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Preface

This book, and the associated software, have grown out of the author’s
work in the field of local regression over the past several years. The book is
designed to be useful for both theoretical work and in applications. Most
chapters contain distinct sections introducing methodology, computing and
practice, and theoretical results. The methodological and practice sections
should be accessible to readers with a sound background in statistical meth-
ods and in particular regression, for example at the level of Draper and
Smith (1981). The theoretical sections require a greater understanding of
calculus, matrix algebra and real analysis, generally at the level found in
advanced undergraduate courses. Applications are given from a wide vari-
ety of fields, ranging from actuarial science to sports.

The extent, and relevance, of early work in smoothing is not widely appre-
ciated, even within the research community. Chapter 1 attempts to redress
the problem. Many ideas that are central to modern work on smoothing:
local polynomials, the bias-variance trade-off, equivalent kernels, likelihood
models and optimality results can be found in literature dating to the late
nineteenth and early twentieth centuries.

The core methodology of this book appears in Chapters 2 through 5.
These chapters introduce the local regression method in univariate and
multivariate settings, and extensions to local likelihood and density estima-
tion. Basic theoretical results and diagnostic tools such as cross validation
are introduced along the way. Examples illustrate the implementation of
the methods using the locfit software.

The remaining chapters discuss a variety of applications and advanced
topics: classification, survival data, bandwidth selection issues, computa-
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tion and asymptotic theory. Largely, these chapters are independent of each
other, so the reader can pick those of most interest.

Most chapters include a short set of exercises. These include theoretical
results; details of proofs; extensions of the methodology; some data analysis
examples and a few research problems. But the real test for the methods is
whether they provide useful answers in applications. The best exercise for
every chapter is to find datasets of interest, and try the methods out!

The literature on mathematical aspects of smoothing is extensive, and
coverage is necessarily selective. I attempt to present results that are of
most direct practical relevance. For example, theoretical motivation for
standard error approximations and confidence bands is important; the
reader should eventually want to know precisely what the error estimates
represent, rather than simply asuming software reports the right answers
(this applies to any model and software; not just local regression and loc-
fit!). On the other hand, asymptotic methods for boundary correction re-
ceive no coverage, since local regression provides a simpler, more intuitive
and more general approach to achieve the same result.

Along with the theory, we also attempt to introduce understanding of the
results, along with their relevance. Examples of this include the discussion
of non-identifiability of derivatives (Section 6.1) and the problem of bias
estimation for confidence bands and bandwidth selectors (Chapters 9 and
10).

Software

Local fitting should provide a practical tool to help analyse data. This re-
quires software, and an integral part of this book is locfit. This can be
run either as a library within R, S and S-Plus, or as a stand-alone appli-
cation. Versions of the software for both Windows and UNIX systems can
be downloaded from the locfit web page,

http://cm.bell-labs.com/stat/project/locfit/
Installation instructions for current versions of locfit and S-Plus are pro-
vided in the appendices; updates for future versions of S-Plus will be posted
on the web pages.

The examples in this book use locfit in S (or S-Plus), which will be
of use to many readers given the widespread availability of S within the
statistics community. For readers without access to S, the recommended
alternative is to use locfit with the R language, which is freely available
and has a syntax very similar to S. There is also a stand-alone version,
c-locfit, with its own interface and data management facilities. The in-
terface allows access to almost all the facilities of locfit’s S interface, and
a few additional features. An on-line example facility allows the user to
obtain c-locfit code for most of the examples in this book.
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It should also be noted this book is not an introduction to S. The reader
using locfit with S should already be familiar with S fundamentals, such
as reading and manipulating data and initializing graphics devices. Books
such as Krause and Olson (1997), Spector (1994) and Venables and Ripley
(1997) cover this material, and much more.
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1
The Origins of Local Regression

The problem of smoothing sequences of observations is important in many
branches of science. In this chapter the smoothing problem is introduced
by reviewing early work, leading up to the development of local regression
methods.

Early works using local polynomials include an Italian meteorologist
Schiaparelli (1866), an American mathematician De Forest (1873) and a
Danish actuary Gram (1879) (Gram is most famous for developing the
Gram-Schmidt procedure for orthogonalizing vectors). The contributions
of these authors are reviewed by Seal (1981), Stigler (1978) and Hoem
(1983) respectively.

This chapter reviews development of smoothing methods and local re-
gression in actuarial science in the late nineteenth and early twentieth
centuries. While some of the ideas had earlier precedents, the actuarial
literature is notable both for the extensive development and widespread
application of procedures. The work also forms a nice foundation for this
book; many of the ideas are used repeatedly in later chapters.

1.1 The Problem of Graduation

Figure 1.1 displays a dataset taken from Spencer (1904). The dataset con-
sists of human mortality rates; the x-axis represents the age and the y-axis
the mortality rate. Such data would be used by a life insurance company
to determine premiums.
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FIGURE 1.1. Mortality rates and a least squares fit.

Not surprisingly, the plot shows the mortality rate increases with age,
although some noise is present. To remove noise, a straight line can be
fitted by least squares regression. This captures the main increasing trend
of the data.

However, the least squares line is not a perfect fit. In particular, nearly
all the data points between ages 25 and 40 lie below the line. If the straight
line is to set premiums, this age group would be overcharged, effectively
subsidizing other age groups. While the difference is small, it could be
quite significant when taken over a large number of potential customers. A
competing company that recognizes the subsidy could profit by targeting
the 25 to 40 age group with lower premiums and ignoring other age groups.

We need a more sophisticated fit than a straight line. Since the causes of
human mortality are quite complex, it is difficult to derive on theoretical
grounds a reasonable model for the curve. Instead, the data should guide
the form of the fit. This leads to the problem of graduation:1 adjust the
mortality rates in Figure 1.1 so that the graduated values of the series
capture all the main trends in the data, but without the random noise.

1.1.1 Graduation Using Summation Formulae
Summation formulae are used to provide graduated values in terms of sim-
ple arithmetic operations, such as moving averages. One such rule is given
by Spencer (1904):

1Sheppard (1914a) reports “I use the word (graduation) under protest”.
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1. Perform a 5-point moving sum of the series, weighting the observa-
tions using the vector (−3, 3, 4, 3,−3).

2. On the resulting series, perform three unweighted moving sums, of
length 5, 4 and 4 respectively.

3. Divide the result by 320.

This rule is known as Spencer’s 15-point rule, since (as will be shown
later) the graduated value ŷj depends on the sequence of 15 observations
yj−7, . . . , yj+7. A compact notation is

ŷj =
S5,4,4

5 · 4 · 4 · 4
(−3yj−2 + 3yj−1 + 4yj + 3yj+1 − 3yj+2) . (1.1)

Rules such as this can be computed by a sequence of straightforward arith-
metic operations. In fact, the first weighted sum was split into several steps
by Spencer, since

−3yj−2 + 3yj−1 + 4yj + 3yj+1 − 3yj+2

= yj + 3 ((yj−1 + yj + yj+1) − (yj−2 + yj+2)) .

In its raw form, Spencer’s rule has a boundary problem: Graduated values
are not provided for the first seven and last seven points in the series.
The usual solution to this boundary problem in the early literature was
to perform some ad hoc extrapolations of the series. For the moment, we
adopt the simplest possibility, replicating the first and last values to an
additional seven observations.

An application of Spencer’s 15-point rule to the mortality data is shown
in Figure 1.2. This fit appears much better than the least squares fit in
Figure 1.1; the overestimation in the middle years has largely disappeared.
Moreover, roughness apparent in the raw data has been smoothed out and
the fitted curve is monotone increasing.

On the other hand, the graduation in Figure 1.2 shows some amount of
noise, in the form of wiggles that are probably more attributable to random
variation than real features. This suggests using a graduation rule that does
more smoothing. A 21-point graduation rule, also due to Spencer, is

ŷj =
S7,5,5

350
(−yj−3 + yj−1 + 2yj + yj+1 − yj+3) .

Applying this rule to the mortality data produces the fit in the bottom
panel of Figure 1.2. Increasing the amount of smoothing largely smooths
out the spurious wiggles, although the weakness of the simplistic treatment
of boundaries begins to show on the right.

What are some properties of these graduation rules? Graduation rules
were commonly expressed using the difference operator:

∇yi = yi+1/2 − yi−1/2.
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21-point rule (bottom).

The ±1/2 in the subscripts is for symmetry; if yi is defined for integers
i, then ∇yi is defined on the half-integers i = 1.5, 2.5, . . .. The second
differences are

∇2yi = ∇(∇yi)
= ∇yi+1/2 − ∇yi−1/2

= (yi+1 − yi) − (yi − yi−1)
= yi+1 − 2yi + yi−1.
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Linear operators, such as a moving average, can be written in terms of
the difference operator. The 3-point moving average is

yi−1 + yi + yi+1

3
= yi +

1
3
(yi−1 − 2yi + yi+1)

= yi +
1
3
∇2yi.

Similarly, the 5-point moving average is

yi−2 + yi−1 + yi + yi+1 + yi+2

5
= yi + ∇2yi +

1
5
∇4yi.

A similar form for the general k-point moving average is given by the
following result.

Theorem 1.1 The k-point moving average has the representation

Sk

k
yi =

(
I +

k2 − 1
24

∇2 +
(k2 − 1)(k2 − 9)

1920
∇4 + O(∇6)

)
yi. (1.2)

Proof: We derive the ∇2 term for k odd. The proof is completed in
Exercise 1.1.

One can formally construct the series expansion (and hence conclude
existence of an expansion like (1.2)) by beginning with an O(∇k−1) term
and working backwards.

To explicitly derive the ∇2 term, let yi = i2/2, so that ∇2yi = 1, and
all higher order differences are 0. In this case, the first two terms of (1.2)
must be exact. At i = 0, the moving average for yi = i2/2 is

Sk

k
y0 =

1
k

(k−1)/2∑
j=−(k−1)/2

j2

2
=

k2 − 1
24

= y0 +
k2 − 1

24
∇2y0.

�

Using the result of Theorem 1.1, Spencer’s rules can be written in terms
of the difference operator. First, note the initial step of the 15-point rule is

−3yj−2 + 3yj−1 + 4yj + 3yj+1 − 3yj+2 = 4yj − 9∇2yj − 3∇4yj

= 4(I − 9
4
∇2 + O(∇4))yj .

Since this step is followed by the three moving averages, the 15-point rule
has the representation, up to O(∇4yj),

ŷj = (I +
52 − 1

24
∇2)(I +

42 − 1
24

∇2)(I +
42 − 1

24
∇2)(I − 9

4
∇2)yj +O(∇4yj).

(1.3)
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Expanding this further yields

ŷj = yj + O(∇4yj). (1.4)

In particular, the second difference term, ∇2yi, vanishes. This implies that
Spencer’s rule has a cubic reproduction property: since ∇4yj = 0 when
yj is a cubic polynomial, ŷj = yj . This has important consequences; in
particular, the rule will tend to faithfully reproduce peaks and troughs in
the data. Here, we are temporarily ignoring the boundary problem.

An alternative way to see the cubic reproducing property of Spencer’s
formulae is through the weight diagram. An expansion of (1.1) gives the
explicit representation

ŷj =
1

320
(−3yj−7 − 6yj−6 − 5yj−5 + 3yj−4 + 21yj−3

+46yj−2 + 67yj−1 + 74yj + 67yy+1 + 46yj+2

+21yj+3 + 3yj+4 − 5yj+5 − 6yj−6 − 3yj−7).

The weight diagram is the coefficient vector

1
320

( −3 −6 −5 3 21 46 67 74

67 46 21 3 −5 −6 −3 ). (1.5)

Let {lk; k = −7, . . . , 7} be the components of the weight diagram, so ŷj =∑7
k=−7 lkyj+k. Then one can verify

7∑
k=−7

lk = 1

7∑
k=−7

klk = 0

7∑
k=−7

k2lk = 0

7∑
k=−7

k3lk = 0. (1.6)

Suppose for some j and coefficients a, b, c, d the data satisfy yj+k = a+bk+
ck2 + dk3 for |k| ≤ 7. That is, the data lie exactly on a cubic polynomial.
Then

ŷj =
7∑

k=−7

lkyj+k = a

7∑
k=−7

lk + b

7∑
k=−7

klk + c

7∑
k=−7

k2lk + d

7∑
k=−7

k3lk = a.

That is, ŷj = a = yj .
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1.1.2 The Bias-Variance Trade-Off
Graduation rules with long weight diagrams result in a smoother graduated
series than rules with short weight diagrams. For example, in Figure 1.2, the
21-point rule produces a smoother series than the 15-point rule. To provide
guidance in choosing a graduation rule, we want a simple mathematical
characterization of this property.

The observations yj can be decomposed into two parts: yj = µj + εj ,
where (Henderson and Sheppard 1919) µj is “the true value of the function
which would be arrived at with sufficiently broad experience” and εj is “the
error or departure from that value”. A graduation rule can be written

ŷj =
∑

lkyj+k =
∑

lkµj+k +
∑

lkεj+k.

Ideally, the graduation should reproduce the systematic component as
closely as possible (so

∑
lkµj+k ≈ µj) and remove as much of the error

term (
∑

lkεj+k ≈ 0) as possible.
For simplicity, suppose the errors εj+k all have the same probable error,

or variance, σ2, and are uncorrelated. The probable error of the graduated
values is σ2∑ l2k. The variance reducing factor

∑
l2k measures reduction

in probable error for the graduation rule. For Spencer’s 15-point rule, the
variance reducing factor is 0.1926. For the 21-point rule, the error reduction
is 0.1432. In general, longer graduation rules have smaller variance reducing
factors.

The systematic error µj − ∑
lkµj+k cannot be characterized without

knowing µ. But for cubic reproducing rules and sufficiently nice µ, the
dominant term of the systematic error arises from the O(∇4yj) term in
(1.4). This can be found explicitly, either by continuing the expansion (1.3),
or graduating yj = j4/24 (Exercise 1.2). For the 15-point rule, ŷj = yj −
3.8625∇4yj+O(∇6yj). For the 21-point rule, ŷj = yj−12.6∇4yj+O(∇6yj).
In general, shorter graduation rules have smaller systematic error.

Clearly, choosing the length of a graduation rule, or bandwidth, involves a
compromise between systematic error and random error. Largely, the choice
can be guided by graphical techniques and knowledge of the problem at
hand. For example, we expect mortality rates, such as those in Figure 1.1, to
be a monotone increasing function of age. If the results of a graduation were
not monotone, one would try a longer graduation rule. On the other hand
if the graduation shows systematic error, with several successive points lie
on one side of the fitted curve, this indicates that a shorter graduation rule
is needed.

1.2 Local Polynomial Fitting

The summation formulae are motivated by their cubic reproduction prop-
erty and the simple sequence of arithmetic operations required for their
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computation. But Henderson (1916) took a different approach. Define a
sequence of non-negative weights {wk}, and solve the system of equations∑

wk(a + bk + ck2 + dk3) =
∑

wkyj+k∑
kwk(a + bk + ck2 + dk3) =

∑
kwkyj+k∑

k2wk(a + bk + ck2 + dk3) =
∑

k2wkyj+k∑
k3wk(a + bk + ck2 + dk3) =

∑
k3wkyj+k (1.7)

for the unknown coefficients a, b, c, d. Thus, a cubic polynomial is fitted to
the data, locally within a neighborhood of yj . The graduated value ŷj is
then the coefficient a. Clearly this is cubic-reproducing, since if yj+k =
a+bk+ck2 +dk3 both sides of (1.7) are identical. Also note the local cubic
method provides graduated values right up to the boundaries; this is more
appealing than the extrapolation method we used with Spencer’s formulae.

Henderson showed that the weight diagram {lk} for this procedure is
simply wk multiplied by a cubic polynomial. More importantly, he also
showed a converse. If the weight diagram of a cubic-reproducing graduation
formula has at most three sign changes, then it can be interpreted as a local
cubic fit with an appropriate sequence of weights wk. The route from {lk}
to {wk} is quite explicit: Divide by a cubic polynomial whose roots match
those of {lk}. For Spencer’s 15-point rule, the roots of the weight diagram
(1.5) lie between 4 and 5, so dividing by 20 − k2 gives appropriate weights
for a local cubic polynomial.

1.2.1 Optimal Weights
For a fixed constant m ≥ 1, consider the weight diagram

l0k =
3

(2m + 1)(4m2 − 4m − 3)
(3m2 + 3m − 1 − 5k2) (1.8)

for |k| ≤ m, and 0 otherwise. It can be verified that {l0k} satisfies the cubic
reproduction property (1.6). Note that by Henderson’s representation, {l0k}
is local cubic regression, with wk = 1 for |k| ≤ m. Now let {lk} be any other
weight diagram supported on [−m, m], also satisfying the constraints (1.6).
Writing lk = l0k + (lk − l0k) yields

m∑
k=−m

l2k =
m∑

k=−m

(l0k)2 +
m∑

k=−m

(lk − l0k)2 + 2
m∑

k=−m

l0k(lk − l0k). (1.9)

Note that {l0k} is a quadratic (and cubic) polynomial; l0k = P (k). The final
sum can be written as

m∑
k=−m

l0k(lk − l0k) =
m∑

k=−m

P (k)(lk − l0k).
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Using the cubic reproduction property of both {lk} and {l0k},

m∑
k=−m

P (k)lk −
m∑

k=−m

P (k)l0k = P (0) − P (0) = 0.

Substituting this in (1.9) yields

m∑
k=−m

l2k =
m∑

k=−m

(l0k)2 +
m∑

k=−m

(lk − l0k)2

≥
m∑

k=−m

(l0k)2.

That is, {l0k} minimizes the variance reducing factor among all cubic repro-
ducing weight diagrams supported on [−m, m]. This optimality property
was discussed by several authors, including Schiaparelli (1866), De Forest
(1877) and Sheppard (1914a,b).

Despite minimizing the variance reducing factor, the weight diagram
(1.8) can lead to rough graduations, since as j changes, observations rapidly
switch into and out of the window [j − m, j + m]. This led several authors
to derive graduation rules minimizing the variance of higher order differ-
ences of the graduated values, subject to polynomial reproduction. Borgan
(1979) discusses some of the history of these results.

The first results of this type were in De Forest (1873), who minimized the
variances of the fourth differences ∇4ŷj , subject to the cubic reproduction
property. Explicit solutions were given only for small values of m.

Henderson (1916) measured the amount of smoothing by variance of the
third differences ∇3ŷj , subject to cubic reproduction. Equivalently, one
minimizes the sum of squares of third differences of the weight diagram,∑

(∇3lk)2. The solution, which became known as Henderson’s ideal for-
mula, was a local cubic smooth with weights

wk = ((m + 1)2 − k2)((m + 2)2 − k2)((m + 3)2 − k2); k = −m, . . . , m.

For example, for m = 7, this produces the 15-point rule with weight dia-
gram

{lk}7
k=−7 = (−0.014,−0.024,−0.014, 0.024, 0.083, 0.146, 0.194, 0.212,

0.194, 0.146, 0.083, 0.024,−0.014,−0.024,−0.014).

Remark. The optimality results presented here have been rediscovered
several times in modern literature, usually in asymptotic variants. Hender-
son’s ideal formula is a finite sample variant of the (0, 4, 3) kernel in Table 1
of Müller (1984); see Exercise 1.6.
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1.3 Smoothing of Time Series

Smoothing methods have been widely used to estimate trends in economic
time series. A starting point is the book Macaulay (1931), which was heavily
influenced by the work of Henderson and other actuaries. Many books on
time series analysis discuss smoothing methods, for example, chapter 3 of
Anderson (1971) or chapter 3 of Kendall and Ord (1990).

Perhaps the most notable effort in time series occurred at the U. S.
Bureau of the Census. Beginning in 1954, the bureau developed a series
of computer programs for seasonal adjustment of time series. The X-11
method uses moving averages to model seasonal effects, long-term trends
and trading day effects in either additive or multiplicative models. A full
technical description of X-11 is Shiskin, Young and Musgrave (1967); the
main features are also discussed in Wallis (1974), Kenny and Durbin (1982)
and Kendall and Ord (1990).

The X-11 method provides the first computer implementation of smooth-
ing methods. The algorithm alternately estimates trend and seasonal com-
ponents using moving averages, in a manner similar to what is now known
as the backfitting algorithm (Hastie and Tibshirani 1990).

X-11 also incorporates some other notable contributions. The first is
robust smoothing. At each stage of the estimation procedure, X-11 identi-
fies observations with large irregular (or residual) components, which may
unduly influence the trend estimates. These observations are then shrunk
toward the moving average.

Another contribution of X-11 is data-based bandwidth selection, based
on a comparison of the smoothness of the trend and the amount of random
fluctuation in the series. After seasonal adjustment of the series, Hender-
son’s ideal formula with 13 terms (m = 6) is applied. The average absolute
month-to-month changes are computed, for both the trend estimate and
the irregular (residual) component. Let these averages be C̄ and Ī respec-
tively, so Ī/C̄ is a measure of the noise-to-signal ratio. If Ī/C̄ < 1, this
indicates the sequence has low noise, and the trend estimate is recomputed
with 9 terms. If Ī/C̄ ≥ 3.5, the sequence has high noise, and the trend
estimate is recomputed with 23 terms.

The time series literature also gave rise to a second smoothing problem.
In spectral analysis, one expresses a time series as a sum of sine and cosine
terms, and the spectral density (or periodogram) represents a decompo-
sition of the sum of squares into terms represented at each frequency. It
turns out that the sample spectral density provides an unbiased, but not
consistent, estimate of the population spectral density. Consistency can
be achieved by smoothing the sample spectral density. Various methods of
local averaging were considered by Daniell (1946), Bartlett (1950), Grenan-
der and Rosenblatt (1953), Blackman and Tukey (1958), Parzen (1961) and
others. Local polynomial methods were applied to this problem by Daniels
(1962).
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1.4 Modern Local Regression

The importance of local regression and smoothing methods is demonstrated
by the number of different fields in which the methods have been applied.
Early contributions were made in fields as diverse as astronomy, actuar-
ial science and economics. Modern areas of application include numerical
analysis (Lancaster and Salkauskas 1986), sociology (Wu and Tuma 1990),
economics (Cowden 1962; Shiskin, Young and Musgrave 1967; Kenny and
Durbin 1982), chemometrics (Savitzky and Golay 1964, Wang, Isaksson and
Kowalski 1994), computer graphics (McLain 1974) and machine learning
(Atkeson, Moore and Schaal 1997).

Despite the long history, local regression methods received little atten-
tion in the statistics literature until the late 1970s. Independent work
around that time includes the mathematical development of Stone (1977),
Katkovnik (1979) and Stone (1980), and the lowess procedure of Cleve-
land (1979). The lowess procedure was widely adopted in statistical soft-
ware as a standard for estimating smooth functions.

The local regression method has been developed largely as an extension
of parametric regression methods, and is accompanied by an elegant fi-
nite sample theory of linear estimation that builds on theoretical results
for parametric regression. The work was initialized in some of the papers
mentioned above and in the early work of Henderson. The theory was sig-
nificantly developed in the book by Katkovnik (1985), and by Cleveland
and Devlin (1988). Linear estimation theory also heavily uses ideas devel-
oped in the spline smoothing literature (Wahba 1990), particularly in the
area of goodness of fit statistics and model selection.

Among other features, the local regression method and linear estimation
theory trivialize problems that have proven to be major stumbling blocks
for more widely studied kernel methods. The kernel estimation literature
contains extensive work on bias correction methods: finding modifications
that asymptotically remove dependence of the bias on slope, curvature and
so forth. Examples include boundary kernels (Müller 1984), double smooth-
ing (Härdle, Hall and Marron 1992), reflection methods (Hall and Wehrly
1991) and higher order kernels (Gasser, Müller and Mammitzsch 1985). But
local regression trivially provides a finite sample solution to these problems.
Local linear regression reproduces straight lines, so the bias cannot depend
on the first derivative of the mean function. Local quadratic regression re-
produces quadratics, so the bias cannot depend on the second derivative.
And so on. Hastie and Loader (1993) contains an extensive discussion of
these issues.

An alternative theoretical treatment of local regression is to view the
method as an extension of kernel methods and attempt to extend the theory
of kernel methods. This treatment has become popular in recent years, for
example in Wand and Jones (1995) and to some extent in Fan and Gijbels
(1996). The approach has its uses: Small bandwidth asymptotic properties
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of local regression, such as rates of convergence and optimality theory, rely
heavily on results for kernel methods. But for practical purposes, the kernel
theory is of limited use, since it often provides poor approximations and
requires restrictive conditions.

There are many other procedures for fitting curves to data and only
a few can be mentioned here. Smoothing spline and penalized likelihood
methods were introduced by Whitaker (1923) and Henderson (1924a). In
modern literature there are several distinct smoothing approaches using
splines; references include Wahba (1990), Friedman (1991), Dierckx (1993),
Green and Silverman (1994), Eilers and Marx (1996) and Stone, Hansen,
Kooperberg and Truong (1997).

Orthogonal series methods such as wavelets (Donoho and Johnstone
1994) transform the data to an orthonormal set of basis functions, and
retain basis functions with sufficiently large coefficients. The methods are
particularly suited to problems with sharp features, such as spikes and
discontinuities.

For high dimensional problems, many approaches based on dimension
reduction have been proposed: Projection pursuit (Friedman and Stuetzle
1981); regression trees (Breiman, Friedman, Olshen and Stone 1984), ad-
ditive models (Breiman and Friedman 1985; Hastie and Tibshirani 1986)
among others. Neural networks have become popular in recent years in com-
puter science, engineering and other fields. Cheng and Titterington (1994)
provide a statistical perspective and explore further the relation between
neural networks and statistical curve fitting procedures.

1.5 Exercises

1.1 Consider the graduation rule

ŷj =
Sk,k

k2 yj .

