matrix containg cone of influence} \item{wave}{matrix containing the wavelet transform} \item{power}{matrix of power} \item{power.corr}{matrix of bias-corrected power using the method described by \code{Liu et al. (2007)}} \item{phase}{matrix of phases} \item{period}{vector of periods} \item{scale}{vector of scales} \item{dt}{length of a time step} \item{t}{vector of times} \item{xaxis}{vector of values used to plot xaxis} \item{s0}{smallest scale of the wavelet } \item{dj}{spacing between successive scales} \item{sigma2}{variance of time series} \item{mother}{mother wavelet used} \item{type}{type of \code{biwavelet} object created (\code{wt})} \item{signif}{matrix containg significance levels} } \description{ Compute wavelet transform } \examples{ t1 <- cbind(1:100, rnorm(100)) ## Continuous wavelet transform wt.t1 <- wt(t1) ## Plot power ## Make room to the right for the color bar par(oma = c(0, 0, 0, 1), mar = c(5, 4, 4, 5) + 0.1) plot(wt.t1, plot.cb = TRUE, plot.phase = FALSE) } \author{ Tarik C. Gouhier (tarik.gouhier@gmail.com) Code based on wavelet MATLAB program written by Christopher Torrence and Gibert P. Compo. } \references{ Torrence, C., and G. P. Compo. 1998. A Practical Guide to Wavelet Analysis. \emph{Bulletin of the American Meteorological Society} 79:61-78. Liu, Y., X. San Liang, and R. H. Weisberg. 2007. Rectification of the Bias in the Wavelet Power Spectrum. \emph{Journal of Atmospheric and Oceanic Technology} 24:2093-2102. }