That is, ŷj is formed by two successive moving averages of length k.

a) Let k = 4. Show the graduation rule has the explicit form

ŷj =
1
16

(yj−3 + 2yj−2 + 3yj−1 + 4yj + 3yj+1 + 2yj+2 + yj+3).

Show this has the difference representation

ŷj = yj +
5
4
∇2yj +

1
2
∇4yj +

1
16

∇6yj .

b) Let yj = j2/2. For general k, show

ŷ0 =
k2 − 1

12
.
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c) Let yj = (j4 − j2)/24. For general k, show

ŷ0 =
(k2 − 1)(k2 − 4)

360
.

d) Show

ŷj = (I +
k2 − 1

12
∇2 +

(k2 − 1)(k2 − 4)
360

∇4 + O(∇6))yj .

Using the series expansion
√

1 + x = 1 + x/2 − x2/8 + O(x3),
establish Theorem 1.1 for general k.

The following results may be useful:

k−1∑
j=0

j =
k(k − 1)

2

k−1∑
j=0

j2 =
k(k − 1)(2k − 1)

6

k−1∑
j=0

j3 =
k2(k − 1)2

4

k−1∑
j=0

j4 =
k(k − 1)(2k − 1)(3k2 − 3k − 1)

30

k−1∑
j=0

j5 =
k2(k − 1)2(2k2 − 2k − 1)

12

1.2 a) Show the weight diagram for any graduation rule can be found
by applying the graduation rule to the unit vector

( . . . 0 0 1 0 0 . . . ).

Compute the weight diagram for Spencer’s 21-point rule, for
Woolhouse’s (1870) rule

ŷj =
S5,5,5

125
(−3yj−1 + 7yj − 3yj+1)

and for Higham’s rule

ŷj =
S5,5,5

125
(−yj−2 + yj−1 + yj + yj+1 − yj+2).

b) For a cubic reproducing graduation rule, show that the coef-
ficient of ∇4 in the difference expansion can be found as the
graduated value of yj = j4/24 at j = 0.
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1.3 Suppose a graduation rule has a weight diagram with all positive
weights lj ≥ 0 and that it reproduces constants (i.e.

∑
lj = 1). Also

assume lj �= 0 for some j �= 0. Show that graduation rule cannot
be cubic reproducing. That is, there exists a cubic (or lower degree)
polynomial that will not be reproduced by the graduation rule.

1.4 Compute the error reduction factors and coefficients of ∇4 for Hen-
derson’s formula with m = 5, . . . , 10. Make a scatterplot of the two
components. Also compute and add the corresponding points for
Spencer’s 15- and 21-point rules, Woolhouse’s rule and Higham’s rule.

Remark. This exercise shows the bias-variance trade-off: As the length
of the graduation rule increases, the variance decreases but the coef-
ficient of ∇4yj increases (in absolute value).

1.5 For each year in the age range 20 to 45, 1000 customers each wish
to buy a $10000 life insurance policy. Two competing companies
set premiums as follows: First, estimate the mortality rate for each
age, then set the premium to cover the expected payout, plus a
10% profit. For example, if the company estimates 40 year olds to
have a mortality rate of 0.01, the expected (per customer) payout is
0.01 × $10000 = $100, so the premium is $110. Both companies use
Spencer’s mortality data to estimate mortality rates. The Gauss Life
Company uses a least squares fit to the data, while Spencer Under-
writing applies Spencer’s 15-point rule.

a) Compute for each age group the premiums charged by each com-
pany.

b) Suppose perfect customer behavior, so, for example, all the 40
year old customers choose the company offering the lowest pre-
mium to 40 year olds. Also suppose Spencer’s 21-point rule pro-
vides the true mortality rates. Under these assumptions, com-
pute the expected profit (or loss) for each of the two companies.

1.6 For large m, show the weights for Henderson’s ideal formula are ap-
proximately m6W (k/m) where W (v) = (1 − x2)3+. Thus, conclude
that the weight diagram is approximately 315/512 × W (k/m)(3 −
11(k/m)2). Compare with the (0, 4, 3) kernel in Table 1 of Müller
(1984).



2
Local Regression Methods

This chapter introduces the basic ideas of local regression and develops
important methodology and theory. Section 2.1 introduces the local regres-
sion method. Sections 2.2 and 2.3 discuss, in a mostly nontechnical manner,
statistical modeling issues. Section 2.2 introduces the bias-variance trade-
off and the effect of changing smoothing parameters. Section 2.3 discusses
diagnostic techniques, such as residual plots and confidence intervals. Sec-
tion 2.4 introduces more formal criteria for model comparison and selection,
such as cross validation.

The final two sections are more technical. Section 2.5 introduces the
theory of linear estimation. This provides characterizations of the local
regression estimate and studies some properties of the bias and variance.
Section 2.6 introduces asymptotic theory for local regression.

2.1 The Local Regression Estimate

Local regression is used to model a relation between a predictor variable
(or variables) x and response variable Y , which is related to the pre-
dictor variables. Suppose a dataset consists of n pairs of observations,
(x1, Y1), (x2, Y2), . . . , (xn, Yn). We assume a model of the form

Yi = µ(xi) + εi (2.1)

where µ(x) is an unknown function and εi is an error term, representing
random errors in the observations or variability from sources not included
in the xi.
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The errors εi are assumed to be independent and identically distributed
with mean 0; E(εi) = 0, and have finite variance; E(ε2i ) = σ2 < ∞. Glob-
ally, no strong assumptions are made about µ. Locally around a point x, we
assume that µ can be well approximated by a member of a simple class of
parametric functions. For example, Taylor’s theorem says that any differen-
tiable function can be approximated locally by a straight line, and a twice
differentiable function can be approximated by a quadratic polynomial.

For a fitting point x, define a bandwidth h(x) and a smoothing window
(x−h(x), x+h(x)). To estimate µ(x), only observations within this window
are used. The observations weighted according to a formula

wi(x) = W

(
xi − x

h(x)

)
(2.2)

where W (u) is a weight function that assigns largest weights to observations
close to x. For many of our examples, we use the tricube weight function

W (u) = (1 − |u|3)3. (2.3)

Within the smoothing window, µ(u) is approximated by a polynomial.
For example, a local quadratic approximation is

µ(u) ≈ a0 + a1(u − x) +
1
2
a2(u − x)2 (2.4)

whenever |u − x| < h(x). A compact vector notation for polynomials is

a0 + a1(u − x) +
1
2
a2(u − x)2 = 〈a, A(u − x)〉

where a is a vector of the coefficients and A( · ) is a vector of the fitting
functions. For local quadratic fitting,

a =


 a0

a1
a2


 A(v) =


 1

v
v2

2


 .

The coefficient vector a can be estimated by minimizing the locally weighted
sum of squares:

n∑
i=1

wi(x)(Yi − 〈a, A(xi − x)〉)2. (2.5)

The local regression estimate of µ(x) is the first component of â.

Definition 2.1 The local regression estimate is

µ̂(x) = 〈â, A(0)〉 = â0, (2.6)

obtained by setting u = x in (2.4).
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FIGURE 2.1. Local regression: Smoothing windows (bottom); local least squares
fits (solid curves) and estimates µ̂(x) (big circles).

The local regression procedure is illustrated in Figure 2.1. The ethanol
dataset, measuring exhaust emissions of a single cylinder engine, is origi-
nally from Brinkman (1981) and has been studied extensively by Cleveland
(1993) and others. The response variable, NOx, measures the concentra-
tion of certain pollutants in the emissions, and the predictor variable, E, is
the equivalence ratio, measuring the richness of the air and fuel mix in the
engine. Figure 2.1 illustrates the fitting procedure at the points E = 0.535
and E = 0.95. The observations are weighted according to the two weight
functions shown at the bottom of Figure 2.1. The local quadratic polyno-
mials are then fitted within the smoothing windows. From each quadratic,
only the central point, indicated by the large circles in Figure 2.1, is re-
tained. As the smoothing window slides along the data, the fitted curve is
generated. Figure 2.2 displays the resulting fit.

The preceding demonstration has used local quadratic polynomials. It is
instructive to consider lower order fits.

Example 2.1. (Local Constant Regression) For local constant polyno-
mials, there is just one local coefficient a0, and the local residual sum of
squares (2.5) is

n∑
i=1

wi(x)(Yi − a0)2.

The minimizer is easily shown to be

µ̂(x) = â0 =
∑n

i=1 wi(x)Yi∑n
i=1 wi(x)

. (2.7)
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FIGURE 2.2. Local regression fit of the ethanol data.

This is the kernel estimate of Nadaraya (1964) and Watson (1964). It is
simply a weighted average of observations in the smoothing window. A lo-
cal constant approximation can often only be used with small smoothing
windows, and noisy estimates result. The estimate is particularly suscep-
tible to boundary bias. In Figure 2.1, if a local constant fit was used at
E = 0.535, it would clearly lie well above the data.

Example 2.2. (Local Linear Regression) The local linear estimate, with
A(v) = ( 1 v )T , has the closed form

µ̂(x) =
∑n

i=1 wi(x)Yi∑n
i=1 wi(x)

+ (x − x̄w)
∑n

i=1 wi(x)(xi − x̄w)Yi∑n
i=1 wi(x)(xi − x̄w)2

(2.8)

where x̄w =
∑n

i=1 wi(x)xi/
∑n

i=1 wi(x). See exercise 2.1. That is, the lo-
cal linear estimate is the local constant estimate, plus a correction for local
slope of the data and skewness of the xi. This correction reduces the bound-
ary bias problem of local constant estimates. When the fitting point x is
not near a boundary, one usually has x ≈ x̄w, and there is little differ-
ence between local constant and local linear fitting. A local linear estimate
exhibits bias if the mean function has high curvature.

2.1.1 Interpreting the Local Regression Estimate
In studies of linear regression, one often focuses on the regression coeffi-
cients. One assumes the model being fitted is correct and asks questions
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such as how well the estimated coefficients estimate the true coefficients.
For example, one might compute variances and confidence intervals for the
regression coefficients, test significance of the coefficients or use model se-
lection criteria, such as stepwise selection, to decide what coefficients to
include in the model. The fitted curve itself often receives relatively little
attention.

In local regression, we have to change our focus. Instead of concentrat-
ing on the coefficients, we focus on the fitted curve. A basic question that
can be asked is “how well does µ̂(x) estimate the true mean µ(x)?”. When
variance estimates and confidence intervals are computed, they will be com-
puted for the curve estimate µ̂(x). Model selection criteria can still be used
to select variables for the local model. But they also have a second use,
addressing whether an estimate µ̂(x) is satisfactory or whether alternative
local regression estimates, for example, with different bandwidths, produce
better results.

2.1.2 Multivariate Local Regression
Formally, extending the definition of local regression to multiple predictors
is straightforward; we require a multivariate weight function and multivari-
ate local polynomials. This was considered by McLain (1974) and Stone
(1982). Statistical methodology and visualization for multivariate fitting
was developed by Cleveland and Devlin (1988) and the associated loess
method.

With two predictor variables, the local regression model becomes

Yi = µ(xi,1, xi,2) + εi,

where µ( · , · ) is unknown. Again, a suitably smooth function µ can be
approximated in a neighborhood of a point x = (x.,1, x.,2) by a local poly-
nomial; for example, a local quadratic approximation is

µ(u1, u2) ≈ a0 + a1(u1 − x.,1) + a2(u2 − x.,2) +
a3

2
(u1 − x.,1)2

+a4(u1 − x.,1)(u2 − x.,2) +
a5

2
(u2 − x.,2)2.

This can again be written in the compact form

µ(u1, u2) ≈ 〈a, A(u − x)〉 ,

where A( · ) is the vector of local polynomial basis functions:

A

(
v1
v2

)
=




1
v1
v2
1
2v2

1
v1v2
1
2v2

2


 . (2.9)
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Weights are defined on the multivariate space, so observations close to a
fitting point x receive the largest weight. First, define the length of a vector
v in Rd by

‖v‖2 =
d∑

j=1

(
vj

sj

)2

, (2.10)

where sj > 0 is a scale parameter for the jth dimension. A spherically
symmetric weight function gives an observation xi the weight

wi(x) = W

(‖xi − x‖
h

)
. (2.11)

As in the univariate case, the local coefficients are estimated by solving the
weighted least squares problem (2.5). Following Definition 2.1, µ̂(x) is the
first component of â.

2.2 The Components of Local Regression

Much work remains to be done to make local regression useful in practice.
There are several components of the local fit that must be specified: the
bandwidth, the degree of local polynomial, the weight function and the
fitting criterion.

2.2.1 Bandwidth
The bandwidth h(x) has a critical effect on the local regression fit. If h(x)
is too small, insufficient data fall within the smoothing window, and a noisy
fit, or large variance, will result. On the other hand, if h(x) is too large, the
local polynomial may not fit the data well within the smoothing window,
and important features of the mean function µ(x) may be distorted or lost
completely. That is, the fit will have large bias. The bandwidth must be
chosen to compromise this bias-variance trade-off.

Ideally, one might like to choose a separate bandwidth for each fitting
point, taking into account features such as the local density of data and
the amount of structure in the mean function. In practice, doing this in a
sensible manner is difficult. Usually, one restricts attention to bandwidth
functions with a small number of parameters to be selected.

The simplest specification is a constant bandwidth, h(x) = h for all
x. This is satisfactory in some simple examples, but when the independent
variables xi have a nonuniform distribution, this can obviously lead to prob-
lems with empty neighborhoods. This is particularly severe in boundary or
tail regions or in more than one dimension.

Data sparsity problems can be reduced by ensuring neighborhoods con-
tain sufficient data. A nearest neighbor bandwidth chooses h(x) so that
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FIGURE 2.3. Local fitting at different bandwidths. Four different nearest neigh-
bor fractions: α = 0.8, 0.6, 0.4 and 0.2 are used.

the local neighborhood always contains a specified number of points. For a
smoothing parameter α between 0 and 1, the nearest neighbor bandwidth
h(x) is computed as follows:

1. Compute the distances d(x, xi) = |x−xi| between the fitting point x
and the data points xi.

2. Choose h(x) to be the kth smallest distance, where k = �nα�.
Example 2.3. Figure 2.3 shows local quadratic fits for the ethanol

dataset using four different values of α. Clearly, the fit produced by the
smallest fraction, α = 0.2, produces a much noisier fit than the largest
bandwidth, α = 0.8. In fact, α = 0.8 has oversmoothed, since it doesn’t
track the data well. For 1.0 < E < 1.2, there is a sequence of 17 succes-
sive data points lying below the fitted curve. The leveling off at the right
boundary is not captured. The peak for 0.9 < E < 1.0 appears to be
trimmed.

The fit with α = 0.2 shows features - bimodality of the peak and a
leveling off around E = 0.7 that don’t show up at larger bandwidths. Are
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these additional features real, or are they artifacts of random noise in the
data? Our apriori guess might be that these are random noise; we hope
that nature isn’t too nasty. But proving this from the data is impossible.
There are small clumps of observations that support both of the additional
features in the plot with α = 0.2, but probably not enough to declare
statistical significance.

This example is discussed in more detail later. For now, we note the
one-sided nature of bandwidth selection. While large smoothing parameters
may easily be rejected as oversmoothed, it is much more difficult to conclude
from the data alone that a small bandwidth is undersmoothed.

2.2.2 Local Polynomial Degree
Like the bandwidth, the degree of the local polynomial used in (2.5) affects
the bias-variance trade-off. A high polynomial degree can always provide
a better approximation to the underlying mean µ(u) than a low polyno-
mial degree. Thus, fitting a high degree polynomial will usually lead to
an estimate µ̂(x) with less bias. But high order polynomials have large
numbers of coefficients to estimate, and the result is variability in the esti-
mate. To some extent, the effects of the polynomial degree and bandwidth
are confounded. For example, if a local quadratic estimate and local linear
estimate are computed using the same bandwidth, the local quadratic esti-
mate will be more variable. But the variance increase can be compensated
by increasing the bandwidth.

It often suffices to choose a low degree polynomial and concentrate on
choosing the bandwidth to obtain a satisfactory fit. The most common
choices are local linear and local quadratic. As noted in Example 2.1, a
local constant fit is susceptible to bias and is rarely adequate. A local
linear estimate usually produces better fits, especially at boundaries. A
local quadratic estimate reduces bias further, but increased variance can
be a problem, especially at boundaries. Fitting local cubic and higher orders
rarely produces much benefit.

Example 2.4. Figure 2.4 displays local constant, local linear, local
quadratic and local cubic fits for the ethanol dataset. Nearest neighbor
bandwidths are used, with α = 0.25, 0.3, 0.49 and 0.59 for the four degrees.
These smoothing parameters are chosen so that each fit has about seven
degrees of freedom; a concept defined in section 2.3.2. Roughly, two fits
with the same degrees of freedom have the same variance var(µ̂(x)).

The local constant fit in Figure 2.4 is quite noisy, and also shows bound-
ary bias: The fit doesn’t track the data well at the left boundary. The local
linear fit reduces both the boundary bias and the noise. A closer examina-
tion suggests the local constant and linear fit have trimmed the peak: For
0.8 < E < 1.0, nearly all the data points are above the fitted curve. The
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FIGURE 2.4. Ethanol data: Effect of changing the polynomial degree.

local quadratic and local cubic fits in Figure 2.4 produce better results:
The fits show less noise and track the data better.

2.2.3 The Weight Function
The weight function W (u) has much less effect on the bias-variance trade-
off, but it influences the visual quality of the fitted regression curve. The
simplest weight function is the rectangular:

W (u) = I[−1,1](u).

This weight function is rarely used, since it leads to discontinuous weights
wi(x) and a discontinuous fitted curve. Usually, W (u) is chosen to be con-
tinuous, symmetric, peaked at 0 and supported on [−1, 1]. A common choice
is the tricube weight function (2.3).

Other types of weight function can also be useful. Friedman and Stuetzle
(1982) use smoothing windows covering the same number of data points
both before and after the fitting point. For nonuniform designs this is
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asymmetric, but it can improve variance properties. McLain (1974) and
Lancaster and Salkaus kas (1981) use weight functions with singularities
at u = 0. This leads to a fitted smooth curve that interpolates the data.
In Section 6.3, one-sided weight functions are used to model discontinuous
curves.

2.2.4 The Fitting Criterion
The local regression estimate, as defined by (2.5) and (2.6), is a local least
squares estimate. This is convenient, since the estimate is easy to compute
and much of the methodology available for least squares methods can be
extended fairly directly to local regression. But it also inherits the bad
properties of least squares estimates, such as sensitivity to outliers.

Any other fitting criterion can be used in place of least squares. The local
likelihood method uses likelihoods instead of least squares; this forms a ma-
jor topic later in this book. Local robust regression methods are discussed
in Section 6.4.

2.3 Diagnostics and Goodness of Fit

In local regression studies, one is faced with several model selection issues:
Variable selection, choice of local polynomial degree and smoothing pa-
rameters. An ideal aim may be fully automated methods: We plug data
into a program, and it automatically returns the best fit. But this goal is
unattainable, since the best fit depends not only on the data, but on the
questions of interest.

What statisticians (and statistical software) can provide is tools to help
guide the choice of smoothing parameters. In this section we introduce some
graphical aids to help the decision: residual plots, degrees of freedom and
confidence intervals. Some more formal tools are introduced in Section 2.4.
These tools are designed to help decide which features of a dataset are real
and which are random. They cannot provide a definitive answer as to the
best bandwidth for a (dataset,question) pair.

The ideas for local regression are similar to those used in parametric mod-
els. Other books on regression analysis cover these topics in greater detail
than we do here; see, for example, chapter 3 of Draper and Smith (1981)
or chapters 4, 5 and 6 of Myers (1990). Cleveland (1993) is a particularly
good reference for graphical diagnostics.

It is important to remember that no one diagnostic technique will explain
the whole story of a dataset. Rather, using a combination of diagnostic
tools and looking at these in conjunction with both the fitted curves and
the original data provide insight into the data. What features are real;
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have these been adequately modeled; are underlying assumptions, such as
homogeneity of variance, satisfied?

2.3.1 Residuals
The most important diagnostic component is the residuals. For local re-
gression, the residuals are defined as the difference between observed and
fitted values:

ε̂i = Yi − µ̂(xi).

One can use the residuals to construct formal tests of goodness of fit or to
modify the local regression estimate for nonhomogeneous variance. These
topics will be explored more in Chapter 9. For practical purposes, most
insight is often gained simply by plotting the residuals in various manners.
Depending on the situation, plots that can be useful include:

1. Residuals vs. predictor variables, for detecting lack of fit, such as a
trimmed peak.

2. Absolute residuals vs. the predictors, to detect dependence of residual
variance on the predictor variables. One can also plot absolute resid-
uals vs. fitted values, to detect dependence of the residual variance
on the mean response.

3. Q-Q plots (Wilk and Gnanadesikan 1968), to detect departure from
normality, such as skewness or heavy tails, in the residual distribution.
If non-normality is found, fitting criteria other than least squares may
produce better results. See Section 6.4.

4. Serial plots of ε̂i vs. ε̂i−1, to detect correlation between residuals.

5. Sequential plot of residuals, in the order the data were collected. In an
industrial experiment, this may detect a gradual shift in experimental
conditions over time.

Often, it is helpful to smooth residual plots: This can both draw attention
to any features shown in the plot, as well as avoiding any visual pitfalls.
Exercise 2.6 provides some examples where the wrong plot, or a poorly
constructed plot, can provide misleading information.

Example 2.5. Figure 2.5 displays smoothed residual plots for the four
fits in Figure 2.3. The residual plots are much better at displaying bias, or
oversmoothing, of the fit. For example, the bias problems when α = 0.8
are much more clearly displayed from the residual plots in Figure 2.5 than
from the fits in Figure 2.3. Of course, as the smoothing parameter α is
reduced, the residuals generally get smaller, and show less structure.

The smooths of the residuals in Figure 2.5 are constructed with αr = 0.2
(this should be distinguished from the α used to smooth the original data).
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FIGURE 2.5. Residual plots for the ethanol dataset.

But αr itself is not important. What is important is that the smooths help
search for clusters of residuals that may indicate lack of fit. At α = 0.8, the
lack of fit is clear. At α = 0.6 and α = 0.4, the peaks in the smooth are
generally supported by clumps of residuals, although generally not enough
to indicate lack of fit.

This example shows that it is important not to look at the residual plots
alone, but to use them in conjunction with plots of the fit. The object is to
determine whether large residuals correspond to features in the data that
have been inadequately modeled. The purpose of the plots can be related
to the bias-variance trade-off:

• Plots of the fit help us detect noise in the fit.

• Residual plots help us detect bias.

It is important to note that the purpose of adding a smooth to a residual
plot is not to provide a good estimate of the mean. Rather, it is to enhance
our view of the residuals; by reducing the noise, our attention may be more
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readily drawn to features that have been missed or not properly modeled
by the smooth.

2.3.2 Influence, Variance and Degrees of Freedom
How can we characterize the amount of smoothing being performed? The
bandwidth provides one characterization. But this is not ideal, since it takes
no account of the other choices that go into the smooth, such as the de-
gree of local polynomial and the weight function. Moreover, the bandwidth
doesn’t enable meaningful comparison with other smoothing methods or
with parametric models.

What we need is unitless characterizations which allow comparison be-
tween methods. We discuss two types of characterization:

• Pointwise criteria, characterizing the amount of smoothing at a sin-
gle point. These include the variance reducing factor and influence
function.

• Global criteria, characterizing the overall amount of smoothing. This
is the fitted degrees of freedom.

Before proceeding with definitions, the importance of the ideas presented
here, both in theory and practice, must be emphasized. Throughout this
book these concepts (and generalizations) will appear repeatedly. We al-
ready saw the variance reducing factor used in optimality results in Chap-
ter 1; this will also appear in inference and confidence interval construc-
tion. The influence function and degrees of freedom will appear repeatedly
in model selection criteria. The importance of these concepts has of course
been emphasized elsewhere, both in local regression literature and else-
where in the smoothing literature. See Craven and Wahba (1979), Cleve-
land and Devlin (1988), Buja, Hastie and Tibshirani (1989), Wahba (1990),
Hastie and Tibshirani (1990) and Cleveland and Loader (1996). Ye (1998)
contains a nice discussion of the importance, motivation, generalizations
and applications of degrees of freedom.

Because the local regression estimate solves a least squares problem, µ̂(x)
is a linear estimate. That is, for each x there exists a weight diagram
vector l(x) = {li(x)}n

i=1 such that

µ̂(x) =
n∑

i=1

li(x)Yi. (2.12)

For local constant regression, (2.7) gives the explicit formula

li(x) =
wi(x)∑n

j=1 wj(x)
.
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For more general local regression, the weight diagram is derived in Section
2.5. The weight diagram leads to compact forms for the mean and variance
of the local regression estimate:

E(µ̂(x)) =
n∑

i=1

li(x)µ(xi) = 〈l(x), µ〉

var(µ̂(x)) = σ2
n∑

i=1

li(x)2 = σ2‖l(x)‖2. (2.13)

The variance assumes the observations Yi are independent and have con-
stant variance σ2. The variance reducing factor ‖l(x)‖2 measures the
reduction in variance due to the local regression. Usually, this decreases as
the bandwidth increases. Under mild conditions, one can show (see Theo-
rem 2.3):

1
n

≤ ‖l(xi)‖2 ≤ li(xi) ≤ 1. (2.14)

The extreme cases 1/n and 1 correspond, respectively, to µ̂(x) being the
sample average and interpolating the data.

The hat matrix is the n × n matrix L with rows l(xi)T , which maps
the data to the fitted values:


µ̂(x1)

...
µ̂(xn)


 = LY. (2.15)

The influence or leverage values are the diagonal elements li(xi) of the
hat matrix. We denote these by infl(xi); these measure the sensitivity of
the fitted curve µ̂(xi) to the individual data points.

The degrees of freedom of a local fit provide a generalization of the
number of parameters of a parametric model. In fact, there are several
possible definitions, but two of the most useful are

ν1 =
n∑

i=1

infl(xi) = tr(L)

ν2 =
n∑

i=1

‖l(xi)‖2 = tr(LT L). (2.16)

The usefulness of the degrees of freedom is in providing a measure of the
amount of smoothing that is comparable between different estimates ap-
plied to the same dataset. The concept was used in Example 2.4 to compare
local polynomial fits of differing degrees, where we required smoothing pa-
rameters to perform the same amount of smoothing in each of the four
cases.
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FIGURE 2.6. Influence functions (solid) and variance functions (dashed) for local
quadratic and local cubic fits to the ethanol dataset.

For a parametric regression model, the hat matrix L is symmetric and
idempotent, and the definitions coincide and usually equal the number of
parameters. For local regression models, the two definitions are usually not
equal; following (2.14), 1 ≤ ν2 ≤ ν1 ≤ n. Both of these definitions arise
naturally later.

Example 2.6. Figure 2.6 shows the influence and variance functions
for the local quadratic and local cubic fits from Figure 2.4. Largely, the
influence values are slightly less than 0.1, indicating that Yi constitutes
about 10% of the fitted value µ̂(xi). The variance function is slightly less
than the influence. The degrees of freedom are ν1 = 7.16 and ν2 = 6.60 for
the local quadratic fit, and ν1 = 6.97 and ν2 = 6.53 for the local cubic.

But the main feature is the boundary effect, particularly at the left, where
the influence function shows a huge increase. This reflects the difficulty of
fitting a polynomial at boundary regions. Note also that the effect is more
pronounced for the local cubic fit: This shows that boundaries are a main
concern when choosing the degree of the local fit.

2.3.3 Confidence Intervals
If µ̂(x) is an unbiased estimate of µ(x), an approximate confidence interval
for the true mean is

I(x) = (µ̂(x) − cσ̂‖l(x)‖, µ̂(x) + cσ̂‖l(x)‖),
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where c is the appropriate quantile of the standard normal distribution
(c = 1.96 for 95% confidence) and σ̂ is an estimate of the residual standard
deviation.

Prediction intervals provide interval estimates for a new observation Ynew
at a point xnew. Assuming the new observation is independent of the esti-
mation data, one has

var(Ynew − µ̂(xnew)) = σ2(1 + ‖l(xnew)‖2).

Thus, a prediction interval has limits

µ̂(xnew) ± cσ̂(1 + ‖l(x)‖2)1/2. (2.17)

Note that prediction intervals assume normality: If Ynew is not normally
distributed, the prediction interval will not be correct, even asymptotically.

In analogy with parametric regression, the variance σ2 can be estimated
using the normalized residual sum of squares:

σ̂2 =
1

n − 2ν1 + ν2

n∑
i=1

(Yi − µ̂(xi))2, (2.18)

where ν1 and ν2 are defined by (2.16). The residual degrees of freedom,
n − 2ν1 + ν2, are defined so that σ̂2 is unbiased. See Section 2.5.1.

The assumption that µ̂(x) is unbiased is rarely exactly true, so variance
estimates and confidence intervals are usually computed at small band-
widths where bias is small. Confidence intervals, bias correction and vari-
ance estimation are discussed in more detail in Chapter 9.

2.4 Model Comparison and Selection

2.4.1 Prediction and Cross Validation
How good is a local regression estimate? To formalize this question, we
need to define criteria with which to assess the performance of the fit. One
possible criterion is the prediction mean squared error for future observa-
tions:

PMSE(µ̂) = E(Ynew − µ̂(xnew))2. (2.19)

Clearly, PMSE(µ̂) depends on assumptions made about xnew. For now,
assume that the design points x1, . . . , xn are an independent sample from
a density f(x), and the new point xnew is sampled from the same density.
The cross validation method provides an estimate of PMSE.

Definition 2.2 The cross validation estimate of the PMSE of an esti-
mate µ̂ is

CV(µ̂) =
1
n

n∑
i=1

(Yi − µ̂−i(xi))2 (2.20)
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where µ̂−i(xi) denotes the leave-xi-out estimate of µ(xi). That is, each
xi is deleted from the dataset in turn, and the local regression estimate
computed from the remaining n − 1 data points.

The leave-one-out cross validation criteria was introduced for paramet-
ric regression models by Allen (1974) as the PRESS (prediction error sum
of squares) procedure. Wahba and Wold (1975) applied the method to
smoothing splines. Model validation based on splitting datasets into es-
timation data and prediction data has a long history, discussed by Stone
(1974) and Snee (1977) among others.

The generalized cross validation criterion was first proposed in the con-
text of smoothing splines by Craven and Wahba (1979). This provides an
approximation to cross validation and is easier to compute. The motivation
for the definition will appear in Section 2.5.

Definition 2.3 The generalized cross validation score for a local es-
timate µ̂ is

GCV(µ̂) = n

∑n
i=1(Yi − µ̂(xi))2

(n − ν1)2
, (2.21)

where ν1 is the fitted degrees of freedom defined by (2.16).

2.4.2 Estimation Error and CP
The cross validation methods are motivated by prediction error: How well
does µ̂(x) predict new observations? Alternatively, one can consider estima-
tion error: How well does µ̂(x) estimate the true mean µ(x)? One possible
loss criterion is the sum of the squared error over the design points;

L(µ̂, µ) =
n∑

i=1

(µ̂(xi) − µ(xi))2. (2.22)

The CP criterion, introduced by Mallows (1973) for parametric regression,
provides an unbiased estimate of L(µ̂, µ) in the sense that E(CP(µ̂)) =
E(L(µ̂, µ)). The CP statistic was extended to local constant fitting by Rice
(1984) and to local regression by Cleveland and Devlin (1988).

Definition 2.4 The CP estimate of risk for a local regression estimate
µ̂(x) is

CP(µ̂) =
1
σ2

n∑
i=1

(Yi − µ̂(xi))2 − n + 2ν1.

Implementation of the CP method requires an estimate of σ2. The usual
use of CP is to compare several different fits (for example, local regression
with different bandwidths or different polynomial degrees). One should use
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FIGURE 2.7. Generalized cross validation plot (left) and CP plot (right) for the
ethanol dataset.

the same estimate σ̂2 for all fits being considered. The recommendation of
Cleveland and Devlin is to compute the estimate (2.18) from a fit at the
smallest bandwidth under consideration, at which one should be willing to
assume that bias is negligible.

2.4.3 Cross Validation Plots
Frequently, the use of cross validation and CP is automated: A computer
program computes CV(µ̂) or CP(µ̂) for several different fits and selects the
fit with the lowest score. But, as argued strongly by Cleveland and Devlin
(1988), this discards much of the information about the bias-variance trade-
off that the statistics provide. Cleveland and Devlin introduce the CP (or
M) plot as a graphical tool for displaying these statistics.

Example 2.7. The GCV and CP statistics are computed for local
quadratic fits to the ethanol dataset and a range of smoothing parameters;
0.2 ≤ α ≤ 0.8. The results are shown in Figure 2.7 as a cross validation
plot (left) and CP plot (right). These plots use the fitted degrees of free-
dom tr(LT L) as the horizontal axis and the GCV and CP statistics as the
vertical axis. The smoothing parameter is α = 0.8 on the left, decreasing
in steps of 0.05 to α = 0.2 on the right.

Both plots show a similar profile. The first four points, with fewer than
five fitted degrees of freedom (or α > 0.65), produce large GCV and CP
scores, indicating these fits are inadequate. For larger degrees of freedom,
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the plots (especially GCV) are flat, indicating there is little to choose be-
tween the fits. As α is decreased from 0.6 to 0.2, the fitted degrees of
freedom increases from 5.6 to 16.4, and the GCV score ranges from 0.107
to 0.127.

An important point in the construction of Figure 2.7 is the use of the
fitted degrees of freedom, rather than the smoothing parameter, as the
horizontal axis. This aids interpretation: Four degrees of freedom represents
a smooth model with very little flexibility, while 16 degrees of freedom
represents a noisy model showing many features. It also aids comparability.
For example, CP scores could be computed for other polynomial degrees
or for other smoothing methods and added to the plot.

The cross validation and CP plots must be emphasized as a graphical
aid in choosing smoothing parameters. Flat plots, such as Figure 2.7, oc-
cur frequently, and any model with a GCV score near the minimum is
likely to have similar predictive power. The flatness of the plot reflects the
uncertainty in the data, and the resultant difficulty in choosing smoothing
parameters. We concluded earlier that α = 0.8 was too large for the ethanol
dataset; the lack of fit is reflected as the sharp increase in the GCV and CP
scores at the left boundary of Figure 2.7. At the other end, we are unsure
whether the additional features at α = 0.2 in Figure 2.3 were real. The flat
GCV plot reflects this uncertainty.

A consequence of Figure 2.7 is that going to extensive lengths to mini-
mize GCV is very data-sensitive and can produce an unsatisfactory fit. In
general, minimizing GCV (or CP, or CV) is highly variable: two visually
similar datasets could produce very different results. Most importantly, just
minimizing GCV discards significant information provided by the whole
profile of the GCV curve, as displayed by the cross validation plot.

We should emphasize that the points raised here are not problems with
cross validation and CP, but a reflection of the difficulty of model selection.
This issue is explored further in Chapter 10, where cross validation methods
are compared with bandwidth selectors claimed to be less variable. Such
selectors are found to reflect the model selection difficulty in other ways; in
particular, missing features when applied to difficult smoothing problems.

2.5 Linear Estimation

As noted previously, local regression is a linear estimate. The linear rep-
resentation (2.12) provides the basis for a theoretical development of local
regression estimation. Simple mean and variance expressions have already
been derived; further properties are developed in this section. Results are
also derived for the influence function and model selection criteria.

The first task is to identify the weight diagram. Let X be the n× (p+1)
design matrix with rows A(xi−x)T , W be the diagonal matrix with entries
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wi(x) and Y = (Y1, Y2, . . . , Yn)T be the response vector. The weighted sum
of squares (2.5) can be written in matrix form

(Y − Xa)T W(Y − Xa).

If WX has full column rank, least squares theory gives the explicit expres-
sion

â = (XT WX)−1XT WY (2.23)

for the minimizer of (2.5).
The representation (2.23) identifies the weight diagram for the local poly-

nomial smooth, defined by (2.12):

l(x)T = eT
1 (XT WX)−1XT W. (2.24)

Here, e1 is the unit vector; e1 = (1, 0, . . . , 0)T .
The following theorem, originally from Henderson (1916) for local cubic

fitting, provides a characterization of the weight diagrams for local poly-
nomial regression.

Theorem 2.1 (Henderson’s Theorem) The weight diagram for a local
polynomial fit of degree p has the form

li(x) = W

(
xi − x

h(x)

)
〈α, A(xi − x)〉 ; (2.25)

that is, the least squares weights multiplied by a polynomial of degree p.
This representation is unique, provided XT WX is non-singular.

Conversely, if a linear estimate reproduces polynomials of degree p, and
the weight diagram has at most p sign changes, then the estimate can be
represented as a local polynomial fit of degree p.

Proof: The representation (2.24) immediately yields (2.25), with αT =
eT
1 (XT WX)−1, providing XT WX is non-singular.
For the converse, define a polynomial P (u−x) of degree ≤ p, whose roots

match the sign changes of the weight diagram. Then, the smoother is recon-
structed as local polynomial smoothing with weights wi(x) = li(x)/P (xi −
x). �

Despite its innocuous simplicity, Henderson’s theorem has profound con-
sequences. For example, the polynomial reproduction property implies the
local regression method achieves exact bias correction in finite samples.
The bias of a local linear estimate cannot depend on the slope µ′(x). See
Section 2.5.2 for more discussion. As noted in Section 1.4, this contrasts
sharply with kernel smoothing literature, where considerable effort has been
expended in achieving asymptotic bias corrections.

For an immediate illustration of the power of Henderson’s theorem, we
derive a simplification of the leave-one-out cross validation statistic (2.20).
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Theorem 2.2 If infl(xi) < 1, the leave-one-out cross validation estimate
µ̂−i(x) is

µ̂−i(xi) =
µ̂(xi) − infl(xi)Yi

1 − infl(xi)

and

CV(µ̂) =
1
n

n∑
i=1

(Yi − µ̂(xi))2

(1 − infl(xi))2
. (2.26)

This result can be proved directly using (2.12), (2.24) and some tedious
matrix algebra. See Exercise 2.2 or Appendix B.4 of Myers (1990) for the
same result for parametric regression. The following proof derives the result
directly from Henderson’s theorem.

Proof: Let

mj(xi) =
lj(xi)

1 − infl(xi)
; j = 1, . . . , n; j �= i.

Using Henderson’s theorem, we show that {mj(xi)} is the weight diagram
for µ̂−i(xi) and thus

µ̂−i(xi) =
n∑

j=1
j �=i

mj(xi)Yj =
µ̂(xi) − infl(xi)Yi

1 − infl(xi)
.

(2.26) then follows directly from (2.20).
For fixed xi, {mj(xi)} is a polynomial multiplied by the weights W ((xj −

xi)/h), because {lj(xi)} is. It remains to show that {mj(xi)} reproduces
polynomials P (x) of degree ≤ p:

n∑
j=1
j �=i

mj(xi)P (xj) =
1

1 − infl(xi)


 n∑

j=1

lj(xi)P (xj) − li(xi)P (xi)




=
1

1 − infl(xi)
(P (xi) − infl(xi)P (xi))

= P (xi)

where the second line follows from the polynomial reproducing property of
{lj(xi)}n

j=1. �

Theorem 2.2 assumes the bandwidth h(x) does not change when the
fit is carried out on the reduced dataset. This assumption can fail for a
nearest neighbor bandwidth, but for estimating prediction error, this is the
correct assumption to make, since the leave-one-out problem should mimic,
as closely as possible, the true prediction problem.

The motivation for GCV also follows from the approximation (2.26),
simply replacing infl(xi) by the average value tr(L)/n.
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2.5.1 Influence, Variance and Degrees of Freedom
The variance of the local regression estimate was given by (2.13):

var(µ̂(x)) = σ2‖l(x)‖2

or equivalently,

var(µ̂(x)) = σ2eT
1 (XT WX)−1(XT W2X)(XT WX)−1e1. (2.27)

A quantity closely related to the variance is the influence function:

infl(x) = eT
1 (XT WX)−1e1W (0). (2.28)

This definition generalizes our earlier use of the influence function; the
diagonal elements of the hat matrix L are given by li(xi) = infl(xi).

Some important properties characterizing the relation between the influ-
ence function and variance are contained in the following theorem.

Theorem 2.3 Suppose the weight function W (u) is non-negative, sym-
metric and decreasing on [0,∞). Then

1. the influence function dominates the variance;

1
σ2 var(µ̂(x)) ≤ infl(x). (2.29)

For the rectangular weight function, this is an equality.

2. at the observation points xi,

infl(xi) ≤ 1 (2.30)

and hence local regression is variance-reducing.

3. the influence function is a decreasing function of the bandwidths; i.e.,
if h1 < h2 and infl1(x) and infl2(x) are the corresponding influence
functions, then

infl1(x) ≥ infl2(x). (2.31)

Proof: Let αi be the elements of eT
1 (XT WX)−1XT . Then

1
σ2 var(µ̂(x)) =

n∑
i=1

wi(x)2α2
i ≤ W (0)

n∑
i=1

wi(x)α2
i = infl(x)

since the weight function is maximized at 0. This proves (2.29). Exercise 2.2
establishes (2.30). Let W1 and W2 be the weight matrices corresponding
to bandwidths h1 and h2. Since the weight function is decreasing on [0,∞),
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W1 ≤ W2 on a componentwise basis and in particular, XT (W2 − W1)X
is non-negative definite. Then

infl2(x) = eT
1 (XT W1X + XT (W2 − W1)X)−1e1W (0) ≥ infl1(x),

using the results of Exercise 2.2. �

We gave two definitions for the degrees of freedom of the fit µ̂(x) in (2.16).
The residual degrees of freedom can be defined using similar techniques.
Using

var(Yi − µ̂(xi)) = σ2 − 2cov(Yi, µ̂(xi)) + var(µ̂(xi)),

and a bias-variance decomposition, we have

E
n∑

i=1

(Yi − µ̂(xi))2 =
n∑

i=1

bias(µ̂(xi))2 + σ2(n − 2ν1 + ν2). (2.32)

This motivates the definition for residual degrees of freedom used in the
variance estimate (2.18). It also establishes the unbiased estimation prop-
erty for the CP statistic:

ECP(µ̂) =
1
σ2

n∑
i=1

bias(µ̂(xi))2 + ν2,

which is easily seen to equal E(L(µ̂, µ)).

2.5.2 Bias
The bias of the linear estimate (2.12) is

Eµ̂(x) − µ(x) =
n∑

i=1

li(x)µ(xi) − µ(x). (2.33)

Suppose µ̂(x) is a local polynomial fit of degree p. Assuming that µ(x) is
p + 2 times differentiable, we can expand µ( · ) in a Taylor series around x:

µ(xi) = µ(x) + (xi − x)µ′(x) + . . . + (xi − x)p µ(p)(x)
p!

+(xi − x)p+1 µ(p+1)(x)
(p + 1)!

+ (xi − x)p+2 µ(p+2)(x)
(p + 2)!

+ . . . .

As an application of Henderson’s theorem, we know
∑n

i=1 li(x)(xi−x)j = 0
for 1 ≤ j ≤ p. This leads to

E(µ̂(x)) − µ(x) =
µ(p+1)(x)
(p + 1)!

n∑
i=1

li(x)(xi − x)p+1

+
µ(p+2)(x)
(p + 2)!

n∑
i=1

li(x)(xi − x)p+2 + . . . . (2.34)
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The bias has a leading term involving the (p + 1)st derivative µ̂(p+1)(x).
This is very similar to the systematic error for graduation rules discussed
in Section 1.1.2. There, the systematic error of cubic reproducing rules was
dominated by the fourth differences of the mean function.

Why keep the µ(p+2)(x) term in (2.34)? Suppose the design points are
equally spaced. In this case, the weight diagram is symmetric around the
fitting point x. If p is even, p + 1 is odd and

∑n
i=1 li(x)(xi − x)p+1 = 0 by

symmetry. Thus, the first term in the bias expansion disappears. In this
case, the second term of (2.34) is dominant. For nonuniform data and even
p, the µ(p+1) and µ(p+2) terms are generally of similar size.

For multidimensional predictors xi, an expression similar to (2.34) still
holds, but it will be the sum of terms involving all partial derivatives of
µ(x) of orders p + 1 and p + 2.

2.6 Asymptotic Approximations

Explicit closed form expressions such as (2.27) are suitable for numerical
computation. However, they only give limited insight into the behavior of
the variance function as, for example, the design, sample size or bandwidth
change. In this section we provide some simple asymptotic approximations
to the bias, variance and influence functions. Similar results, particularly
for the bias and variance, have been derived in many places for kernel esti-
mates. Work on local regression includes Lejeune (1985), Tsybakov (1986),
Müller (1987), Ruppert and Wand (1994) and Fan and Gijbels (1996).

To state asymptotic results, we need to make assumptions about how
the sequence of design points x1, . . . , xn behaves as n increases. A common
assumption is random design: the points are sampled from a continuous
density f(x). Another model is the regular design (often called the fixed
design); this includes the common case of equally spaced points. More gen-
erally, a regular design generated by a density f(u) defines xi,n to be the
solution of

i − 0.5
n

=
∫ xi,n

−∞
f(u)du.

The matrix XT WX has components of the form
∑n

i=1 wi(x)(xi − x)k.
Under either the random or regular design, and mild regularity conditions
(in particular, nhd → ∞):

1
nhd

n∑
i=1

wi(x)j (xi − x)k

hk
=
∫

W (v)jvkf(x + hv)dv + o(1). (2.35)
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This result is valid for fixed h. Asymptotic results are often stated under
the additional assumption h → 0, for which (2.35) simplifies to

1
nhd

n∑
i=1

wi(x)j (xi − x)k

hk
→ f(x)

∫
W (v)jvkdv. (2.36)

If one requires consistency of the local regression estimate, small bandwidth
results are required. But Stoker (1993) argues that results based on fixed
bandwidth asymptotics provide a better characterization of results in finite
samples. In particular, one should use results based on the fit actually and
not on the basis of what one promises to do if the sample size were larger.

For regular designs, the limit (2.36) follows from the theory of Reimann
sums. For random design, the result is consistency for a kernel density es-
timate; see Chapter 5 (strong convergence requires slightly stronger band-
width conditions). More generally, we can take (2.36) as a basic assumption:
Results that follow from (2.36) will hold for regular, random and any other
design satisfying this condition.

Applying (2.35) and (2.36) to the matrix XT WjX gives

1
nhd

H−1XT WjXH−1

=
{∫

W (v)jA(v)A(v)T f(x + hv)dv + o(1), h fixed
f(x)

∫
W (v)jA(v)A(v)T dv + o(1) h → 0

(2.37)

where H is a diagonal matrix with elements 1, h, . . . , hp. Asymptotic ap-
proximations to quantities such as the bias and variance are now easily
derived.

Variance and Influence Functions. Under the small bandwidth lim-
its, the influence function (2.28) and variance (2.27) have asymptotic ap-
proximations

infl(x) =
W (0)

nhdf(x)
eT
1 M−1

1 e1 + o((nh)−1) (2.38)

var(µ̂(x)) =
σ2

nhdf(x)
eT
1 M−1

1 M2M−1
1 e1 + o((nh)−1) (2.39)

where Mj =
∫

W (v)jA(v)A(v)T dv. Similar expressions are easily derived
for fixed bandwidth limits. The influence function and variance are inversely
proportional to the number of data points in the smoothing window, with
the proportionality constant depending on the weight function, degree of
fit and σ2.

The asymptotic approximations (2.38) and (2.39) are mainly of theo-
retical interest; they should never be considered an alternative to (2.28)
and (2.27) for actually computing the influence and variance. First, the ap-
proximations introduce another unknown, f(x), to estimate. Second, the
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approximations can be exceedingly poor in the tails. Third, the finite sam-
ple versions are cheap to compute; see Section 12.3. Exercise 3.5 provides
some comparisons.

Asymptotic Equivalent Kernels. Substituting (2.37) into the expres-
sion (2.23) for the local regression estimate yields

µ̂(x) ≈ 1
nhf(x)

eT
1 M−1

1 H−1XT WY

=
1

nhf(x)

n∑
i=1

W ∗
(

xi − x

h

)
Yi

where
W ∗(v) = eT

1 M−1
1 A(v)W (v). (2.40)

The weight function W ∗(v), dependent on the degree of fit and the original
weight function W (v), is the asymptotically equivalent kernel. Roughly, for
large samples, the local regression estimate is equivalent to a local con-
stant estimate using the weight function W ∗(v). Equivalent kernels often
provide poor approximations, But they simplify theoretical computations
considerably. The asymptotic variance (2.39) is simply

var(µ̂(x)) ≈ σ2

nhf(x)

∫
W ∗(v)2dv.

The influence function approximation is even simpler:

infl(x) ≈ W ∗(0)
nhf(x)

.

Bias. The first term of the bias expansion (2.34) is approximated by

b(x) =
hp+1µ(p+1)(x)

(p + 1)!

∫
vp+1W ∗(v)dv + o(hp+1). (2.41)

If p is even and W (v) is symmetric,
∫

vp+1W ∗(v)dv = 0. The dominant
bias arises from the second term of (2.34), which has size O(hp+2). But
care is needed, since there are other terms of the same size. For p even, one
obtains

b(x) = hp+2
(

µ(p+2)(x)
(p + 2)!

+
µ(p+1)(x)f ′(x)
(p + 1)!f(x)

)∫
vp+2W ∗(v)dv + o(hp+2).

See Ruppert and Wand (1994) for a full derivation.
Degrees of Freedom. Suppose the design is uniform on [0, 1], so that

f(x) = 1 for 0 ≤ x ≤ 1. Then

tr(L) =
n∑

i=1

infl(xi) ≈ W ∗(0)
h

(2.42)
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Degree Constant h Nearest Neighbor
0 0.0617 + 0.8198ν1 0.0465 + 0.8198ν1
1 0.2978 + 0.8198ν1 0.2493 + 0.8198ν1
2 0.1702 + 0.8965ν1 0.1502 + 0.8965ν1

TABLE 2.1. Approximate relation between influence degrees of freedom ν1 and
variance degrees of freedom ν2 using the tricube weight function. Results are
shown for both constant and nearest neighbor bandwidths.

and
tr(LT L) ≈ 1

h

∫
W ∗(v)2dv.

These expressions are dependent on the uniform design. In fact, a more
detailed analysis shows that tr(L) and tr(LT L) have limits that are linear
in 1/h; the second term arising from boundary effects. Eliminating h gives

tr(LT L) ≈
∫

W ∗(v)2dv

W ∗(0)
tr(L) + c (2.43)

for a constant c. This expression has no dependence on the bandwidth.
Moreover, the approximation holds fairly universally, irrespective of the
design. To evaluate the constant c, one has to use fixed bandwidth limits
based on (2.35), carefully treating boundary effects. An alternative is to
estimate the constant by evaluating ν1 and ν2 in a few cases.

Table 2.1 summarizes the approximate relationships between ν1 = tr(L)
and ν2 = tr(LT L) for the tricube weight function. In all cases, the linear
component dominates the constant component. As expected, the linear
coefficient is always slightly less than 1.

Bandwidths. Consider the one dimensional local linear regression, and
suppose the design density f(x) has unbounded support. Then (2.39) re-
duces to

var(µ̂(x)) =
σ2

nhf(x)

∫
W (v)2dv

(
∫

W (v)dv)2
+ o((nh)−1) (2.44)

while (2.41) reduces to

E(µ̂(x)) = µ(x) +
h2µ′′(x)

2

∫
v2W (v)dv∫
W (v)dv

+ o(h2). (2.45)

Clearly, as h increases with n fixed, the variance decreases while the bias
increases. This is a mathematical demonstration of the bias-variance trade-
off. Combining these yields the mean squared error approximation

E((µ̂(x) − µ(x))2) ≈ σ2

nhf(x)

∫
W (v)2dv

(
∫

W (v)dv)2
+

h4µ′′(x)2

4

(∫
v2W (v)dv∫
W (v)dv

)2

.
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Minimizing over h yields the asymptotically optimal bandwidth

h5
opt =

σ2
∫

W (v)2dv

nf(x)µ′′(x)2
(∫

v2W (v)dv
)2 . (2.46)

This result is not useful in selecting the bandwidth, since it depends on
unknown quantities; in particular, µ′′(x). Substituting estimates for µ′′(x)
isn’t helpful, since it doesn’t address the main question for bandwidth and
model selection: What features are real? This is discussed further in Chap-
ter 10.

Asymptotic Normality. If the errors εi are normally distributed with
variance σ2, then

µ̂(x) − E(µ(x))
σ‖l(x)‖ (2.47)

has a N(0, 1) distribution. If the errors are independent and identically dis-
tributed with finite variance σ2, but with a non-normal distribution, one
can easily check that the Lindeberg condition (Shiryayev 1984, page 326)
holds, provided max1≤i≤n |li(x)|/‖l(x)‖ → 0. Thus, (2.47) has an asymp-
totic N(0, 1) distribution. Under both random and regular designs, the
conditions nhd → ∞ and f(x) > 0 are sufficient.

Data-driven Bandwidths. The results stated in this section have all
assumed that the bandwidth sequence h = hn is nonrandom, and in partic-
ular, is independent of the responses Yi. To extend results to a data-driven
sequence h = ĥn (for example, chosen by cross validation), one identifies
a deterministic sequence h̃n such that ĥn/h̃n → 1 in probability. Results
of this type are found in Rice (1984) and elsewhere. Then, one shows that
smoothing with ĥn is asymptotically equivalent to smoothing with h̃n.

2.7 Exercises

2.1 Derive the closed form (2.8) for the local linear estimate. It may be
easier to fit the local model b0+b1(xi−x̄w), and µ̂(x) = b̂0+b̂1(x−x̄w).
Convince yourself this must produce the same answer as the local
linear estimate defined by (2.6).

2.2 a) Let V be an invertible p×p matrix; a a p-vector and λ a constant
with 1 + λaT V−1a �= 0. Show

(
V + λaaT

)−1
= V−1 − λV−1aaT V−1

1 + λaT V−1a
. (2.48)

Use this result to provide a direct matrix proof of Theorem 2.2.
b) Show that

aT (V + λaaT )−1a =
λaT V−1a

1 + λaT V−1a
.
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Hence prove (2.30).

c) Suppose V and Σ are non-negative definite. Show that

aT (V + Σ)−1a ≥ aT V−1a.

2.3 a) Let V, a and λ be as in Exercise 2.2, with d = λ − aT Va �= 0.
Show(

V a
aT λ

)−1

=
(

V−1 + 1
dV

−1aaT V−1 − 1
dV

−1a
− 1

daT V−1 1
d

)
.

b) Show the influence function infl(x) increases as the degree of the
local polynomial increases.

c) Provide an example to show that local linear fitting can be less
variable than local constant fitting.

2.4 Consider the local constant estimate (2.7).

a) Write down the variance of this estimate, assuming the Yi are
independent and have constant variance.

b) Suppose the weight function W (u) is symmetric, non-negative
and uW ′(u)/W (u) is monotone decreasing on [0,∞). Show, for
fixed x, that the variance is a decreasing function of the band-
width h.

c) Relaxing the conditions on the weight function, provide an ex-
ample to show the variance can increase as the bandwidth h
increases.

2.5 Double Smoothing. The local regression estimate µ̂ = LY has bias
b = E(µ̂) − µ = −(I − L)µ. Double smoothing estimates the bias by
b̂ = −(I − L)µ̂, producing the bias corrected estimate ˆ̂µ = µ̂ − b̂ =
(2I − L)LY . Suppose the design is equally spaced with xi = i; i =
. . . ,−2,−1, 0, 1, 2, . . .; the doubly infinite sequence avoids boundary
effects.

a) Suppose the smoother is a moving average (local constant) fit
with bandwidth h;

µ̂(i) =
1

2h + 1

h∑
j=−h

Yi+j .

Show that

ˆ̂µ(i) =
1

2h + 1

2h∑
j=−2h

(
2I(|j| ≤ h) − 1 +

|j|
2h + 1

)
Yi+j .



44 2. Local Regression Methods

b) Show that the weight diagram for ˆ̂µ(i) is quadratic reproducing,
and hence by Henderson’s theorem ˆ̂µ is a local quadratic smooth.
Does the weight diagram look sensible?

2.6 Some visual experiments:

a) Construct a dataset with a mean function having flat and steep
regions. For example, let xi be uniform on the interval [−5, 5] and
Yi = Φ(xi) + εi where Φ(x) is the standard normal distribution
function and εi is normally distributed with σ = 0.1. Plot the
dataset. Does the residual variance look constant?

b) Construct a nonuniform predictor variable. For example, in S-
Plus, x <- sqrt(runif(100)). Generate standard normal ob-
servations as the response variable. Plot the data. Does the resid-
ual variance look constant? This experiment may take two or
three attempts; eventually, large residuals in the high density
region should be distracting.

Remark. A real data example where these visual distractions occur is
provided in Exercise 3.2.

2.7 Estimation under the L1 loss function.

a) Suppose X ∼ N(µ, σ2). Show that

E|X| = µ
(
Φ(

µ

σ
) − Φ(−µ

σ
)
)

+ 2σφ(
µ

σ
).

Here, φ( · ) and Φ( · ) denote the standard normal density and
distribution function.

b) Consider the risk function R1(µ̂, µ) = n−1∑n
i=1 |µ̂(xi) − µ(xi)|.

Derive an explicit expression for R1(µ̂, µ) in terms of the bias
and variance.

2.8 L1 Cross Validation. Suppose the risk function for predicting a future
observation (xnew, Ynew) is E|Ynew − µ̂(xnew)|. This is estimated by
the L1 cross validation criterion

CV1(µ̂) =
1
n

n∑
i=1

|Yi − µ̂−i(xi)|.

Show that

CV1(µ̂) =
1
n

n∑
i=1

|Yi − µ̂(xi)|
1 − infl(xi)

.

Propose an L1 version of generalized cross validation.
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Fitting with locfit

The examples in this book are implemented using the local regression soft-
ware locfit. This can be used either as a stand-alone program or as a li-
brary within the S (Becker, Chambers and Wilks 1988), S-Plus or R (Ihaka
and Gentleman 1996) languages. See Appendix A for details of how to
obtain the locfit code and installation.

The code examples in this book are designed for S version 4; most will
also work in S-Plus and R. The syntax for the stand-alone c-locfit version
is different. For many examples, the corresponding code for the stand-alone
version can be obtained using the example command:

locfit> example 3.1

Example 3.1. Local Regression

locfit NOx˜E data=ethanol alpha=0.5
plotfit data=T

prints the corresponding code on the screen. Typing

locfit> example 3.1 run

results in the code being executed and plots being produced as appropriate.
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3.1 Local Regression with locfit

locfit provides two functions, locfit() and locfit.raw(), to perform
local regression. The locfit() function uses the S model language to spec-
ify the local regression model, while locfit.raw() has separate arguments
for the predictor and response variables. In other respects, the two functions
are identical.

Example 3.1. We fit a local quadratic model to the ethanol dataset and
plot the result:

> fit <- locfit(NOx˜E, data=ethanol, alpha=0.5)
> fit
Call:
locfit(formula = NOx ˜ E, data = ethanol, alpha = 0.5)

Number of observations: 88
Fitted Degrees of freedom: 6.485
Residual scale: 0.336
> plot(fit, get.data=T)

The plot was displayed in Figure 2.2.

The first argument to locfit() is the model formula NOx˜E specifying
the local regression model and is read as “NOx is modeled by E”. The
data=ethanol argument specifies a data frame where the variables in the
model formula may be found; if the data argument is omitted, currently
attached data directories are searched. The use of model formulae and
data frames follows chapter 2 of Chambers and Hastie (1992). The third
argument to the locfit() function, alpha, controls the bandwidth. Here,
a nearest neighbor based bandwidth covering 50% of the data is used. The
fit could also be generated by

> fit <- locfit.raw(ethanol$E, ethanol$NOx, alpha=0.5)

The fit returned by the locfit() call is an S object, with the "locfit"
class. Printing the fit then shows a short summary. The plot(fit) com-
mand then calls the plot method plot.locfit(). The get.data=T argu-
ment adds the original data to the plot.

Confidence intervals can be added to the plot with the band= argument,
for example,

> plot(fit,band="global")

adds confidence intervals under the assumption that the residual variance
σ2 is constant. If band="local", an attempt is made to estimate σ2 lo-
cally. If band="pred", prediction bands (2.17) are computed under the
constant variance assumption. Variance estimation and confidence bands
are discussed in more detail in Chapter 9.
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3.2 Customizing the Local Fit

The locfit() function has additional arguments to control the fit. The
most important are described in this section; others are introduced through-
out the book as they are needed.

Smoothing Parameter. The alpha argument, used in Example 3.1,
controls the bandwidth. When alpha is given as a single number, it repre-
sents a nearest neighbor fraction, as described in section 2.2.1.

Example 3.2. (Changing the Smoothing Parameter.) We compute lo-
cal regression fits for the ethanol dataset, with four different smoothing
parameters:

> alp <- c(0.8,0.6,0.4,0.2)
> for(a in alp) {
+ fit <- locfit(NOx˜E, data=ethanol, alpha=a)
+ plot(fit, get.data=T, main=paste("alpha =",a))
+ }

The fits are as shown in Figure 2.3 (For the actual code producing the
trellis display, see section B.4).

More generally, alpha can be specified as a vector with two components.
The second component represents a constant bandwidth, so alpha=c(0,1)
implies h(x) = 1 is used everywhere. If both the nearest neighbor and fixed
components are nonzero, both bandwidths are computed, and h(x) will be
chosen as the larger component. Specifically, if α = (α0, α1), the bandwidth
h(x) is computed as follows:

1. k = �nα0�.
2. Compute di = |x − xi|; i = 1, . . . , n and find the kth smallest d(k).

3. Return h(x) = max(d(k), α1).

The default smoothing parameter is alpha=c(0.7,0).
Degree of Local Polynomial. The degree of local polynomial is spec-

ified through the deg argument: deg=1 specifies a local linear fit; deg=2
species local quadratic (the default). For univariate fits, locfit supports
any degree, although there’s usually little reason to use degrees greater
than 3. For multivariate fits, deg=3 is the maximum.

The Weight Function. locfit supports several weight functions, listed
in Table 3.1. These are selected with the kern argument to the locfit()
function. For example,

> locfit(...,kern="gauss")

selects the Gaussian weight function. The default weight function is the
tricube. Note also the factor of 2.5 in the Gaussian weight function; this
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makes the scaling for the Gaussian weight function more comparable to the
compact weight functions.

rect Rectangular W (x) = 1, |x| < 1
tria Triangular W (x) = 1 − |x|, |x| < 1
epan Epanechnikov W (x) = 1 − x2, |x| < 1
bisq Bisquare W (x) = (1 − x2)2, |x| < 1
tcub Tricube W (x) = (1 − |x|3)3, |x| < 1
trwt Triweight W (x) = (1 − x2)3, |x| < 1
gauss Gaussian W (x) = exp(−(2.5x)2/2)
expl Exponential W (x) = exp(−3|x|)
minm Minimax See Section 13.3
macl McLain W (x) = 1/(x + ε)2

TABLE 3.1. The locfit weight functions.

3.3 The Computational Model

The definition of local regression formally requires solving a weighted least
squares problem for each fitting point x. But for large datasets, or the iter-
ative procedures discussed in later chapters, this becomes computationally
expensive.

The idea of a computational model began with the lowess algorithm
(Cleveland 1979) and was developed considerably by loess (Cleveland and
Grosse 1991). The local regression method is carried out at a small set of
fitting points. The fitted values and local slopes at these fitting points are
then used to define a fitted surface, which can be evaluated rapidly at any
point. locfit uses a similar computational model but differs in the way the
fitting points are chosen. In particular, the locfit computational model
is bandwidth adaptive, choosing the most fitting points in regions where
the smallest bandwidths are used. The algorithm is described more fully in
Chapter 12.

The determination of fitting points and the direct fitting are performed
by the locfit() function. The predict.locfit() and preplot.locfit()
methods are used to interpolate the fits. These functions have a similar set
of arguments but differ in the returned objects: predict.locfit() returns
a vector of the predicted values, while preplot.locfit() returns an object
with the "preplot.locfit" class. This object contains prediction points,
predicted values and other information required to produce a plot.

Example 3.3. For the fit to the ethanol dataset, the fitted surface is
evaluated at E = 0.6, 0.8 and 1.0:

> fit <- locfit(NOx˜E, data=ethanol, alpha=0.5)
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> predict(fit, c(0.6,0.8,1.0))
[1] 0.7239408 2.7544413 3.1183651

The two arguments to predict() are the "locfit" object and the
newdata of prediction points. The latter can have one of several forms,
including a vector, data frame, matrix or grid margins. See Appendix B.1
for more details.

3.4 Diagnostics

3.4.1 Residuals
The residuals of a locfit model can be found with the command

> res <- residuals(fit)

which calls the residuals method residuals.locfit().
Example 3.4. Smoothed residual plots are constructed for the four fits

in Figure 2.3:

> alp <- c(0.8,0.6,0.4,0.2)
> for(a in alp) {
+ fit <- locfit(NOx˜E, data=ethanol, alpha=a)
+ res <- residuals(fit)
+ fit2 <- locfit.raw(ethanol$E, res, alpha=0.2)
+ plot(ethanol$E, res, main=paste("alpha =",a),
+ ylim = c(-1,1))
+ lines(fit2)
+ abline(h=0, lty=2)
+ }

Figure 2.5 showed the smoothed residual plots. Note that locfit.raw()
is used to smooth the residuals, since the residuals are not stored on the
ethanol data frame.

3.4.2 Cross Validation
The cross validation and CP criteria can be computed from information
stored on a "locfit" object. We begin with GCV, since this is most direct.

Example 3.5. From the ethanol fit, we extract a dp component that
contains information about the fit:1

> fit <- locfit(NOx˜E, data=ethanol, alpha=0.5)

1Here, and elsewhere, users of S version 3 must substitute $ for @.
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> fit@dp
nnalph fixh adpen cut lk df1 df2 rv

0.5 0 0 0.8 -4.53376 7.013307 6.487448 0.1126948

The components of interest to us are lk (−0.5 times the residual sum of
squares), df1 (tr(L)) and df2 (tr(L′L)). Since this dataset contains 88
points, the GCV score is computed as

> gencv <- 88*(-2*fit@dp["lk"])/(88-fit@dp["df1"])ˆ2
> gencv

lk
0.1216522

In fact, locfit provides two functions, gcv() and gcvplot(), to simplify
this. gcv() automatically calls locfit(), and returns a vector with four
components: the log-likelihood (−0.5 times the residual sum of squares),
the degrees of freedom according to the influence and variance definitions,
and the GCV score. The arguments for gcv() are exactly the same as for
locfit().
gcvplot() is a wrapper function for gcv(). It is provided a vector of

smoothing parameters, and calls gcv() in turn for each parameter. It re-
turns an object with the "gcvplot" class; the plot method defined for this
class produces cross validation plots such as those in Figure 2.7.

Example 3.6. The gcvplot() function is applied to the ethanol dataset
for a range of smoothing parameters:

> alpha <- seq(0.2, 0.8, by=0.05)
> plot(gcvplot(NOx˜E, data=ethanol, alpha=alpha),
+ ylim=c(0,0.2))

Figure 2.7 showed the result. Note that each smoothing parameter here is
a nearest neighbor fraction; to use constant bandwidths, alpha should be
a two-column matrix with the first column 0.

The cross validation approach is only slightly more complicated. We can
use the definition directly by using a special cross validation evaluation
structure, ev="cross":

> fit <- locfit(NOx˜E, data=ethanol, alpha=0.5, ev="cross")
> -2*fit@dp["lk"]/88

lk
0.1171337

This deletes each observation in turn and computes the fit, so should only
be used for fairly small datasets. For large datasets, an approximation is

> fit <- locfit(NOx˜E, data=ethanol, alpha=0.5)
> r <- residuals(fit)
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> infl <- fitted(fit,what="infl")
> mean((r/(1-infl))ˆ2)
[1] 0.1190185

The small discrepancy here is because the fitted values and influence func-
tion are being interpolated rather than computed directly at each point. A
simpler alternative is

> mean(residuals(fit,cv=T)ˆ2)
[1] 0.1177989

When provided with the cv=T argument, the residuals.locfit() func-
tion computes the values

(1 + infl(xi))(Yi − µ̂(xi)). (3.1)

Thus the sum of squares in this case is
n∑

i=1

((1 + infl(xi))(Yi − µ̂(xi)))
2 (3.2)

rather than the exact cross validation. Clearly, the two approaches are
asymptotically equivalent in large samples, when infl(xi) is small. The mo-
tivation for (3.1) will become clear in Chapter 4, where (3.1) generalizes
naturally to local likelihood problems. Droge (1996) argued that (3.2) pro-
vides a better estimate of the prediction mean squared error in finite sam-
ples. A pair of functions, lcv() and lcvplot(), are provided to implement
this cross validation method.

The pair of functions, cp() and cpplot(), implement the CP method.
The implementation is again similar to gcv(), but now requires an esti-
mate of the residual variance σ2. By default, cpplot() takes the variance
estimate (2.18) from the fit with the largest degrees of freedom ν2.

3.5 Multivariate Fitting and Visualization

To specify a multivariate local regression model, multiple terms are speci-
fied on the right-hand side of the model formula.

Example 3.7. We consider the ethanol dataset used in Figure 2.1. A
second predictor variable, C, was not considered previously and measures
the compression ratio of the engine. The fit is computed by:

> fit <- locfit(NOx˜E+C, data=ethanol, alpha=0.5, scale=0)
> plot(fit, get.data=T)
> plot(fit, type="persp")

The formula can be given either as NOx˜E+C or NOx˜E*C; both will give the
same results. Figure 3.1 shows the resulting contour and perspective plots.
If type="image", the plot is produced using the S-Plus image() function.
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FIGURE 3.1. Bivariate local regression for the ethanol data.
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An important argument in the multivariate case is scale. This provides a
set of scales sj to use in the distance computation (2.10), thereby controlling
the relative amounts of smoothing in each variable. Specifying scale=0
results in the sample standard deviations of each of the variables being
computed and used as scales. One can also compare fits with different
choices of scales using cross validation methods.

The contour plot and perspective plot in Figure 3.1 both display the
fitted surface, but serve different visualization purposes. No general claim
can be made that one of these displays is better. Either display shows that
NOx is much more heavily dependent on E than on C. The general nature
of this dependence - first increasing, then decreasing, as E increases - is
more readily apparent in the perspective plot. On the other hand, values
of the fitted surface are more readily judged from the contour plot. As an
exercise, try to estimate µ̂(0.7, 13) from the perspective plot, and then do
the same from the contour plot.

What about the dependence on C? Both plots appear to show some in-
crease in NOx with C, although it is difficult to preceive the precise nature
of the relationship. Is there any interaction between the two variables? Nei-
ther plot is good for answering this type of question. An alternative display
is of one dimensional cross sections of the fit. The S Trellis library (Becker,
Cleveland, Shyu and Kaluzny 1994) provides a convenient mechanism for
producing such plots. An interface is provided in the plot.locfit() func-
tion, by specifying a panel variable pv, which is varied within a panel of the
trellis display, and a tv, which is varied between panels of the trellis display.
A final argument, mtv, specifies the number of panels for the display.

Example 3.8. To run this example, trellis graphics must be initialized,
using the trellis.device() function. We plot the bivariate fit to the
ethanol dataset, using E as the trellis variable:

> fit <- locfit(NOx˜E+C, data=ethanol, alpha=0.5, scale=0)
> plot(fit, pv="C", tv="E", mtv=9, get.data=T)

Figure 3.2 display the results. The slight dependence of NOx on C is much
easier to see in this plot than in Figures 3.1 and 3.3.

3.5.1 Additive Models
The definition of multivariate local regression extends to any number of
dimensions. But beyond two or three dimensions, a local regression model
is difficult to fit, due to both the rapid increase in the number of parameters
in the local model and the sparsity of data in high dimensional spaces. In
addition, visualization of a high dimensional surface is difficult.

Because of these problems, a number of simplified models have been
proposed. Typically, these methods build a fitted surface by applying local
regression (or other smoothers) to low dimensional projections of the data.
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FIGURE 3.2. Bivariate local regression: Ethanol data sectioned by equivalence
ratio E.

The most widely studied model of this type is the additive model, which
for two predictors x and z has the form

µ(x, z) = µ1(x) + µ2(z)

where µ1(x) and µ2(z) are smooth functions. The backfitting algorithm
can be used to fit the model and alternately estimates the components.
A thorough account of additive models and the backfitting algorithm can
be found in Hastie and Tibshirani (1990). Opsomer and Ruppert (1997)
discuss some theoretical properties of the backfitting algorithm.

Additive models are fitted in S using the gam() function described in
Hastie (1992). To use locfit for the additive component, functions lf()
and gam.lf() are provided. The lf() function is used in the model formula;
at the time of writing it accepts the alpha, deg, ev and kern arguments.
We remark that the gam library also includes a lo() function for fitting
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additive terms using local regression and loess. The lf() function has
considerably more flexibility.

Example 3.9. An additive model is fitted to the ethanol dataset. We
use a local quadratic term with alpha=0.5 for the equivalence ratio and a
local linear term for the compression ratio.

> library("locfit",first=T)
> fit <- gam(NOx˜lf(E,alpha=0.5)+lf(C,deg=1),data=ethanol)
> plot(fit)

Figure 3.3 plots the two additive components, showing nearly linear depen-
dence on C and the peaked dependence on E. One has to look closely at the
scales to see that the E dependence is much stronger.

Important: For this example to work properly, you must specify first=T
when attaching the locfit library, or otherwise ensure "lf" appears in
your gam.slist variable.

A special case of the additive model is the partially linear model:

µ(x, z) = µ1(x) + 〈β, z〉 .

This model is particularly attractive since the backfitting algorithm has a
closed form limit:

β̂ =
(
XT

2 (I − L1)X2
)−1

XT
2 (I − L1)Y, (3.3)

where X2 is the design matrix for the parametric component and L1 is the
hat matrix for the smooth component. See Hastie and Tibshirani ((1990),
page 118). This model can be fitted using gam(). For example,

> gam(NOx˜lf(E,alpha=0.5)+C, data=ethanol)

produces a fit that is smooth in E and linear in C.
Using a slightly different motivation, Robinson (1988) and Eubank and

Speckman (1993a) arrive at a modified form of (3.3), using (I−L1)T (I−L1)
in place of I−L1. Other references on partially linear models include Engle,
Granger, Rice and Weiss (1986), Green (1987) and Severini and Staniswalis
(1994). A more thorough review is provided by Ichimura and Todd (1999).

3.5.2 Conditionally Parametric Models
The conditionally parametric model is similar to the partially linear model,
in that the fit is smooth in some variables and parametric in others. But
the conditionally parametric fit allows all coefficients of the parametric
variables to depend on the smoothing variables. A conditionally quadratic
fit has the form

µ(x, z) = a0(x) + a1(x)z + a2(x)z2.
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For fixed x, µ(x, z) is a quadratic function of z. But all three coefficients,
a0(x), a1(x) and a2(x), are allowed to vary as a function of x. This differs
from the partially linear model in which only a0(x) is allowed to depend
on x.

The conditionally parametric fit was considered in detail by Cleveland,
Grosse and Shyu (1992) and Cleveland (1994). In particular, they provide
a conceptually straightforward way to fit the model: Simply fit a bivariate
local regression in x and z but ignore the z variable when computing the
distances and smoothing weights. The varying coefficient model (Hastie
and Tibshirani 1992) is a broad class of models that encompasses both
conditionally parametric fits and partially linear models.

To fit a conditionally parametric model in locfit, one uses the special
cpar() function in the model formula. For example,

> locfit(NOx˜E+cpar(C), data=ethanol, alpha=0.5)

produces a fit that is conditionally quadratic in C.

3.6 Exercises

3.1 a) Try to fit the ethanol dataset using local constant and local lin-
ear fitting. By varying the bandwidth (using both the fixed and
nearest neighbor components, if necessary), can a fit comparable
to the local quadratic fit in Figure 2.2 be obtained? Pay atten-
tion to both proper modeling of the peak and the leveling off at
the boundaries, and to the roughness of the estimates.

b) Compute the GCV scores for local linear fitting, and compare
with the results of local quadratic fitting in Figure 2.7.

3.2 The diabetes dataset used by Hastie and Tibshirani (1990) consists
of a predictor variable age and response lcp.

a) Produce a scatter plot of the data. Does the residual variance
look constant?

b) Fit a local regression model. Construct appropriate smoothed
residual plots to investigate the nonhomogeneous variance fur-
ther. (You’ll probably conclude that the nonhomogeneity is real,
but much less than might have been guessed from the scatter-
plot).

Note: the dataset can be accessed using data=diab in locfit.

3.3 Consider the L1 cross validation of Exercise 2.8. Write a modified
version of gcv() to implement the L1 generalized cross validation
(use residuals() to get Yi − µ̂(xi)). Apply this to the NOx˜E model
for the ethanol dataset, and compare with Figure 2.7.
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Hint: See Appendix B.2.

3.4 In this exercise, generalized cross validation is used to compare con-
ditionally parametric fits with bivariate smooth fits for the ethanol
dataset.

a) Make a GCV plot for the model NOx˜E+C, with scale=0. Use
smoothing parameters ranging from 0.25 to 0.8.

b) Repeat for the conditionally parametric model NOx˜E+cpar(C).
Use both the conditionally quadratic (the default) and condi-
tionally linear, by setting deg=1. Compare the results.

c) scale=0 is equivalent to scale=c(0.204,3.932) (the sample
standard deviations). Compute the GCV plot for other scale
parameters, such as scale=c(0.204,8). The conditionally para-
metric fit is obtained as the second component tends to infinity.

3.5 This exercise compares asymptotic and finite sample approximations
to the local regression variance.

a) Generate a sample with n = 50, with xi sampled i.i.d. from
the standard normal distribution. Also generate a sample Yi ∼
N(0, 1) (the mean function doesn’t matter for this exercise).

b) Compute a local linear fit, with constant bandwidth h = 1.
Plot the standard deviation ‖l(x)‖ using the locfit command
plot(fit,what="nlx"). Compute and plot the asymptotic ap-
proximation (2.39). Note that∫

W (v)2dv/(
∫

W (v)dv)2 = 175/247

for the tricube weight function. Remember the square root!

c) Repeat using a nearest neighbor bandwidth with α = 0.7. When
computing the asymptotic variance, approximate the nearest
neighbor bandwidth by h(x) ≈ α/(2f(x)).

d) Repeat this exercise using two predictor variables, with both
components i.i.d. N(0, 1).
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Local Likelihood Estimation

Generalized linear models (McCullagh and Nelder 1989) provide a gener-
alization of linear regression to likelihood models, for example, when the
responses are binary or Poisson count data. Fitting of smooth likelihood
models dates to Henderson (1924b), who fitted penalized likelihood models
to binary data. This paper, although rarely referred to in modern literature,
is particularly noteworthy as it was one of the earliest works on likelihood
based regression models.

In this chapter a local likelihood approach is used. This was first proposed
in Brillinger (1977) and studied in detail by Tibshirani (1984), Tibshirani
and Hastie (1987) and Staniswalis (1989) among others. The local likelihood
model is described in Section 4.1. Section 4.2 discusses fitting with locfit.
Section 4.3 introduces diagnostic procedures for local likelihood models,
including residuals and model assessment criteria. Section 4.4 presents some
theoretical results for local likelihood, including existence of the estimates
and approximations to the bias and variance.

4.1 The Local Likelihood Model

The likelihood regression model assumes response variables have a density

Yi ∼ f(y, θi)
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where θi = θ(xi) is a function of the covariates xi. Examples include the
exponential distribution with mean θ,

f(y, θ) =
1
θ
e−y/θI[0,∞)(y)

and the discrete Bernoulli distribution with parameter p,

f(0, p) = 1 − p; f(1, p) = p.

Let l(y, θ) = log(f(y, θ)). The global log-likelihood of a parameter vector
θ = (θ(x1), . . . , θ(xn)) is

L(θ) =
n∑

i=1

l(Yi, θ(xi)). (4.1)

A generalized linear model assumes θ(x) has a parametric linear form; for
example, θ(x) = a0 + a1x. The local likelihood model no longer assumes
a parametric form but fits a polynomial model locally within a smoothing
window. The local polynomial log-likelihood is

Lx(a) =
n∑

i=1

wi(x)l(Yi, 〈a, A(xi − x)〉). (4.2)

Maximizing over the parameter a leads to the local likelihood estimate.

Definition 4.1 (Local Likelihood Estimate) Let â be the maximizer
of the local likelihood (4.2). The local likelihood estimate of θ(x) is

θ̂(x) = 〈â, A(0)〉 = â0.

Example 4.1. (Local Logistic Regression.) Consider the Bernoulli
regression model, where

P (Yi = 1) = p(xi); P (Yi = 0) = 1 − p(xi).

The log-likelihood is

l(Yi, p(xi)) = Yi log(p(xi)) + (1 − Yi) log(1 − p(xi))

= Yi log
(

p(xi)
1 − p(xi)

)
+ log(1 − p(xi)).

A local polynomial approximation could be used for p(xi). But this isn’t
necessarily a good idea, since 0 ≤ p(xi) ≤ 1, while polynomials have no
such constraints. Instead, the interval (0, 1) is mapped to (−∞,∞) using
the logistic link function

θ(x) = log
(

p(x)
1 − p(x)

)
.
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Correspondingly, the local polynomial log-likelihood is

Lx(a) =
n∑

i=1

wi(x)
(
Yi 〈a, A(xi − x)〉 − log(1 + e〈a,A(xi−x)〉)

)
.

The local polynomial estimate is θ̂(x) = â0. To estimate p(x), the link
function is inverted:

p̂(x) =
eθ̂(x)

1 + eθ̂(x)
.

Definition 4.2 (Link Function) Suppose f(y, θ) is a parametric family
of distributions, with mean

µ = µ(θ) = Eθ(Y ).

Suppose further that µ(θ) is 1-1. The link function is the inverse mapping
of this relation; that is, the function g( · ) satisfying

θ = g(µ).

The local likelihood estimate of µ(x) is

µ̂(x) = g−1(θ̂(x)).

In parametric regression models, the choice of link function is largely
dictated by the data. If the true mean is log-linear, one has to use the
log link. With local regression models, one does not assume the model is
globally correct, so the choice of link can be driven more by convenience.
One compelling requirement, used to motivate the logistic link in Example
4.1, is that the parameter space for θ(x) be (−∞,∞). For non-negative
parameters, the log link is often a natural choice. Another requirement is
that l(y, θ) be concave. This helps ensure stability of the local likelihood
algorithm; see Section 4.4.

The variance stabilizing link satisfies

−E
∂2

∂θ2 l(Y, θ)

is constant, independent of the parameter θ. When the link satisfies this
property, var(θ̂(x)) is also independent of θ(x), at least asymptotically (see
Section 4.4). This property is used for confidence interval construction in
Section 9.2.3.

Another link, the canonical link, has some attractive theoretical proper-
ties. An exponential family of distributions has densities of the form

f(y, µ) = exp(τ(µ)y − ψ(µ))f0(y).
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The canonical link is θ = τ(µ). When a local polynomial model is used for
θ(x), the local likelihood (and hence θ̂(x)) Lx(a) depends on the data only
through

∑n
i=1 wi(x)A(xi − x)Yi. This locally sufficient statistic simplifies

theoretical calculations.

4.2 Local Likelihood with locfit

locfit supports local likelihood regression with a variety of families and
link functions, as summarized in Table 4.1. By default, a Gaussian family
is assumed; this is the standard local regression discussed in Chapter 2.

Link Function
ident log logit inverse sqrt arcsin

Gaussian d,c,v
Binomial y d,c v
Poisson y d,c v
Gamma y d,v c

Geometric y d
Von Mises d,v
Cauchy d,v
Huber d,v

TABLE 4.1. Supported local likelihood families and link functions: default link
(d), canonical link (c), variance stabilizing link (v) and other supported links (y).

Example 4.2. The mine dataset consists of a single response; the num-
ber of fractures in the upper seam of coal mines. There are four predic-
tor variables. Fitting log-linear Poisson models, Myers (1990) showed that
one predictor variable (percentage of extraction from the lower seam) was
highly significant, while two other predictors had some importance. Here,
we use the single predictor variable extrp and fit using a local log-linear
model. The variable selection problem is considered later.

> fit <- locfit(frac˜extrp, data=mine, family="poisson",
+ deg=1, alpha=0.6)
> plot(fit, band="g", get.data=T)

The Poisson family is specified by the family argument. The default link is
the log link (Table 4.1); the plot() method automatically back-transforms
to display the estimated mean (Figure 4.1). The plot also shows approxi-
mate 95% pointwise confidence intervals for the mean.

The plot shows the mean initially increases, then levels off for extrp >
80. The confidence intervals suggest the leveling off is a real feature; the
bands do not cover any curve of the form ea+bx, and thus a log-linear model
would appear inadequate for this dataset.
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FIGURE 4.1. Mine fracture dataset: local Poisson regression.

Example 4.3. Mortality data of the type considered in Figure 1.1 is
one example of binomial data; the observed mortality rates for each age are
the number of deaths divided by the number of patients. Unfortunately, the
original source for this dataset did not give the number of patients. Here,
we use a second mortality dataset, from Henderson and Sheppard (1919)
for which this information is available. The number of trials at each age is
given as the weights argument to the locfit() call:

> fit <- locfit(deaths˜age, weights=n, family="binomial",
+ data=morths, alpha=0.5)
> plot(fit, band="g", get.data = T)

Figure 4.2 displays the fit, with 95% pointwise confidence intervals. The
data has been smoothed using local quadratic logistic regression, with near-
est neighbor span of 0.5. This shows a gradual increasing trend, with some
wild behavior at the right boundary. One must be careful when interpret-
ing this plot because there are large differences in the weights. For ages
between 70 and 80, there are as many as 150 at-risk patients, but just one
for age=99. Likewise, there are just six patients for ages 55 and 56; this
(as well as the usual boundary variability) leads to the wide confidence
intervals at the left boundary.

We now define the families supported by locfit. Each family is specified
using the mean parameter µ(xi). Also included is a weight parameter ni,
which for most families can be interpreted as a prior weight or the number
of replications for each observation.
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FIGURE 4.2. Local logistic regression for mortality data of Henderson and Shep-
pard.

The Gaussian family has densities

fYi(y) =
√

ni√
2πσ2

exp
(
− ni

2σ2 (Yi − µ(xi))2
)

,

and the local likelihood criterion is equivalent to the local least squares
criterion. Thus, family="gauss" produces the local regression estimate,
but assumes σ2 = 1. This distinction is important when constructing con-
fidence intervals; the usual family for local regression is the quasi family
family="qgauss". For more discussion of this distinction, see the discus-
sion of quasi-likelihood in Section 4.3.4.

The binomial family has probability mass function

P (Yi = y) =
(

ni

y

)
µ(xi)y(1 − µ(xi))ni−y; y = 0, 1, . . . , ni. (4.3)

The Bernoulli distribution (ni = 1) represents the outcome of a single
trial with success probability µ(xi). The binomial distribution counts the
number of successes in ni independent trials.

The Poisson family is used to model count data. The distribution has
the mass function

P (Yi = y) =
(niµ(xi))y

y!
e−niµ(xi); y = 0, 1, 2, . . . . (4.4)
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The exponential and gamma families (family="gamma") are often
used to model survival times. The gamma density function is

fYi
(y) =

µ(xi)−niyni−1

Γ(ni)
e−y/µ(xi); y ≥ 0. (4.5)

The special case ni = 1 is the exponential distribution.
The geometric and negative binomial families (family="geom") can

be regarded as discrete analogs of the exponential and gamma distributions.
The negative binomial distribution has mass function

P (Yi = y) =
(

ni + y − 1
ni − 1

)
µ(xi)y

(1 + µ(xi))ni+y
; y = 0, 1, . . . . (4.6)

The geometric distribution is the special case ni = 1. If one observes a se-
quence of Bernoulli trials with success probability p(xi) = µ(xi)/(1+µ(xi)),
the geometric distribution models the number of successes observed before
a single failure. The negative binomial distribution models the number of
successes until ni failures are observed.

The von Mises family (family="circ") has densities

fYi
(y) =

1
I(ni)

eni cos(y−µ(xi)); −π ≤ y ≤ π,

where I(ni) is a normalizing constant. This distribution is frequently used
to model datasets where the responses are angular or measured on a circle.
Regression models for µ(x) were introduced by Gould (1969). Fisher (1993)
is an extensive resource for statistical methods for circular data.

Numerically, the von Mises family can be difficult to fit, since the log-
likelihood has multiple local maxima. If µ̂(x) is a local likelihood estimate,
so is µ̂(x) + 2π. More serious problems are caused by adding a linear term.
If the xi are uniform random variables (and hence irrational), some number
theoretic arguments show one can come arbitrarily close to interpolation,
simply by choosing a linear function with a carefully chosen large slope.

This is related to the barber’s pole problem discussed by Gould (1969)
and in more detail by Johnson and Wehrly (1978) and Fisher and Lee
(1992), who discuss various ways of restricting µ̂(x) to [−π, π]. None of the
solutions seem entirely satisfactory, since µ(x) may genuinely have multiple
circles over the range of the data. For practical purposes, the identifiability
problems shouldn’t create too much difficulty, unless the data is close to
uniform. It also helps if the origin is chosen as a favored direction, so the
estimate shouldn’t skip from −π to π.

The Cauchy and Huber families are intended mainly for local robust
regression. A full description is given in Section 6.4.
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4.3 Diagnostics for Local Likelihood

This section discusses diagnostic and model selection issues for local likeli-
hood. Largely, the techniques are natural extensions of the local regression
methodology discussed in Section 2.3. Work devoted to diagnostic issues for
local likelihood includes Firth, Glosup and Hinkley (1991) and Staniswalis
and Severini (1991). The methods are generally similar to techniques used
in parametric generalized linear models by McCullagh and Nelder (1989).

4.3.1 Deviance
In Chapter 2, we developed diagnostic methods based on the residuals
Yi − µ̂(xi), and the residual sum of squares. For local likelihood models,
these tools are less natural. For example, for the gamma family (4.5), µ(x)
is a scale parameter. In this case, it is more natural to consider diagnostics
based on the ratio Yi/µ̂(xi) rather than the difference Yi − µ̂(xi).

The natural predictor of a future observation at a point x is g−1(θ̂(x))
where g( · ) is the link function. One possible loss function is the deviance,
for a single observation (x, Y ), defined by

D(Y, θ̂(x)) = 2
(

sup
θ

l(Y, θ) − l(Y, θ̂(x))
)

.

It is easily seen that D(Y, θ̂) ≥ 0, and D(Y, θ̂) = 0 if Y = g−1(θ̂). Since it is
based on the likelihood, the deviance provides a measure of the evidence an
observation Y provides against θ̂(x) being the true value of θ(x). With a
Gaussian likelihood and σ = 1, the deviance is simply the squared residual.

The total deviance is defined as
n∑

i=1

D(Yi, θ̂(xi)). (4.7)

This generalizes the residual sum of squares for a regression model.
Example 4.4. Let Yi be an observation from the gamma family with

parameters ni (known) and µi (unknown). The log-likelihood is

l(Yi, µi) = −ni log(µi) + (ni − 1) log(Yi) − Yi

µi
− log(Γ(ni)).

For fixed Yi and ni, this is maximized at µi = Yi/ni. Thus, the deviance
for an estimate µ̂i is

D(Yi, µ̂i) = 2
(

−ni log(
Yi

niµ̂i
) +

Yi

µ̂i
− ni

)
.

As expected, this depends on Yi and µ̂i only through the ratio Yi/µ̂i. Using
the Taylor series approximation log(x) ≈ x − 1 − (x − 1)2/2 yields

D(Yi, µ̂i) ≈ 1
niµ̂2

i

(Yi − niµ̂i)
2
.
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The variance of Yi is niµ
2
i . Thus, the deviance is approximately (Yi −

E(Yi))2/var(Yi). As ni → ∞, one has the limiting distribution

D(Yi, µ̂i) ⇒ χ2
1, (4.8)

provided µ̂i is consistent. This limiting distribution can be generalized to
other likelihoods.

4.3.2 Residuals for Local Likelihood
In the case of generalized linear models, a number of suitable extensions
of the definition of residuals are discussed in McCullagh and Nelder (1989,
section 2.4) and Hastie and Pregibon (1992, page 205). Four possible defi-
nitions are:

• Deviance residual

ri = sign(Yi − µ̂i)D(Yi, θ̂i)1/2;

• Pearson residual
ri =

Yi − µ̂i√
Vi

;

• Response residual
ri = Yi − µ̂i;

• Likelihood derivative
ri =

∂

∂θ
l(Yi, θ̂i),

where θ̂i = θ̂(xi), µ̂i = µ̂(xi) and Vi = var(Yi). For the sample residuals,
these are estimated using the fitted values.

For the Gaussian likelihood, all four definitions produce the residuals
Yi − µi. For other likelihoods, the definitions do not coincide, and all have
slightly different interpretations. The Pearson residuals all have variance
1, and under the assumption ni → ∞, the residuals are asymptotically
N(0, 1). Using (4.8), the deviance residuals have a similar property.

Example 4.5. We compute residuals for the mortality data of Hen-
derson and Sheppard used in Example 4.3. The residuals are found using
locfit’s residuals() function. The type of residual is specified by the
type argument; the default is the deviance residuals:

> for(ty in c("deviance", "pearson", "response", "ldot")) {
+ res <- residuals(fit, type=ty)
+ plot(morths$age, res, main=ty, type="b")
+ abline(h = 0, lty = 2)
+ }
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FIGURE 4.3. Residual plots for the mortality data of Henderson and Sheppard.

Figure 4.3 shows four sets of residuals plotted against age. Given the
small sample sizes, there is little benefit to smoothing the residual plots, so
points are simply joined by lines. No strong patterns appear in the residual
plots. Both the deviance and Pearson residuals are mainly in the interval
[−2, 2], which indicates that the binomial model adequately models the
variability of this dataset.

4.3.3 Cross Validation and AIC
To help guide the choice of local likelihood model, we need extensions of
the cross validation and CP methods introduced in Chapter 2. It is natural
to consider methods based directly on the likelihood or deviance functions.

Definition 4.3 The likelihood (or deviance) cross validation criterion
is defined by substituting the leave-xi-out estimate θ̂−i(xi) in the total
deviance (4.7);

LCV(θ̂) =
n∑

i=1

D(Yi, θ̂−i(xi))
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= C − 2
n∑

i=1

l(Yi, θ̂−i(xi)) (4.9)

where C depends on the observations Yi, but not the estimate θ̂(x) and
hence not the bandwidth or local polynomial degree.

Computation of the n leave-xi-out estimates can be expensive. An al-
ternative to deletion methods is the method of infinitesimal perturbations,
developed in Cook (1977) for linear models, and Pregibon (1981) for logis-
tic regression models. The technique underlies Theorem 2.2, which relates
the deletion estimate µ̂−i(xi) with the estimate µ̂(xi) and the influence
function infl(xi).

In the local likelihood setting, the simplification of Theorem 2.2 no longer
holds. Instead, approximations must be developed; details are provided in
Section 4.4.3 and Exercise 4.6. First, we identify an influence function such
that

θ̂−i(xi) ≈ θ̂(xi) − infl(xi)l̇(Yi, θ̂(xi)). (4.10)

We use l̇(y, θ) and l̈(y, θ) to denote the first and second partial derivatives
of l(y, θ) with respect to θ. Substituting (4.10) into the deviance and using
a one-term Taylor series gives

D(Yi, θ̂−i(xi)) ≈ D(Yi, θ̂i(xi)) + 2infl(xi)l̇(Yi, θ̂(xi))2.

Summing this over all observations gives an approximation to the likelihood
cross validation statistic (4.9). Since E(l̇(Y, θ)2) = −E(l̈(Y, θ)), the fitted
degrees of freedom are defined as

ν1 =
n∑

i=1

infl(xi)E(−l̈(Yi, θ̂(xi))).

This leads to a generalization of the Akaike information criterion (Akaike,
1973, 1974) to local likelihood models.

Definition 4.4 The Akaike information criterion (AIC) for local like-
lihood is

AIC(θ̂) =
n∑

i=1

D(Yi, θ̂(xi)) + 2ν1 (4.11)

where ν1 is the degrees of freedom for the local likelihood fit.

Example 4.6. We apply the AIC statistic to the mine dataset, sing a
variety of nearest neighbor bandwidths:

> a <- seq(0.4, 1, by=0.05)
> plot(aicplot(frac˜extrp, data=mine, family="poisson",
+ deg=1, alpha=a))
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FIGURE 4.4. Akaike information criterion for the mine dataset.

The aicplot() function is similar to gcvplot() (Section 3.4.2). Figure
4.4 shows the AIC plot. The minimum AIC occurs at about 2.9 degrees of
freedom (α = 0.6). Larger smoothing parameters (i.e., smaller degrees of
freedom) result in inferior fits. This provides evidence that the parametric
log-linear model is inadequate for this dataset, and the curvature in Figure
4.1 is real.

4.3.4 Overdispersion
If a likelihood model correctly models a dataset, the Pearson residuals de-
fined in Section 4.3.2 should have mean 0 and variance 1. The deviance
residuals are similar, using the approximation of Example 4.4. If the resid-
uals exhibit a nonzero mean (for example, several successive residuals have
the same sign), this indicates that the data is oversmoothed, and smaller
bandwidths should be used.

Overdispersion occurs when the residuals have variance larger than 1. For
example, the Poisson distribution has the property var(Yi) = E(Yi). But
count data often exhibit more variability than this relation can explain.
The mean can still be estimated using Poisson regression, but the variance
of µ̂(x) may be severely underestimated.

There are several ways to handle overdispersed data. One method is
through a variance stabilizing transformation, where one finds a function
g(Y ) such that the transformed data g(Yi) has approximately constant
variance. A local regression model is then fitted to the transformed data.
The most commonly used family of transformations is the Box-Cox, or
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power, family (Box and Cox 1964). A more sophisticated implementation
is the ATS (average, transformation and smoothing) method of Cleveland,
Mallows and McRae (1993), which includes a presmoothing step prior to
the transformation.

Another technique is to find a family of distributions that better fits the
data. For example, the negative binomial distribution (4.6) has mean wµ
and variance wµ(1 + µ); in this case, the variance is always larger than the
mean. One then estimates the shape parameter w and fits the corresponding
negative binomial model. An example using this approach is provided in
Section 7.3.1.

A cleaner solution is quasi-likelihood, introduced by Wedderburn (1974);
see also chapter 9 of Wedderburn (1974) and the recent book by Heyde
(1997). Fan, Heckman and Wand (1995) discuss the local quasi-likelihood
method. In quasi-likelihood models, one assumes a relation between the
mean and variance of the observations:

var(Yi) = σ2V (µi)

where V (µ) is a known function and σ2 is an unknown dispersion parame-
ter. For example, under a Poisson model, one has var(Yi) = µi, so the quasi-
Poisson model takes V (µ) = µ. Table 4.2 summarizes the variance relation-
ships for the common families supported in locfit. In locfit() calls, the
quasi-family is obtained, for example, with the family="qpoisson" argu-
ment.

Family Variance σ2V (µ)
quasi-Gaussian σ2

quasi-binomial σ2µ(1 − µ)
quasi-Poisson σ2µ
quasi-gamma σ2µ2

quasi-geometric σ2µ(µ + 1)

TABLE 4.2. Quasi-likelihood families and their variance functions.

Note that fitting a quasi-likelihood model is identical to fitting the corre-
sponding likelihood model. The difference is in variance estimation: While
the likelihood families assume the dispersion parameter is σ2 = 1, the
quasi-likelihood families estimate the dispersion parameter. The estimate
used by locfit is

σ̂2 =
n

n − 2ν1 + ν2

∑n
i=1 l̇(Yi, θ̂(xi))2∑n
i=1 l̈(Yi, θ̂(xi))

.
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4.4 Theory for Local Likelihood Estimation

This section addresses some of the theoretical issues concerning local like-
lihood. Our emphasis is on results that have immediate practical conse-
quences. First, we look at the motivation for maximizing the local likeli-
hood. Then, we turn to important computational concerns and related is-
sues such as existence and uniqueness. Finally, approximate representations
for the estimate are derived; this leads to bias and variance approximations,
and definitions of degrees of freedom.

4.4.1 Why Maximize the Local Likelihood?
The log-likelihood L(θ), for fixed θ, is a random variable, dependent on the
observations Y1, . . . , Yn. The mean E(L(θ)) is a function of the parameter
vector θ, and this mean function is maximized at the true parameter vector
θ. For any parameter vector θ∗, Exercise 4.2 shows that

E (L(θ∗)) ≤ E (L(θ)) . (4.12)

This motivates maximum likelihood: parameter values θ for which L(θ)
are the most likely values of θ, given the observed data. Thus, among a
class of candidate parameter vectors, we select the one that maximizes the
empirical log-likelihood.

This maximum likelihood property extends to the local log-likelihood:

E

(
n∑

i=1

wi(x)l(Yi, θ
∗
i )

)
≤ E

(
n∑

i=1

wi(x)l(Yi, θi)

)
(4.13)

with equality if and only if θ∗
i = θi for all i with wi(x) > 0. The local like-

lihood estimate considers candidate classes of the form θ∗
i = 〈a, A(xi − x)〉

and maximizes over this class of candidates.

4.4.2 Local Likelihood Equations
Assuming the likelihood is nicely behaved, the parameter vector â is a
solution of the local likelihood equations

n∑
i=1

wi(x)A(xi − x)l̇(Yi, 〈a, A(xi − x)〉) = 0, (4.14)

obtained by differentiating (4.2). In matrix notation, the local likelihood
equations can be written

XT Wl̇(Y,Xa) = 0 (4.15)
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where, as before, X is the design matrix and W is the diagonal matrix with
entries wi(x).

For most likelihoods, the local likelihood equations (4.14) do not have a
closed form solution, and must be solved by iterative methods. This leads
to two questions:

1. Does the maximizer â exist?

2. Is the maximizer â unique?

The following theorem addresses these questions for concave likelihoods.

Theorem 4.1 Suppose the log-likelihood l(y, θ) is defined for θ in an open
interval (a, b) (a = −∞ and b = ∞ are permitted); l(y, θ) has a continuous
derivative with respect to θ and l(y, θ) → −∞ as θ ↓ a or θ ↑ b. Further,
suppose WX has full column rank. Then the maximizer â exists and sat-
isfies the local likelihood equations (4.14). If in addition l(y, θ) is concave,
the solution of (4.14) is unique.

Proof: Let a(j) be a sequence of parameter estimates such that

lim
j→∞

Lx(a(j)) = sup
a

Lx(a). (4.16)

If a(j) has a limit point a∗, then by continuity, Lx(a∗) = supa Lx(a); hence
a∗ = â. Otherwise, ‖a(j)‖ → ∞; since WX has full rank, this implies
θ
(j)
i =

〈
a(j), A(xi − x)

〉→ ±∞ for some i with wi(x) > 0. But since l(y, θ)
is bounded above, this contradicts (4.16).

Since the parameter space is open, â lies in the interior, and thus is a
solution of the local likelihood equations. Differentiating (4.15) yields the
Jacobian matrix −J1(Xa), where

Jj(θ) = −
n∑

i=1

W

(
xi − x

h

)j

A(xi − x)A(xi − x)T l̈(Yi, θi)

= XT WjVX (4.17)

and V is a diagonal matrix with elements −(l̈(Yi, θi). The concavity of
l̈(Yi, θi) implies J1(θ) is positive definite; strictly so since XT W has full
rank. This implies uniqueness of â. �

Theorem 4.1 gives a number of conditions on the choice of parameteri-
zation that help ensure the local likelihood estimation is well behaved. Un-
fortunately the conditions are rather restrictive; particularly for discrete
families. Fortunately, modifying the results for specific families is usually
straightforward. Exercises 4.3 and 4.4 study the Poisson and Bernoulli fam-
ilies more closely.
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4.4.3 Bias, Variance and Influence
Because of the nonlinear definition of â, it is not possible to derive ex-
act means and variances of â; indeed, these often don’t exist because of
singularities that occur with small probabilities. For example, in the bi-
nomial family, there is always a positive probability that all responses
are 0, in which case the local likelihood estimate does not exist. We still
need distributional approximations for the local likelihood estimate, and to
make headway we need approximations to the estimate itself. We should
emphasize the approximations derived here depend on the design points
x1, . . . , xn, and not on an asymptotic design density. This is quite differ-
ent from previous results in Fan, Heckman and Wand (1995) and Fan and
Gijbels (1996, pages 196-197).

The results proceed in three parts. First, Theorem 4.2 establishes consis-
tency of the local likelihood estimate. Theorem 4.3 establishes the asymp-
totic representation of the estimate, from which variance approximations
can be derived. Theorem 4.4 derives a bias approximation using derivatives
of θ(x).

Theorem 4.2 Suppose l(y, θ) is concave, bounded and twice differentiable
for all y. Then for either random or regular designs,

Hâ
p→




θ(x)
0
...
0




aas h → 0 and nhd → ∞. Here, H is a diagonal matrix of powers of h;
HA(v/h) = A(v).

Remark: This result implies consistency of θ̂(x) = â0. It does not imply
the remaining elements of â converge to 0.

Proof: Applying the weak law of large numbers and using the continuity
of θ(x) one obtains, for any fixed vector a,

1
nhd

n∑
i=1

W

(
xi − x

h

)
l(Yi,

〈
a, A(

xi − x

h
)
〉

)

p→ f(x)
hd

∫ ∫
W

(
u − x

h

)
l(y,

〈
a, A(

u − x

h
)
〉

)el(y,θ(x))dydu

=
∫ ∫

W (v)l(y, 〈a, A(v)〉)el(y,θ(x))dydv

where f(x) is the design density. The left-hand side is maximized at a =
Hâ, while an argument similar to (4.13) shows the right-hand side is maxi-
mized at (θ(x), 0, . . . , 0)T . The theorem follows using convexity of the like-
lihood. �
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The components of the vector â should estimate the coefficient vector ã
of the Taylor series expansion of θ( · ) expanded around the fitting point x.
As a first step in obtaining an asymptotic representation, we look at the
discrepancy â − ã. This leads to the following result.

Theorem 4.3 Under the conditions of Theorem 4.2,

H(â − ã) = HJ−1
1 XT Wl̇(Y,Xã) + o((nhd)−1/2). (4.18)

Proof: Expanding the local likelihood equations yields

0 = H−1XT Wl̇(Y,Xâ)
= H−1XT Wl̇(Y,Xã) − H−1J1(â − ã) + o(nhdH(â − ã)),

and hence

H(â − ã) = HJ−1
1 XT Wl̇(Y,Xã) + o(H(â − ã)).

The result follows since HJ−1
1 XT Wl̇(Y,Xã) has size Op((nhd)−1/2). �

In Theorem 4.3, the first row of the matrix J−1
1 XT W plays a role similar

to the weight diagram in local regression. The influence function at xi is
defined to be the ith component of this weight diagram:

infl(x) = W (0)eT
1 J−1

1 e1.

This measures the sensitivity of the estimate θ̂(xi) to changes in l̇(Yi, θi).
A rather more subtle interpretation of the influence function is the leave-
xi-out cross validation approximation

θ̂−i(xi) = θ̂(xi) − infl(xi)l̇(Yi, θ̂i);

see Exercise 4.6. One also obtains an approximate variance of θ̂(xi) from
Theorem 4.3:

vari(x) = eT
1 J−1

1 J2J−1
1 e1. (4.19)

The fitted degrees of freedom for a local likelihood model are defined as

ν1 =
n∑

i=1

infl(xi)vi

ν2 =
n∑

i=1

vari(xi)vi (4.20)

where vi = −l̈(Yi, θ(xi)). One may prefer to use E(vi) in place of vi in
(4.20) and the matrices Jj , since the expected values are nonrandom and
necessarily positive, even when the log-likelihood is not concave. This is
essentially the question of observed versus expected Fisher information in
parametric models, and makes little difference asymptotically.
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The final step in the asymptotic representation is to identify the bias
of the local likelihood estimate. This can be expressed using higher order
derivatives of θ(x). The result is stated for one dimensional xi; the multi-
variate result involves terms for all partial derivatives.

Theorem 4.4 The first term of the bias expansion is

E(HJ−1
1 XT Wl̇(Y,Xã))

=
θ(p+1)(x)
(p + 1)!

HJ−1
1

n∑
i=1

wi(x)(xi − x)p+1A(xi − x)vi + o(hp+1).

For p ≥ 1, the second term involving θ(p+2) is similar.

Proof: Let θ̃i = 〈ã, A(xi − x)〉. Then

θ(xi) = θ̃i +
(xi − x)p+1

(p + 1)!
θ(p+1)(x) + O(hp+2)

uniformly on the smoothing window, and

l̇(Yi, θ̃i) = l̇(Yi, θ(xi)) + (θ̃i − θ(xi))l̈(Yi, θ(xi)) + O((θ(xi) − θ̃i)2)

= l̇(Yi, θ(xi)) − (xi − x)p+1

(p + 1)!
θ(p+1)(x)l̈(Yi, θ(xi)) + O(hp+2).

Substituting into Theorem 4.3 and remembering E(l̇(Yi, θ(xi))) = 0 com-
pletes the proof. �

We remark that the careful theoretical analysis of local likelihood is im-
portant. Many statistical software packages include functions for fitting
generalized linear models: the glm() function in S-Plus, and similar func-
tions in other packages. These functions usually allow weights for each ob-
servation, so local likelihood models can be fitted by calling glm() repeat-
edly, with a new set of weights for each fitting point. This implementation
was used by Bowman and Azzalini (1997) and the associated software.

This approach produces correct estimates but incorrect inferences. The
problem is that glm() interprets weights as a sample size; for example, the
ni in (4.3). This appears as a multiplier for the V matrix in the Jacobian
(4.17), rather than as the required W. In particular, this implies the matrix
J2 is computed incorrectly, and the standard errors are not correct, even
asymptotically.

4.5 Exercises

4.1 This exercise uses the Henderson and Shepherd mortality dataset,
from Example 4.3.
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a) Compute a local quadratic fit, using the arcsin link. Plot the fit
and confidence intervals. Compare with Figure 4.2. Explain the
narrower confidence intervals near the left boundary.

b) Compute and compare AIC and LCV plots for both the logistic
and arcsin links. Use both local quadratic and local linear fitting.
Which fits appear best? Does a global linear model (with either
link function) appear satisfactory?

4.2 a) Prove for any a, b,

log(a) ≤ log(b) +
a − b

b
. (4.21)

b) Suppose a random variable Y has density g(y), and let g∗(y) be
any other density. Show that

E(log g∗(Y )) ≤ E(log g(Y ))

with equality if and only if g = g∗ almost everywhere.

c) Prove (4.12) and (4.13).

4.3 For the Poisson family, the conditions of Theorem 4.1 are not satisfied
when Yi = 0 for some i, since l(0, µ) = −µ is monotone.

a) Using the canonical link θ = log(µ), show the result of Theorem
4.1 still holds, with the additional requirement that WX have
full rank after deleting rows corresponding to Yi = 0.

b) Show the existence extends to the identity and square root links.
Provide an example to show the estimate might not satisfy the
local likelihood equations.

4.4 For the Bernoulli family, the situation is even worse, since the likeli-
hood is monotone for all observations. Using local linear fitting with
the logistic link, show the local likelihood estimate exists if and only
if no γ �= 0 and c exists for which

〈γ, xi〉 ≤ c ∀ i with wi(x) > 0, Yi = 0
〈γ, xi〉 ≥ c ∀ i with wi(x) > 0, Yi = 1;

that is, no hyperplane separates the observations with Yi = 0 from
those with Yi = 1.

4.5 Consider Bernoulli trials (xi, Yi) with Yi ∈ {0, 1} and replicated x
values. The dataset can be smoothed directly using logistic regression
or replicated x values pooled to form a new dataset (x∗

j , nj , Y
∗
j ) using

nj as the weights argument.
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a) If the same bandwidths are used for each dataset, show the same
estimate results. Also show the influence function is the same for
each dataset.

b) Show the likelihood cross validation scores for the two datasets
are unequal, so that minimizing LCV(θ̂) may yield two different
answers. Show AIC(θ̂) is the same, up to an additive constant
(independent of θ̂).

4.6 This exercise develops the method of infinitesimal perturbations and
derives the approximation (4.10). Consider the local likelihood esti-
mate at a point x = xi and the modified local likelihood equations

XT Wl̇(Y,Xa) − λW (0)e1 l̇(Yi, 〈a, A(0)〉) = 0

where λ is a parameter and the solution is â(λ).

a) Show â(0) is the full local likelihood parameter estimate, while
â(1) is the leave-xi-out parameter estimate.

b) Show
∂â(λ)
∂λ

∣∣∣∣
λ=0

= J−1e1W (0)l̇(Yi, θ̂(xi)).

c) Conclude, to a first order approximation, that

θ̂−i(xi) ≈ θ̂(xi) − infl(xi)l̇(Yi, θ̂(xi)),

and hence

LCV(θ̂) ≈
n∑

i=1

D(Yi, θ̂(xi)) + 2
n∑

i=1

infl(xi)l̇(Yi, θ̂(xi))2.



5
Density Estimation

Suppose observations X1, . . . , Xn have an unknown density f(x). The den-
sity estimation problem is to estimate f(x).

The histogram is a density estimate, where the x space is divided into
bins, and counts of the data are provided for each bin. This is a simple and
intuitive approach, but it has problems for continuous data. How do we
choose the bins, and where should they be placed? A discrete histogram
may smooth out important features in the data.

This chapter studies an adaptation of the local likelihood method to den-
sity estimation. Section 5.1 derives the estimate. Section 5.2 describes the
implementation, using the locfit software. Section 5.3 introduces diag-
nostic methods such as residual plots and AIC. The more technical Section
5.4 studies theoretical properties for the local likelihood estimate.

5.1 Local Likelihood Density Estimation

An extension of local likelihood methods to the density estimation problem
is described in Loader (1996b) and Hjort and Jones (1996). Consider the
log-likelihood function

L(f) =
n∑

i=1

log(f(Xi)) − n(
∫

X
f(u)du − 1) (5.1)

where X is the domain of the density. The definition (5.1) of the log-
likelihood is unusual, with the added a penalty term n(

∫
X f(u)du−1). If f
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is a density, the penalty is 0, so (5.1) coincides with the usual log-likelihood
in this case. The reason for adding the penalty to (5.1) is that L(f) can be
treated as a likelihood for any non-negative function f without imposing
the constraint

∫
f(x)dx = 1. A more complete justification is given in

Section 5.4.
A localized version of the log-likelihood is

Lx(f) =
n∑

j=1

W

(
Xj − x

h

)
log(f(Xj)) − n

∫
X

W

(
u − x

h

)
f(u)du. (5.2)

We consider a local polynomial approximation for log(f(u)); log(f(u)) ≈
〈a, A(u − x)〉 in a neighborhood of x. The local likelihood becomes

Lx(a) =
n∑

j=1

W

(
Xj − x

h

)
〈a, A(Xj − x)〉

−n

∫
X

W

(
u − x

h

)
exp(〈a, A(u − x)〉)du. (5.3)

Definition 5.1 Let â = (â0, . . . , âp)T be the maximizer of the local log-
likelihood (5.3). The local likelihood density estimate is defined as

f̂(x) = exp(〈â, A(0)〉) = exp(â0). (5.4)

Under fairly general conditions, the local parameter vector â is the solu-
tion of the system of local likelihood equations obtained by differentiating
(5.3):

1
n

n∑
j=1

A(Xj − x)wj(x)

=
∫

X
A(u − x)W

(
u − x

h

)
e〈â,A(u−x)〉du (5.5)

where wj(x) = W ((Xj − x)/h). These equations have a simple and intu-
itive interpretation. The left-hand side of (5.5) is simply a vector of local-
ized sample moments up to order p, while the right-hand side is localized
population moments using the log-polynomial density approximation. The
local likelihood estimate simply matches localized sample moments with
localized population moments.

Example 5.1. (Local Constant Fitting). When the local constant poly-
nomial (p = 0) is used, (5.5) consists of the single equation

1
n

n∑
j=1

wj(x) =
∫

X
W

(
u − x

h

)
exp(â0)du,
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yielding the closed form for the density estimate

f̂(x) = exp(â0) =
1

nh
∫

W (v)dv

n∑
j=1

wj(x). (5.6)

This is the kernel density estimate considered by Rosenblatt (1956), Whittle
(1958) and Parzen (1962).

The kernel density estimate has been widely studied; see, for example,
the books by Prakasa Rao (1983), Silverman (1986), Scott (1992) and Wand
and Jones (1995). Being based on a local constant approximation, it suffers
from the same problems as local constant regression, such as trimming of
peaks. An additional problem occurs in the tails, since increasing band-
widths for data sparsity can lead to severe bias. This problem was inves-
tigated more fully by Loader (1996b), where relative efficiencies of kernel
and local log-polynomial methods were compared.

5.1.1 Higher Order Kernels
The system of equations (5.5) defining the local likelihood estimate has
the simple moment-matching interpretation noted previously. The moment
matching equations can also be used with other local approximations to
the density. The identity link f(u) ≈ 〈a, A(u − x)〉 gives the system

1
n

n∑
j=1

A(Xj − x)wj(x) =
∫

X
A(u − x)W

(
u − x

h

)
〈â, A(u − x)〉 du, (5.7)

with the density estimate being f̂(x) = â0. Since (5.7) is a linear system
of equations, one can solve explicitly for â and f̂(x). Local approximation
estimates of this type were considered in Sergeev (1979).

Some manipulation shows the solution of (5.7) can be written

f̂(x) =
1

nh

n∑
i=1

W ∗
(

Xi − x

h

)

where W ∗(v) = 〈β, A(v)〉 W (v) for an appropriate coefficient vector β. The
kernel W ∗(v) satisfies the moment conditions,∫

W ∗(v)dv = 1∫
vjW ∗(v)dv = 0, j = 1, . . . , p. (5.8)

Weight functions satisfying these moment conditions are known as kernels
of order p + 1, and were introduced by Parzen (1962). The motivation
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is bias reduction: If the bias of f̂(x) is expanded in a Taylor series, the
moment conditions (5.8) ensure that the low order terms are zero. The
close connection between density estimation using higher order kernels and
local polynomial fitting was investigated by Lejeune and Sarda (1992).

For practical purposes, the higher order kernel estimates tend to be less
satisfactory than the local likelihood approach based on (5.5). The rea-
son is that (5.5) applies a local polynomial approximation for log(f(x))
rather than f(x) itself. Since f(x) must be non-negative, the polynomial
approximation for log(f(x)) is usually better, particularly in the tails of
densities.

5.1.2 Poisson Process Rate Estimation
A problem closely related to density estimation is estimating the intensity
function for a point process. If X1, . . . , XN are the random points of a point
process, the corresponding counting process is

Z(A) =
N∑

i=1

I(Xi ∈ A)

for any set A. The intensity function, λ(x), defines the mean of Z(A):

E(Z(A)) =
∫

A

λ(x)dx. (5.9)

A simple example of a point process is the nonhomogeneous Poisson
process, where Z(A) has a Poisson distribution with mean (5.9). For this
process, the log-likelihood function is

L(λ, N) =
N∑

i=1

log λ(Xi) −
∫

X
λ(x)dx.

See, for example, Cox and Lewis (1966). This differs from the likelihood
(5.1) for density estimation in only one important respect: the dropping
of the factor N in front of the integral. The localization of the likelihood
and derivation of the local likelihood equations follow similarly, and the
implementation of the estimation procedure is almost identical.

5.1.3 Discrete Data
In practice, all datasets are discrete. For the types of measurements usually
modeled as coming from continuous distributions, this discreteness is often
at a very fine level and can be ignored. With more heavily rounded data, the
discreteness becomes important, and it must be modeled using a discrete
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probability mass function rather than a continuous density. Smooth prob-
ability estimates of a mass function have been widely studied using kernel
methods; see, for example, Dickey (1968), Aitchison and Aitken (1976),
Titterington (1980) and Simonoff (1987, 1995, 1996). The last of these also
considers local likelihood approaches.

A local log-likelihood for the mass function is obtained by replacing the
integrals in (5.1) and (5.2) by sums over the mass points. Assume the data
points X1, . . . , Xn are integer valued, and consider the (j, Yj) pairs, where
Yj is the number of observations equal to j. The total number of obser-
vations is n =

∑∞
−∞ Yj . The corresponding probabilities to be estimated

are p(j) = P (X1 = j). Using a local polynomial model for log(p(j)) in a
neighborhood of a fitting point x, the discrete version of the local likelihood
(5.2) is

Lx(a) =
∞∑

j=−∞
W

(
j − x

h

)
〈a, A(j − x)〉Yj (5.10)

−n

∞∑
j=−∞

W

(
j − x

h

)
e〈a,A(j−x)〉. (5.11)

This is the local likelihood (4.2), with l(y, µ) = y log(µ) − nµ. Except for
the factor n, this is the Poisson log-likelihood. Thus, estimating a mass
function is almost equivalent to a local Poisson regression. Note the sum
on the right-hand side of (5.11) is not restricted to values of j with Yj > 0.

Although the close relation between discrete probability estimation, Pois-
son regression and density estimation is apparent, there are important the-
oretical differences. The raw probability Yj/n is a

√
n-consistent estimate

of p(j), and, given a sufficiently large sample, this will be the best local
estimate. Thus, the large sample behavior of the continuous density and
discrete probability estimates are quite different.

Discreteness also has a major impact on bandwidth selection. This topic
will be discussed more later, but the important point is that discrete dis-
tributions do not have densities. Thus, if a selector designed for continuous
data is blindly applied to discrete data, problems should result, as the se-
lector will prefer densities that place a spike at each data point. Selectors
have to be adapted specifically to discrete data, and the result h = 0 (that
is, use the raw probabilities) has to be considered a legitimate answer.

5.2 Density Estimation in locfit

In locfit, density estimation corresponds to family="density". This
family becomes the default when no left-hand side is specified in the model
formula. Using family="rate" gives the Poisson process rate estimate.
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FIGURE 5.1. Density estimation for the Old Faithful geyser dataset.

Example 5.2. The Old Faithful geyser dataset, as given by Weisberg
(1985) and Scott (1992), contains the durations of 107 eruptions. The den-
sity is estimated using a mixed smoothing parameter with a fixed compo-
nent of 0.8 and nearest neighbor span of 0.1:

> fit <- locfit(˜geyser,alpha=c(0.1,0.80),flim=c(1,6))
> plot(fit, mpv=200, xlab="Old Faithful Eruption Duration",
+ ylab="Density", get.data=T)

The fit is shown in Figure 5.1. This clearly shows two peaks in the data:
a sharp peak around two minutes and a broader peak around 4 minutes.
Note the flim=c(1,6) argument given to the locfit() call; this specifies
fitting limits slightly outside the range of the data, thus allowing us to see
the tails of the density. The get.data=T option causes the data points to
be displayed as a ‘rug’ along the bottom of the plot, rather than the scatter
plot used in the regression setting.

Example 5.3. The high order kernels discussed in Section 5.1.1 can be
fitted using link="ident". We use the fourth order kernel (local quadratic)
estimate for the Old Faithful dataset:

> fit <- locfit(˜geyser, alpha=c(0.1,0.6), flim=c(1,6),
+ link="ident")
> plot(fit, mpv=200, xlab="Old Faithful Eruption Duration",
+ ylab="Density", get.data=T)

The resulting fit in Figure 5.2 seems less satisfactory than that obtained
previously in Figure 5.1: The estimate is not constrained to be positive,
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FIGURE 5.2. Local quadratic (fourth order kernel) fit to the Old Faithful geyser
dataset.

and the method seems to oversmooth the left peak, despite the use of a
smaller bandwidth.

Example 5.4. Izenman and Sommer (1988) and Sheather (1992) report
a dataset on measurements of the thickness of 486 postage stamps of the
1872 Hidalgo issue of Mexico. The thicknesses are recorded to the nearest
0.001 millemetres. This discreteness is coarse enough to matter, as is seen
when bandwidth selectors are applied to this problem (Exercise 5.4). A
local qudratic density estimate is computed using the Poisson regression
model:

> fit <- locfit(count˜thick, weights=rep(0.486,76),
+ data=stamp, family = "poisson", alpha = c(0, 0.004))
> plot(fit, m=200, get.data=T)

The critical point is the weights argument. Setting weights=rep(n,76)
effectively divides the Poisson regression by n, leading to estimation of the
mass function. The probability of a bin centered at a point xi is approx-
imately n∆f(xi) where ∆ is the size of the bin and f(x) is the density.
Comparing with the Poisson family (4.4), we set the weight ni = n∆, and
the mean µ(xi) = f(xi). In this example, n = 486 and ∆ = 0.001.

Figure 5.3 shows the resulting multimodal estimate. The explanation for
the multimodality, provided by Izenman and Sommer (1988), is that a large
number of different types of paper were used to print this stamp.
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FIGURE 5.3. Postage stamp data. Density estimate using local Poisson regression
for discrete data.

5.2.1 Multivariate Density Examples
Multivariate density estimation requires multiple predictor variables in the
model formula, similar to the regression case in Section 3.5. In this section,
some examples are presented.

Example 5.5. (Multivariate Density Estimation). The trimod dataset
is a bivariate dataset with 225 observations from a trimodal distribution.
Each of the three components is a bivariate standard normal distribution,
with centers at (3

√
3/2, 0), (−3

√
3/2, 3) and (−3

√
3/2,−3). The true peak

height is about 1/(6π) = 0.053.
The multivariate density is estimated by specifying multiple terms on

the right-hand side of the formula. Here, we fit a local log-quadratic model,
with a 35% nearest neighbor bandwidth:

> fit.trim <- locfit(˜x0+x1, data=trimod, alpha=0.35)
> plot(fit.trim, type="persp")

Figure 5.4 shows the fit.

A common density estimation problem is to estimate the smallest region
containing a fixed probability mass. At first, constructing such a region
may appear to require tricky numerical integration of the density estimate.
However, a trick to estimate the contour level is to order the fitted values
at the data points, and use the corresponding empirical level.
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FIGURE 5.4. Bivariate density estimation.

Example 5.6. (Probability Contours). We compute 95% and 50% mass
contours for the trimodal sample used in Example 5.5. First, use fitted
to compute fitted values at the data points. Then, produce a contour plot
with the appropriate empirical contour levels:

> emp <- sort(fitted(fit.trim))
> plot(fit.trim, vband=F, v=emp[floor(c(0.05,0.5)*225)])
> points(trimod$x0, trimod$x1, col=2, cex=0.5)

Figure 5.5 shows the result. The 50% contour defines three separate regions,
and the 95% contour has a small hole in the middle.

5.3 Diagnostics for Density Estimation

Does the density estimate fit the data? The question of diagnostics is just
as important for density estimation as it is for regression. But answering
the question is much more difficult. The source of the problem is simple:
There is no natural definition for residuals for a density estimate, and no
saturated model. In Section 5.3.1 some possible definitions of residuals are
considered, along with graphical displays for detecting lack of fit. Formal
goodness of fit criteria based on the likelihood are considered in Section
5.3.2 and squared error methods in Section 5.3.3.
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FIGURE 5.5. Probability contour plots: 50% and 95% mass contours for a tri-
modal example.

5.3.1 Residuals for Density Estimation
There are a number of ways to construct residual type diagnostics for den-
sity estimation. Perhaps the most obvious is to compare the integral of the
density estimate,

F̂ (x) =
∫ x

−∞
f̂(u)du,

with the empirical distribution function

F̂emp(x) =
1
n

n∑
i=1

I(Xi ≤ x).

Example 5.7. Figure 5.6 shows the empirical distribution function and
the integral of a local density estimate. The smoothing parameter for the
density estimate is α = (0.1, 1.2), which is larger than that used in Figure
5.1:

> fit <- locfit(˜geyser, alpha=c(0.1,1.2),
+ flim=c(1,6), renorm=T)
> x <- seq(1, 6, by=0.01)
> z <- predict(fit, x)
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FIGURE 5.6. Empirical distribution function (step curve) and integrated density
estimate (smooth curve) for the Old Faithful dataset.

> plot(x, 0.01*cumsum(z), type="l")
> lines(sort(geyser), (1:107)/107, type="s")

The renorm=T argument rescales the density estimate so that it integrates
to 1.

In Figure 5.6, the empirical distribution function is steeper than the esti-
mate between 1.8 and 2, which indicates that the peak has been trimmed.
The flatness of the empirical distribution function between 2 and 3.5 indi-
cates that the estimate has overfilled the valley.

The P-P and Q-Q plots are based F̂ and F̂emp. The P-P (or probabil-
ity) plot uses the result that F (Xi) behave like a sample from a uniform
distribution. If X(i) is the ith order statistic, then E(F (X(i))) = i/(n + 1).
Thus, a plot of F̂ (X(i)) against i/(n + 1) should be close to a straight line;
large departures from a straight line indicate lack of fit. The Q-Q (quan-
tile) plot transforms back to the observation scale, ploting X(i) against
F̂−1(i/(n + 1)).

An alternative residual diagnostic for density estimation is to begin with
a small bandwidth and look at the change in the estimate as the amount
of smoothing is increased; can this change be attributed to noise, or does
it indicate lack of fit? The simplest implementation of this idea is to be-
gin with a histogram, computed at a small bandwidth. Then, treat the
histogram counts and smooth them using local Poisson regression, as de-
scribed in Section 5.1.3 and Example 5.4. One can then compute residuals
for the Poisson model, as discussed in Section 4.3.2.
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Example 5.8. We construct residual plots for the Old Faithful geyser
dataset. First, a raw histogram of the data is constructed using a bin width
of 0.05:

> geyser.round <- data.frame(duration=seq(1.05,5.95,by=0.05),
+ count=as.numeric(table(cut(geyser,
+ breaks=seq(1.025,5.975,length=100)))))

Note that care is required to ensure zeros are retained. The fit and residual
plots can now be constructed:

> fit <- locfit(count˜duration, data=geyser.round,
+ weights=rep(107*0.05,99), alpha=c(0.1,1.2),
+ family="poisson")
> plot(fit, get.data = T)
> res <- residuals(fit)
> fitr <- locfit.raw(geyser.round$duration, res, alpha=0.1)
> plot(geyser.round$duration, res)
> lines(fitr)

Figure 5.7 shows the fits and smoothed residual plots for three different
smoothing parameters. As the smoothing parameter decreases, the fit shows
the left peak getting sharper and the trough for 2 ≤ duration ≤ 3.5
getting deeper. The residual plots also show this: In the top residual plot,
there is a pronounced peak and five successive positive residuals, around
duration = 1.8. The residuals also show some evidence of the trough being
filled in, even at smallest smoothing parameter.

5.3.2 Influence, Cross Validation and AIC
The likelihood cross validation criterion for density estimation is

LCV(f̂) =
n∑

i=1

log f̂−i(Xi) − n

(∫
X

f̂(u)du − 1
)

(5.12)

where f̂−i(Xi) denotes the density estimate at Xi when this observation is
deleted from the dataset. This criterion was first proposed for the kernel
density estimate (5.6) by Habbema, Hermans and Van Der Broek (1974)
and Duin (1976).

As in Section 4.3.3, the likelihood cross validation score can be approxi-
mated using the method of infinitesimal perturbations. This leads to

log f̂−i(Xi) ≈ log f̂(Xi) − W (0)
n

eT
1 M−1

1 e1 +
1
n

(5.13)

where

Mj =
∫

X
W

(
u − x

h

)j

A(u − x)A(u − x)T e〈â,A(u−x)〉du.
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FIGURE 5.7. Fits and smoothed residual plots for geyser data: α = (0.1, 1.2)
(top), α = (0.1, 0.8) (middle) and α = (0.1, 0.5) (bottom).
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The influence function for density estimation is defined as

infl(x) = n−1W (0)eT
1 M−1

1 e1; (5.14)

the dependence on x is through the matrix M1. Then
n∑

i=1

log f̂−i(Xi) ≈
n∑

i=1

log f̂(Xi) −
n∑

i=1

infl(Xi) + 1.

Summing over the observations leads to the Akaike information criterion
for density estimation:

AIC(f̂) = −2
n∑

i=1

log f̂(Xi) + 2
n∑

i=1

infl(Xi) + 2n
(∫

X
f̂(u)du − 1

)
. (5.15)

The factor of −2 is introduced here to be consistent with our definition of
AIC for local likelihood regression. The quantity

ν1 =
n∑

i=1

infl(Xi)

is one definition of the degrees of freedom for a density estimation fit, ex-
tending the regression ν1 defined by (2.16). Correspondingly, we can extend
the ν2 definition to

ν2 =
n∑

i=1

vari(Xi)

where vari(x) = n−1eT
1 M−1

1 M2M−1
1 e1.

5.3.3 Squared Error Methods
An entirely different method of cross validation, known as least squares
cross validation, was developed for density estimation by Rudemo (1982)
and Bowman (1984). This method does not target the likelihood function,
but rather the integrated squared error;

ISE(f̂ , f) =
∫ ∞

−∞
(f̂(x) − f(x))2dx

=
∫ ∞

−∞
f̂(x)2dx − 2

∫ ∞

−∞
f̂(x)f(x)dx +

∫ ∞

−∞
f(x)2dx.(5.16)

The third term on the right-hand side of (5.16) does not depend on the es-
timate f̂(x). If the object is to choose f̂ to minimize the integrated squared
error, then the final term can be ignored. The first term,

∫∞
−∞ f̂(x)2dx, de-

pends only on the density estimate and can be evaluated numerically. The
central term can be expressed as∫ ∞

−∞
f̂(x)f(x)dx = E(f̂(X))
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where X is a random variable with density f( · ) and is independent of the
original sample. This can be estimated by leave-one-out cross validation;

Ê(f̂(X)) =
1
n

n∑
i=1

f̂−i(Xi).

This leads to the following definition.

Definition 5.2 The least squares cross validation criterion for a den-
sity estimate f̂(x) is

LSCV(f̂) =
∫ ∞

−∞
f̂(x)2dx − 2

n

n∑
i=1

f̂−i(Xi). (5.17)

As usual, the cross validation component can be approximated using the
influence function. Using (5.13) and (5.14), we have

f̂−i(Xi) ≈ f̂(Xi) exp(n−1) exp(−infl(Xi)) ≈ n

n − 1
f̂(Xi)(1 − infl(Xi)).

Thus, the LSCV criterion can be approximated by

LSCV(f̂) ≈
∫ ∞

−∞
f̂(x)2dx − 2

n − 1

n∑
i=1

f̂(Xi)(1 − infl(Xi)).

This is exact for local constant fitting.

5.3.4 Implementation
The aicplot() and lcvplot() functions introduced in Section 4.3.3 can
be used directly for density estimation. By default, these ignore the integral
term in (5.15). To renormalize the density estimate so that

∫
f̂(x)dx = 1,

add the renorm=T argument.
The likelihood criteria must be applied rather carefully, since they pay

considerable attention to the tail of densities. But any density estimate will
perform poorly in the tails and choice of bandwidth is largely an assump-
tion. For example, should a single outlier represent its own little peak in a
density, or should it represent a long tail?

Schuster and Gregory (1981) note that LCV, when used to select a
constant bandwidth estimate, always selects a bandwidth larger than the
smallest separation between data points, and thus produces extremely poor
results for long tailed distributions. AIC also exhibits anomolous behavior
at small bandwidths.

This is not a criticism of AIC or LCV, but simply a recognition that
constant bandwidth estimates are poor in tails. The solution comes in two
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parts. First, ensure that larger bandwidths are used in the tails; for ex-
ample, by using a nonzero nearest neighbor component in locfit’s two-
component specification. Second, compare the criteria with the fitted de-
grees of freedom, and look over a sensible range.

A second problem is caused by ties in the data. This effect has been
mostly studied with the LSCV criterion and local constant estimation (Sil-
verman 1986; Sheather 1992). The main result is that if there are too many
ties in the data, LSCV(f̂h) → −∞ as h → 0. But again LSCV should not
be criticized for this behavior. A sample from a continuous density does
not have ties. By selecting h = 0, LSCV is simply trying to reproduce the
raw data histogram. But problems where this occurs should be treated as
discrete, and the LSCV criterion modified accordingly (Exercise 5.4).

Example 5.9. In Figure 5.8 we compute the AIC criterion for local
constant, local linear and local quadratic density estimates for the Old
Faithful dataset. A typical call to aicplot() is:

> a0 <- cbind(0.05, c(0.17,seq(0.2,0.7,by=0.05)))
> plot(aicplot(˜geyser, alpha=a0, deg=0, renorm=T,
+ flim=c(1,6), ev="grid", mg=51), pch="0")

To control tail behavior, the nearest neighbor component of the smoothing
parameter is fixed at α = 0.05 for local constant and local log-linear fitting,
and α = 0.1 for local log-quadratic. The constant component h of the
smoothing parameter is changed from fit to fit. Corresponding computation
of the LSCV criterion is shown on the right of Figure 5.8.

We use the fitted degrees of freedom ν2 as the x-axis. Both criteria, and
each local polynomial degree (0, 1 and 2), show similar patterns. Fewer
than five degrees of freedom is inadequate, while for more than five degrees
of freedom the criteria are indecisive. Local log-quadratic fitting is better
than local log-linear and local constant.

For local quadratic fitting, six degrees of freedom corresponds to the
smoothing parameter (0.1, 0.9), and twelve degrees of freedom corresponds
to (0.1, 0.4). The AIC criterion relates to what was shown in the fits and
residual plots in Figure 5.7. The largest smoothing parameter, (0.1, 1.2)
was too large, with little to choose between the smaller parameters.

While all the curves in Figure 5.8 show a similar pattern, the location
of the minimum varies substantially. This emphasizes the importance of
looking at the whole cross validtaion curve, rather than just the minimum.

If the bandwidths are decreased further, most of the criteria will down-
turn again, as discreteness and tails of the data take over. But by ploting the
criteria against degrees of freedom, as in Figure 5.8, we obtain a sensible
view of the data. Fits above 14 degrees of freedom are rarely useful for
datasets of 107 observations.
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FIGURE 5.8. Akaike’s criterion (left) and least squares cross validation (right)
for the Old Faithful dataset. Values for local constant fitting (0), local linear
fitting (1) and local quadratic fitting (2).

5.4 Some Theory for Density Estimation

This section derives basic theoretical properties for the local likelihood
density estimate and develops an approximate distribution theory. The
results are similar to the corresponding results for local likelihood regression
models in Section 4.4, so only the main ideas are sketched here.

5.4.1 Motivation for the Likelihood
The attractiveness of maximum likelihood estimation stems from (4.12). In
the density estimation notation this can be written as

EfL(f1) ≤ EfL(f), (5.18)

with equality only when f1 = f almost everywhere. With the extended
definition of the likelihood (5.1), this property holds for all non-negative
functions f1; we do not require f1 to be a density. One consequence of
this extension is that maximum likelihood estimation can be performed
with multiplicative parameters. For example, fitting the family f(x; C, µ) =
C exp(−(x − µ)2/2) by maximum likelihood gives Ĉ = (2π)−1/2.

The property (5.18) extends to the local log-likelihood;

EfL(f1, x) ≤ EfL(f, x)

with equality when f(u) = f1(u) on the support of W ((u − x)/h). This
suggests estimating f(x) by maximizing (5.2) over a suitable class of func-
tions.
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5.4.2 Existence and Uniqueness
Let C (dependent on the fitting point x, the weight function W and the
degree of local polynomial p) be the parameter space:

C = {a = (a0, . . . , ap) :
∫

X
W

(
u − x

h

)
exp(〈a, A(u − x)〉)du < ∞}.

(5.19)
In many cases the set C is open; for example, if the weight function is
bounded and has compact support, C = Rd. In this case, the parameter
vector â (if it exists) must lie in the interior of C, and it is a solution of the
local likelihood equations (5.5).

The Jacobian of the local likelihood (5.3) is

J(a) = −
∫

X
A(u − x)A(u − x)T W

(
u − x

h

)
exp(〈a, A(u − x)〉)du.

For non-negative weight functions W , this is strictly negative definite. This
implies that the local likelihood is concave, and the local likelihood esti-
mate, if it exists, is unique. The following theorem gives precise conditions
for existence.

Theorem 5.1 Suppose the parameter space (5.19) is open. The local like-
lihood density estimate exists if and only if there exists no parameter vector
a0 �= 0 such that

〈a0, A(Xi − x)〉 = 0 ∀ i : wi(x) > 0

〈a0, A(u − x)〉 ≤ 0 ∀ u : W

(
u − x

h

)
> 0.

Proof: Suppose such an a0 exists. Then

Lx(λe1 + ca0) = λ

n∑
i=1

wi(x) − n

∫
W

(
u − x

h

)
eλ+c〈a0,A(u−x)〉du.

Clearly

lim
c→∞ Lx(λe1 + ca0) = λ

n∑
i=1

wi(x)

lim
λ→∞

lim
c→∞ Lx(λe1 + ca0) = ∞;

the likelihood is unbounded and the estimate does not exist.
Conversely, suppose no such a0 exists. Write

sup
a

L(a, x) = sup
a:‖a‖=1

sup
λ

L(λa, x); (5.20)
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we need to show both these suprema are actually achieved. For fixed a with
‖a‖ = 1, we claim (Exercise 5.3)

Lx(λa) = λ

n∑
i=1

wi(x) 〈a, A(Xi − x)〉

−n

∫
X

W

(
u − x

h

)
A(u − x)eλ〈a,A(u−x)〉du (5.21)

is a concave function of λ and tends to −∞ as λ → ±∞ (or when λ tends to
the boundaries of the parameter space C, when this is bounded). Thus the
inner supremum of (5.20) must be achieved; let the maximizer be λ = λ(a).
Concavity of L(a, x) implies λ(a) must be continuous on the surface of the
unit sphere, and hence the outer supremum is achieved by compactness. �

What does Theorem 5.1 mean in practical terms? For existence of the
density estimate, we must be unable to find a polynomial (other than the
trivial solution, a constant) that attains its maximum at every point Xi

being used in the fit. This generalizes the separating hyperplane theorem
for local logistic regression (Exercise 4.4). The local linear estimate exists
provided at least one observation has nonzero weight, since a linear function
is monotone. A quadratic polynomial may have a single maximum, so the
local quadratic estimate exists provided two distinct observations receive
nonzero weight.

5.4.3 Asymptotic Representation
The main result of this section is an approximate decomposition of the
local likelihood estimate as the sum of a deterministic bias’ component
and a random component. The result is obtained by linearizing the local
likelihood equations, similarly to the techniques used for local likelihood
regression in Section 4.4. The following notation is needed:

• g(x) = log(f(x)), and g̃ is the vector of Taylor series coefficients, up
to order p.

• Mj =
∫

W (u−x
h )jA(u − x)A(u − x)T f(u)du; j = 1, 2.

• bp = h−(p+1)
∫

(u − x)p+1W (u−x
h )jA(u − x)f(u)du.

• Sn is the left-hand side of the local likelihood equations;

Sn =
n∑

i=1

wi(x)A(Xi − x). (5.22)

The decomposition of the local likelihood estimate is, as n → ∞, h = hn →
0 and nhn → ∞:

H(â − g̃) =
hp+1g(p+1)(x)

(p + 1)!
HM−1

1 bp
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+
1
n
HM−1

1 (Sn − E(Sn)) + o(hp+1 + (nhd)−1/2).(5.23)

The first term represents a systematic bias component, and the second term
is a random variance component. The bias component as stated is for one
dimension; the d-dimensional result requires all partial derivatives of g(x)
of order p + 1. The covariance matrix of Sn is evaluated in Exercise 5.1. A
central limit theorem (Loader 1996b) shows asymptotic normality of Sn,
and hence of â. The normal approximation for â has the covariance matrix

1
n
M−1

1 M2M−1
1 .

By the delta method, the asymptotic variance of f̂(x) is f(x)2 times the
(1, 1) element of this matrix.

Example 5.10. For the local log-linear density estimate (p = 1), one
obtains

Mj ≈ f(x)
(∫

W (v)jdv 0
0 h2

∫
v2W (v)jdv

)
.

This yields the variance and bias approximations

E(â0) − g(x) ≈ h2

2
g′′(x)

∫
v2W (v)dv∫
W (v)dv

var(â0) ≈ 1
nhf(x)

∫
W (v)2dv

(
∫

W (v)dv)2
.

These can be transformed using the delta method to obtain approximate
biases and variances for f̂(x):

E(f̂(x)) − f(x) ≈ h2

2
f(x)g′′(x)

∫
v2W (v)dv∫
W (v)dv

var(f̂(x)) ≈ f(x)
nh

∫
W (v)2dv

(
∫

W (v)dv)2
.

5.5 Exercises

5.1 Consider Sn defined by (5.22), where X1, . . . , Xn are independent
identically distributed random variables with density f(x).

a) Show

E(Sn) = n

∫
W

(
u − x

h

)
A(u − x)f(u)du

cov(Sn) = nM2 − 1
n

E(Sn)E(Sn)T .
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Derive a similar expression for the covariance matrix cov(Sn).
b) Suppose the density is continuous at x with f(x) > 0, n → ∞,

h = hn → 0 and nh → ∞. Let H be as defined in (2.37). Show

1√
n

cov(H−1Sn) = f(x)
∫

W (v)2A(v)A(v)T dv + o(1);

in particular, the covariance term involving E(Sn) is asymptot-
ically negligible. Evaluate n−1E(H−1Sn) using a Taylor series
for f(x), retaining terms up to o(h2).

c) Using Chebycheff’s inequality show, on a componentwise basis,
P (|H−1(Sn − E(Sn))| ≥ ε) → 0 for all ε > 0. Hence, show

H−1Sn → f(x)
∫

W (v)A(v)dv (5.24)

in probability.
d) Using (5.24) and the local likelihood equations, show

Hâ →




log f(x)
0
...
0




in probability and that the local likelihood density estimate is
consistent.

5.2 Consider local log-quadratic density estimation in d dimensions, using
the Gaussian weight function.

a) Write down the local likelihood equations. Express the right-
hand side in terms of the multivariate integrals∫

W
(u

h

)
ea+bT u+uT Cudu;∫

uW
(u

h

)
ea+bT u+uT Cudu; (5.25)∫

uuT W
(u

h

)
ea+bT u+uT Cudu. (5.26)

Here, b is a vector in Rd and C is a symmetric d × d matrix.
b) Show ∫

W
(u

h

)
ea+bT u+uT Cudu

= (2π)d/2 exp(a +
1
2
bT M−1b) det(M)−1/2

where M = h−2I−2C. Derive closed forms for (5.25) and (5.26).
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c) Provide a closed form solution for the density estimate. What
condition is necessary for existence of the estimate? Is the pa-
rameter space open?

5.3 Consider the log-likelihood Lx(λa, x) with fixed a, ‖a‖ = 1. Suppose
a does not satisfy the conditions of the vector a0 in Theorem 5.1.
That is, either 〈a, A(Xi − x)〉 �= 0 for some i with wi(x) > 0 or
〈a, A(u − x)〉 has both positive and negative regions on the support
of W ((u − x)/h). Show that Lx(λa) → −∞ as λ → ±∞.

5.4 Izenman and Sommer (1988) and Sheather (1992) have fitted kernel
density estimates to the postage stamp data (Example 5.4) using
the Gaussian kernel and standard deviation about 0.0013. In locfit
terms, this is a constant bandwidth of 2.5 × 0.0013 = 0.00325.

a) Evaluate and plot this fit. Compare with the local log-quadratic
fit (Figure 5.3) and the data. Is the kernel estimate adequate for
modeling the peaks?

b) Develop an LSCV algorithm for discrete Poisson regression for
kernel density estimation. Use the loss function

∑n
i=1(p̂i − pi)2

where pi is the probability of the ith bin. The cross valida-
tion should use leave-one-observation-out; not leave-one-bin-out.
Consider the behavior of LSCV(h) at small bandwidths. In par-
ticular, show it has a finite limit as h → 0 (Bonus: Use the
influence function; don’t restrict to deg=0).

c) Write an S function to evaluate the discrete LSCV criterion using
a locfit fit. Apply this function to the postage stamp data.
Compare with the results of Sheather (1992).

Remark. The point of this exercise is that discrete data does not have
densities, and this is particularly important for model selection when
small bandwidths are used.



6
Flexible Local Regression

In this chapter we look at the flexibility that can be obtained by changing
the components of local regression: the coefficients, the fitting criteria and
the weight functions. The specific problems studied include:

• Higher order coefficients and local slopes (section 6.1).

• Periodic and seasonal smoothing (Section 6.2).

• One-sided smoothing and discontinuous function estimation (Section
6.3).

• Robust local regression (Section 6.4).

6.1 Derivative Estimation

Derivatives are of natural interest in many settings. At the most basic level,
the derivative µ′(x) measures the effect of the independent variable x on
the mean response. In particular, µ′(x) = 0 implies the covariate is having
no effect.

As emphasized in Section 6.1.1, the problem of derivative estimation is
plagued by identifiability and interpretation difficulties. To make any real
headway, one must be willing to assume that if the local polynomial fits the
data within the smoothing window, then the local slope provides a good
approximation to the derivative. This leads to the following local slope
estimate.
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Definition 6.1 Let â = ( â0 . . . âp ) be the local coefficient estimates
from a local polynomial fit (2.5), with p ≥ 1. The local slope estimate is

µ̂′(x) = 〈â, A′(0)〉 = â1. (6.1)

The local slope estimate (6.1) is not the derivative of the fitted curve
µ̂(x). The exact derivative is (Exercise 6.1)

dµ̂(x)
dx

= â1 + eT
1 (XT WX)−1XT W′ε̂ (6.2)

where ε̂ is the vector of residuals from the local polynomial,

ε̂ = (I − X(XT WX)−1XT W)Y,

and W′ is the derivative of W, with diagonal elements dwi(x)/dx. For a
constant bandwidth h(x) = h,

dwi(x)
dx

= − 1
h

W ′
(

xi − x

h

)
.

The exact derivative (6.2) is clearly more work to compute than the
local slope (6.1). Usually, little is gained by the exact computation, since
the derivative can be represented as a local slope estimate by a modification
of Henderson’s theorem.

Theorem 6.1 The weight diagram for the local slope estimate (6.1) has
the form

li(x) = wi(x) 〈α, A(xi − x)〉
and satisfies the reproducing equations

n∑
i=0

P (xi − x)li(x) = P ′(0) (6.3)

where P (u) is any polynomial of degree ≤ p. Conversely, if a weight diagram
satisfies (6.3) and has at most p sign changes, then it is a local slope estimate
of degree p.

6.1.1 Identifiability and Derivative Estimation
Before discussing the implementation of derivative estimation, we need to
consider carefully what is required. The mathematical definition of the
derivative µ′(x) of a function µ(x) is

µ′(x) = lim
δ→0

µ(x + δ) − µ(x)
δ

, (6.4)
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provided the limit exists.
Now consider the local regression setting with equally spaced observa-

tions xi = i/n, and the mean function is E(Yi) = µ(xi). Consider the
family of functions

µa(x) = µ(x) +
a

2πn
sin(2πnx).

At the data points, these functions have the following property:

µa(xi) = µ(xi) +
a

2πn
sin(2πi)

= µ(xi).

That is, the mean function, evaluated at the data points, is independent
of a. The likelihood function does not depend on a, and thus the dataset
provides absolutely no way of distinguishing among the class of functions
µa(x).

Now consider differentiation:

µ′
a(xi) = µ′(xi) + a cos(2πi)

= µ′(xi) + a.

While the functions µa(x) are indistinguishable, the derivatives are quite
different. By changing a, the distribution of the observations does not
change in any way, but the derivative could be anything! Thus there can
be no reasonable data-based estimate of the derivative, and any estimate
has to make strong assumptions about the true mean function.

Why are derivatives of interest? Do derivatives ever exist in practice? For
example, the velocity of a moving object can be defined as the derivative of
position with respect to time. But it is far from clear whether the limit (6.4)
exists: Is position of an object even defined well enough (at microscopic
levels) to make this determination?

What’s really of interest is a local linear approximation: Find a constant
c such that

µ(x + δ) ≈ µ(x) + δc

for a sufficient range of values of δ to be useful. Differentiation is a conve-
nient mathematical formulation of this: If µ(x) is differentiable, c = µ′(x)
may provide a satisfactory value of c. But what is really required in practice
is a local slope: Fit a local linear (or higher order) model, and consider the
local slope coefficient.

At first reading, the distinction between derivatives and local slopes may
seem rather pedantic. But the distinction has important consequences, par-
ticularly in problems involving bias estimation. A plug-in estimate of the
bias of a local regression estimate substitutes an estimate for the derivatives
appearing in (2.34) or (2.41). But for noisy data, the derivative estimate is
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highly dependent on the bandwidth: As the amount of smoothing increases,
the derivative estimates decrease in magnitude. In practice, any such es-
timate amounts to an assumption that a local polynomial approximation
to µ(x) also provides a good approximation to the derivatives. See Exer-
cise 6.3. These problems have particular relevance to confidence interval
construction (Section 9.2) and bandwidth selection (Chapter 10).

Does asymptotic theory, showing consistency and other properties of
derivative estimates, resolve these issues? Simply put, no, since the results
provide no information about the accuracy of the estimates. More precisely,
one can derive bias approximations, similar to (2.34), for derivative esti-
mates. But these in turn depend on higher order derivatives, and trying to
estimate these leads to circular arguments.

Does this discussion apply to estimation of the mean µ(x) itself? Largely,
it does; formally, the mean function µ(x) cannot be estimated anywhere
except at the data points, unless formal smoothness assumptions are made.
Looking closely at the goodness of fit statistics developed earlier, such as
cross validation and CP, we see these formally only measure goodness of
fit at the data points. A good fit at the data points tells us nothing about
how well the fit performs between data points; rather, we assume the true
mean is smooth, and thus fitting between data points is reasonable.

6.1.2 Local Slope Estimation in locfit
By default, locfit returns the local fit. To obtain the local slope, one gives
the deriv argument to the locfit() call. The value of deriv can be either
a variable name or number. Thus,

> fit <- locfit(NOx˜E+C, data=ethanol, deriv=2)

and

> fit <- locfit(NOx˜E+C, data=ethanol, deriv="C")

both produce the fit for the derivative with respect to C. To obtain higher
order derivatives, use deriv=c("C","C") for the second derivative with
respect to "C", or deriv=c("C","E") for the mixed derivative. The order
of the derivative cannot exceed the order of the local polynomial fit.

Derivatives for local likelihood estimates are found in the same manner.
However, one must remember that the local polynomial is fitted through
the link function θ(x) = g(µ(x)), and no attempt is made to back-transform
the coefficients.

Example 6.1. We estimate the derivative of the density f(x) of the
Old Faithful dataset. By default, the estimation is via the log link, g(x) =
log(f(x)). Since f ′(x) = g′(x)f(x), we can estimate f ′(x) by estimating
both the density f(x) and the derivative g′(x):

> fit1 <- locfit(˜geyser, alpha=c(0.1,0.6), flim=c(1,6))
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FIGURE 6.1. Estimating the density derivative for the Old Faithful data.

> fit2 <- locfit(˜geyser, alpha=c(0.1,0.6), flim=c(1,6),
+ deriv=1)
> z <- lfmarg(fit1, 200)
> plot(preplot(fit1,z) * preplot(fit2,z))

Note the computation of fit1 (for the density) and fit2 (for the derivative
of the log-density). A grid (z) of 200 points is generated, and the predictions
are computed on this grid. The resulting plot is shown in Figure 6.1.

6.2 Angular and Periodic Data

Angular data arises when measurements are made on a circle. Periodic data
frequently arises when data are measured over time: for example, there may
be a daily or annual pattern in the data.

Figure 6.2 shows a series of monthly measurements of carbon dioxide
(CO2) measurements at the Mauna Loa observatory from 1959 to 1990
(Boden, Sepanski and Stoss (1992)). There are two obvious components
in the data. First, there is an overall increasing trend, approximated by
the solid line in Figure 6.2. Second, there is the cyclical component, with
a peak in May every year and trough in October.

Suppose one is interested in predicting future carbon dioxide measure-
ments. Simply smoothing the data is not satisfactory. A fit with a large
bandwidth as shown in Figure 6.2 misses the periodic structure. A local
quadratic smooth with a bandwidth small enough to capture the annual
peaks and troughs would be better, but would not capture the regularity of
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FIGURE 6.2. Carbon dioxide measurements at Mauna Loa observatory. Super-
imposed is a long-term trend, estimated by a local linear smooth.

the periodic component and would provide poor predictions of future CO2
levels.

To adequately model this dataset, periodicity must be enforced in the
smooth. This can be achieved by enforcing periodicity in the weight func-
tion. A periodic, or circular, distance function is defined as

d(x1, x2) = 2| sin((x1 − x2)/(2s))| (6.5)

where s is a scale parameter. Some properties of this distance function
include:

• If x1 = x2, then d(x1, x2) = 0.

• If x1 − x2 is small, then sin((x1 − x2)/(2s)) ≈ (x1 − x2)/(2s), and so
d(x1, x2) ≈ |x1 − x2|/s.

• If x1 − x2 = πs, then d(x1, x2) = 2, the maximum value.

• If x1−x2 = 2πs, then d(x1, x2) = 0. The distance function is periodic
with period 2πs.

The smoothing weights are defined in the usual manner:

wi(x) = W

(
d(xi, x)

h

)
.

A circular local quadratic model

µx(xi) = a0 + a1s sin((xi − x)/s) + a2s
2(1 − cos((xi − x)/s))
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is fitted, using the weights wi(x), to get local parameter estimates â0, â1, â2.
The smooth estimate is µ̂(x) = â0. The basis functions are defined so that
â1 estimates the local slope and â2 estimates the local curvature.

Example 6.2. Suppose the carbon dioxide dataset can be expressed as
the sum of trend and periodic components:

Yi = µ(xi) + ν(mi) + εi (6.6)

where µ(xi) is the long-term trend, mi is the month of the ith observation
and ν(mi) is the periodic component. This is an additive model and can
be fitted using the backfitting algorithm. But since the data extends over
many periods, the xi and mi components are nearly orthogonal, and a
single iteration will suffice. First, the long-term trend is estimated using a
local linear smooth and a large span:

> fit1 <- locfit(co2˜I(year+month/12), data=co2, alpha=0.5,
+ deg=1)

The resulting fit was shown in Figure 6.2. A periodic smooth is then fitted
to the residuals of this fit:

> loc.co2 <- cbind(co2,res = residuals(fit1))
> fit2 <- locfit(res˜ang(year+month/12), data=loc.co2,
+ scale=1/(2*pi), alpha=c(0,2))
> plot(fit2, xlim=c(0,1))

The angular term ang(year+month/12) in the model formula specifies a
periodic smooth. The periodic component has a period of one year, so the
scale parameter s in (6.5) must be set to 1/2π years. This is achieved
through the scale=1/(2*pi) argument.

The estimated periodic component is shown in Figure 6.3. This shows
the asymmetry of the periodic component: The decline from peak to trough
takes about five months, whereas the rise from trough to peak takes about
seven months. Thus, just using a sine wave for the periodic component
would be unsatisfactory. The smoothing parameter can be a little hard
to visualize with angular data; the effective bandwidth is approximately
hs = 2/(2π) = 0.31 in the preceeding example. Also useful is the fitted
degrees of freedom; the angular component for this fit has ν2 = 4.15.

Figure 6.4 shows the sum of the long-term trend and periodic compo-
nents. This is computed simply by adding fitted values for both fits:

> plot(co2$year+co2$month/12, fitted(fit1)+fitted(fit2),
+ type="l")

The additive model (6.6) assumes the periodic component remains con-
stant over time. But this may not be reasonable; for example, we might
expect the amplitude of the seasonal fluctuation to increase as the overall
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FIGURE 6.3. Carbon dioxide data: Smooth estimate of the cyclical component.
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FIGURE 6.4. Fitted values, adding the long term trend and cyclical components.

trend increases. An alternative local analysis for periodic components, sug-
gested by Cleveland (1993), is to split the dataset into the twelve monthly
series, and smooth each month separately. This has the advantage of al-
lowing some trends in the seasonal component. The disadvantage is that
smoothness of the seasonal trend is not allowed for.

An alternative is to fit the periodic component through a bivariate model,
where one variable is used to represent a long-term trend, and a second
term is used to represent the periodic component. This has the advantage
of allowing the periodic component to change slowly over time.
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FIGURE 6.5. Carbon dioxide data set. Fitting the trend and periodic component
as a bivariate model.

Example 6.3. A bivariate model is fitted to the CO2 dataset. The first
predictor is month, fitted with a periodic component. The second predictor
is year+month/12, fitted with straight local regression:

> fit <- locfit(co2˜ang(month)+I(year+month/12), data=co2,
+ scale=c(12/(2*pi),10),alpha=0.2)
> plot(fit)

Figure 6.5 shows the fit. Of course, all the data points lie on a series of
diagonal lines, beginning at the bottom left and ending at the top right.

A major interpretation difficulty in Example 6.3 is the scale variable;
what are the relative amounts of smoothing in the two variables? The
distance in this case is

d((y1, m1), (y2, m2))2 = (2 sin((m1 − m2) · π/12))2 +
(

y1 − y2

10

)2

.

Thus, 10 years in the y direction is about the same as 12/(2π) = 1.9 months
in the m direction.
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6.3 One-Sided Smoothing

In some situations, we may like to smooth using only the data before,
or only the data after, a fitting point x. One example is the detection of
discontinuities in the fitted curve. Another example is in the forecasting
of time series and in particular cross validation for this problem (Li and
Heckman 1996 and Exercise 6.6).

The problem of modeling discontinuous curves has attracted considerable
attention in recent years. Two classes of algorithms can be found in the liter-
ature. First, smoothing algorithms can attempt to preserve discontinuities
in curves, without formally identifying the points of discontinuity. Running
medians are a simple example of this type of algorithm. A more sophisti-
cated method is that of McDonald and Owen (1986), which uses cross val-
idation methods to choose between one- and two- sided smoothers. Locally
adaptive smoothing algorithms, such as wavelets (Donoho and Johnstone
1994), and local bandwidth rules discussed in Chapter 11 and references
therein, fall into this category.

The second class of algorithms are two-stage procedures. First, one es-
timates the points of discontinuity. Second, the data is smoothed between
the points of discontinuity, either by explicitly splitting the dataset, or by
choice of basis functions to preserve the discontinuities. Examples of algo-
rithms of this type include Lee (1989), Müller (1992), Loader (1996a), Jose
and Ismail (1997) and Qiu and Yandell (1998).

The first stage, identification of the change points, is performed using
one-sided smoothers. Specifically, for a fitting point t, left and right weight
functions are defined as

w−
i (t) =

{
W
(

t−xi

h

)
xi < t

0 otherwise

w+
i (t) =

{
W
(

xi−t
h

)
xi ≥ t

0 otherwise
.

In particular, note the left weights w−
i (t) give nonzero weights only to data

points xi < t, and the right weights w+
i (t) only to points xi ≥ t. These

smoothing weights are used to fit local polynomial models, leading to one-
sided estimates µ̂−(t) and µ̂+(t) respectively.

The estimates µ̂−(t) and µ̂+(t) can be interpreted as estimates of the
left and right limits of µ(x), as x → t. If t = τ is a point of discontinuity,
these limits are different, and

∆̂(τ) = µ̂+(τ) − µ̂−(τ)

is an estimate of the jump size. We expect the process ∆̂(t) to be peaked
when t is near a discontinuity τ , and close to 0 when t is not near a dis-
continuity. The estimate of τ is simply the maximizer:

τ̂ = argmaxt∆̂(t)2.
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FIGURE 6.6. Change point estimation: Estimating ∆̂(t)2.

Multiple, and well separated, peaks of the process ∆̂(t)2 can be considered
an indication of multiple discontinuities. Since the two estimates are formed
with non-overlapping sequences of observations, var(∆̂(t)) = var(µ̂−(t)) +
var(µ̂+(t)), which gives some indication as to whether peaks represent real
discontinuities. But this ignores the multiple comparison nature of the prob-
lem. Also, peaks in ∆̂(t) can be caused by sharp curvature in the mean µ̂(t)
rather than discontinuities. There is no completely satisfactory solution of
these problems in the literature.

Example 6.4. Scott (1992, page 234) discusses a dataset measuring the
thickness of U.S. pennies. The dataset consists of the thickness of two coins
for each year from 1945 to 1989. During this time period, there were (at
least) two changes in the production thickness, see Figure 6.7. To detect
the changes, one-sided left and right smooths are fitted to the data:

> midp <- (1945:1988)+0.5
> fitl <- locfit(thickness˜left(year), data=penny,
+ alpha=c(0,10), deg=1, ev=midp)
> fitr <- locfit(thickness˜right(year), data=penny,
+ alpha=c(0,10), deg=1, ev=midp)
> plot((preplot(fitr)-preplot(fitl))ˆ2, type="b")

The one-sided smooths are obtained using left(x) and right(x) in the
model formula. Note that one-sided smooths are discontinuous, so locfit’s
default method of interpolating fits from a sparse set of points is undesirable
in this case. Thus the fits are computed at the midpoints (midp) between
successive years.
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FIGURE 6.7. Split smoothing of the penny dataset.

The estimate ∆̂(t)2 is shown in Figure 6.6. Two changes, t = 1958.5 and
t = 1974.5, are clearly indicated by the sharp peaks.

After points of discontinuity have been estimated, one obtains the final
fitted curve by splitting the data into pieces, and applying local regression
to each segment. This can be achieved simply using either the xlim or
subset arguments.

Example 6.5. We continue with the penny data, using the change point
estimates τ̂1 = 1958.5 and τ̂2 = 1974.5. A local linear fit is computed for
the data for t ≤ 1958:

> fit0 <- locfit(thickness˜year, data=penny,
+ alpha=c(0,10), deg=1, subset=(year<=1958))

Fits fit1 and fit2 are computed similary, using data 1959 ≤ t ≤ 1974
and t ≥ 1975, respectively. The fits are superimposed on a plot of the data:

> plot(penny$year, penny$thickness)
> lines(fit0)
> lines(fit1)
> lines(fit2)

Figure 6.7 shows the three segments. There is also some evidence of a
gradual increase of the mean thickness within segments.

Remark. Careful inspection of Figure 6.7 suggests that the 1974 coins
should be split, one before the change and one after the change.
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6.4 Robust Smoothing

When the errors εi have a long tailed distribution, the local least squares
estimate can be overly sensitive to extreme observations. Robust regression
methods attempt to remedy this by identifying and downweighting influen-
tial observations. Chapter 6 of Hampel, Ronchetti, Rousseeuw and Stahel
(1986) contains an extensive review of robust methods for parametric re-
gression. The most widely used methods are based on M-estimation.

There are several ways to adapt M-estimation to local regression. One
scheme was proposed as part of the lowess procedure of Cleveland (1979).
The algorithm used by Cleveland is:

1. Assign all observations a robustness weight vi = 1.

2. Smooth the data using local polynomials, with weights viwi(x). That
is, the product of the robustness weights and localization weights.

3. Compute the residuals ε̂i = Yi − µ̂(xi), and estimate the scale s as
the median of the absolute values of the residuals.

4. Assign observations robustness weights

vi = B(ε̂i/s)

where B( · ) is a robustness weight function; Cleveland uses B(z) =
(1 − z2/6)2+.

5. Repeat steps 2, 3 and 4 until convergence.

The robustness arises from the downweighting at the fourth step. An ob-
servation with ε̂i = 0 receives robustness weight 1, while an observation
with |ε̂i| >

√
6s receives robustness weight 0.

A difficulty with the straightforward implementation occurs at small
bandwidths. Suppose the smoothing window (x − h(x), x + h(x)) for some
fitting point x contains less than half the data. Since the scale estimate
is defined as the median absolute residual, up to half the data can be re-
jected as outliers. In extreme cases, this could mean all the observations in
(x−h(x), x+h(x)) are rejected. This point was noted by Maechler (1992).

Katkovnik (1979, 1985) and Tsybakov (1986) proposed robust versions
of local regression by changing the fitting criterion. For a symmetric non-
negative function ρ( · ) with ρ(0) = 0, the local M-estimate is obtained by
maximizing the criterion

Lx(a) = −
n∑

i=1

wi(x)ρ
(

Yi − 〈a, A(xi − x)〉
s

)
. (6.7)

This is similar to the local log-likelihood (4.2), and algorithms and theory
for M-estimation closely follow those for local likelihood. In particular, if
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ρ1(v) ρ2(v) ρ3(v) ρ4(v)
Normal 1.000 1.571 1.313 1.052

Double Exp. 2.000 1.000 1.179 1.434
Cauchy ∞ 2.467 2.000 3.521

TABLE 6.1. Robustness variance factors for three densities and four robustness
functions: ρ1(v) = v2/2, ρ2(v) = |v|, ρ3(v) = − log(1 + x2) and ρ4(v) defined by
(6.8) with c = 2.

ρ(v) is convex, the existence and uniqueness results of Theorem 4.1 continue
to hold. A common choice is

ρc(v) = x2I(|v| < c) + (2c|v| − c2)I(|v| ≥ c) (6.8)
ρ′

c(v) = −2cI(v ≤ −c) + 2vI(|v| < c) + 2cI(v ≥ c)
ρ′′

c (v) = 2I(|v| < c)

where c is a prespecified constant. Huber (1964) showed this had a certain
minimax optimality property.

For a fixed dataset, the resulting estimate converges to the local least
squares estimate as c → ∞ and to the local L1 estimate (Katkovnik 1985,
section 7.3; Wang and Scott 1994) as c → 0.

6.4.1 Choice of Robustness Criterion
A theoretical development of robust local M-estimation is found in Tsy-
bakov (1986), following earlier developments of Stuetzle and Mittal (1979)
and Tsybakov (1982) in the local constant case. The ideas largely parallel
those for parametric regression models, developed by Huber (1964, 1981)
and Hampel, Ronchetti, Rousseeuw and Stahel (1986), among others.

If the errors εi have a symmetric density g(v), the variance of the estimate
µ̂(x) is approximately

var(µ̂(x)) ≈
∫

ρ̇(v/s)2g(v)dv

(
∫

ρ̈(v/s)g(v)dv)2
‖l(x)‖2. (6.9)

This follows from a derivation similar to the local likelihood variance,
(4.19). The optimal choice of ρ is ρ(v) = − log(g(v)); in this case, the local
robust regression becomes local likelihood estimation.

Since the density g(v) is treated as unknown, one must choose a func-
tion ρ(v) that exhibits good behavior over some class of densities g(v). For
ρ(v) = v2, (6.9) reduces to σ2‖l(x)‖2, which is poor for heavy tails. Choos-
ing ρ(v) = |v| leads to ‖l(x)‖2/(4g(0)2), which is poor when g(0) is small,
such as for a bimodal density. The choice (6.8), with a robust estimate for
the scale parameter, is a compromise between these two extremes.

Table 6.1 summarizes the variance factors for the normal, double expo-
nential and Cauchy distributions, and four choices of ρ(v).
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6.4.2 Choice of Scale Estimate
The choice of scale estimate has a critical effect on the performance of
robust estimates. The most commonly used scale estimates are based on
the absolute values of the residuals εi; for example,

ŝ = median|ε̂i|.

Here, the median is taken over all observations with nonzero weights.
Any scale s will produce a set of local parameters â = â(s) and corre-

spondingly a set of residuals ε̂i = Yi − 〈â(a), A(xi − x)〉 and a new scale
estimate ŝ(s). The robust M-estimate iterates this process, until a stable
scale and set of parameters are found. Thus, we solve the equation

ŝ(s) − s = 0.

This equation always has a solution, since ŝ(0) ≥ 0 and ŝ(∞) < ∞. But
the solution need not be unique (even for convex ρ( · )), and occasionally
highly nonrobust solutions can be found.

An alternative scale estimate1 is to treat the robustness criterion as a
log-likelihood, with s as a scale parameter. Thus, (6.7) is replaced by

n∑
i=1

wi(x)
(

ρ

(
Yi − 〈a, A(xi − x)〉

s

)
− log(s)

)
,

which can be simultaneously maximized over a and s.
For variance estimation and confidence interval construction, another

scale estimate is required, specifically, of the lead factor in (6.9). The esti-
mate used is

σ̂2 =
n

n − 2ν1 + ν2

∑n
i=1 ρ̇(ε̂i/s)2∑n
i=1 ρ̈(ε̂i/s)

.

6.4.3 locfit Implementation
locfit supports both the global reweighting and local M estimation algo-
rithms. The locfit.robust() function implements the global reweighting
algorithm; see Section B.2.2 for more details. This has the advantage that
the robustness reweighting is performed entirely in S-Plus, so the down-
weighting function B(z) can easily be chosen by the user.

Local M estimation is supported through the families family="huber"
and family="cauchy" without scale estimation, and the corresponding
quasi families "qhuber" and "qcauchy" for M estimation with scale es-
timation.

1Suggested to the author by Xuming He.
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6.5 Exercises

6.1 Working from (2.23), derive the exact derivative (6.2).
Hint. To avoid differentiating X, initially center the fitting functions
around a fixed point x0, instead of the fitting point x. Since the
answer must be independent of x0, you can set x0 = x after doing
the differentiation.

6.2 Consider local quadratic density with the identity link (5.7) and
wj(x) = φ(xj − x) where φ( · ) is the standard normal density. Show

 â0
â1
â2


 =

1
n

n∑
i=1


 1

2 (3 − (xi − x)2)
xi − x

(xi − x)2 − 1


φ(xi − x).

Evaluate the derivatives dâ0/dx and d2â0/dx2; in particular, show
these do not equal â1 and â2. Obtain expressions for the coefficients
(b̂0, b̂1, b̂2, b̂3) for a local cubic fit, and compare with the derivatives
of the local quadratic fit.

6.3 For the Old Faithful geyser dataset (Example 5.2), estimate the local
slope using local log-quadratic density estimation. Compute an esti-
mate of

∫ 6
1 f ′(x)2dx. Plot the estimate as a function of the smoothing

parameter. Perform the exercise for regression examples (such as the
ethanol dataset) and for second derivatives.

6.4 The object of this exercise is to split the CO2 dataset into two com-
ponents (1959-1986 and 1987-1990) and use models fitted to the first
component to predict the CO2 readings in the second component.

a) Fit the first component using a local linear smooth with nearest
neighbor span of 0.4. Use predict() to predict the fitted values
in the second component. Compute the mean squared prediction
error.
Note: To split the dataset into two separate components, use

> co2a <- co2[co2$year<=1986,]
> co2b <- co2[co2$year>=1987,]

In your locfit() call, set flim=c(1959,1991) to ensure that
the fit points span the prediction points.

b) Compute the residuals from the fit, and fit a periodic smooth
to the residuals. Compute the predictions based on adding the
long-term and periodic smooths. Compute the mean squared
prediction error. Make a plot of the 1987 to 1990 data, and
superimpose the two sets of predicted values.
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c) Compute separate smooths for each month with the 1959 to
1986 data, and use these smooths to predict the corresponding
months in the 1987 to 1990 data. Again, compute the mean
squared prediction error.
Note: To subset the data for smoothing, use, for example,

> locfit(co2˜year,data=co2a,subset=(month==1),...)

where subset specifies which months to use, and ... represents
whatever other arguments you decide to use.

d) Compute a bivariate smooth, similar to Figure 6.5 for the co2a
dataset. Again, compute the mean squared prediction error for
the co2b points. Can the results be improved, either by changing
the scale in the year direction, or by changing alpha?

6.5 Suppose data (xi, Yi) is equally spaced, with xi = i/n and Yi =
µ(xi) + εi. The errors εi are N(0, 1) and the mean function µ(t) has
a discontinuity at an unknown τ ∈ (0, 1). We estimate τ using locally
constant fitting with one-sided rectangular kernels. Let k = nh where
h is the bandwidth.

a) Ignoring edge effects at 0 and 1, show

k(∆̂(τ) − ∆̂(τ + j/n)) =
j∑

i=1

(2Ynτ+i − Ynτ+k+i − Ynτ−k+i) .

b) Suppose as n → ∞, k/n → 0 and k/ log(n) → ∞. Show

n(τ̂ − τ) ⇒ argmax(
√

1.5Zi − 1
2
|i∆|) (6.10)

where {Zi}∞
i=−∞ is a two sided random walk of N(0, 1) random

variables (The condition k/ log(n) → ∞ is necessary, for reasons
discussed in Section 13.1).

Remark. If W (0) > 0 and W is continuous on [0,∞), Loader (1996a)
showed that (6.10) holds without the factor

√
1.5. This matches re-

sults of Hinkley (1970) for change point estimation in parametric
models.

6.6 Given a time series Y1, . . . , Yn, suppose we wish to use local polyno-
mial methods to forecast one step ahead. The object is to choose the
bandwidth and degree to minimize the forecast mean squared error.

a) Explain why cross validation, as developed in Chapter 2, is in-
appropriate for this problem.

b) Develop a one-sided cross validation algorithm, forecasting each
observation Yi from Yi−h, . . . , Yi−1.
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c) Implement this algorithm using locfit’s one-sided smoothing.
Apply the algorithm to Spencer’s mortality dataset.



7
Survival and Failure Time Analysis

The problem of survival analysis arises in medical statistics: Observations
Ti may represent the time a patient dies following a treatment or the length
of time the patient remains infected with a disease. A closely related prob-
lem arising frequently in industrial statistics is that of failure times: The
observations Ti represent the times to failure of a component.

A distinguishing feature of many survival and failure time datasets is
censoring. Patients in a study may be lost to followup, so the survival time
is not known. In failure time studies, components may still be working at
the conclusion of the study.

In this chapter a number of ways of analyzing censored survival data
using local likelihood models are presented. The most basic problem is to
characterize the distribution of survival times. This is closely related to
the density estimation problem in Chapter 5. But in survival analysis, it
is often more convenient to focus on the hazard rate, which represents the
conditional probability of death at time t, given that a subject has survived
up to time t. The problem is defined more formally, and estimation methods
discussed, in Section 7.1.

Often, one wants to relate the distribution of survival times to a covariate.
For example, do patients receiving a treatment tend to survive longer?
This hazard regression problem can be treated in several ways. Section
7.1.4 discusses estimation of the conditional hazard rate. This procedure
requires large datasets to work well, and informative results can often be
obtained using simpler models. In Section 7.2 regression methods are used
to estimate the conditional mean survival time. Section 7.3 extends these
methods to likelihood models.
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7.1 Hazard Rate Estimation

The problem of estimating a smooth hazard rate has a long history, dating
to Watson and Leadbetter (1964) who developed some versions of kernel
estimates. In this section, we develop a local likelihood approach to hazard
rate estimation, based on the methods of Wu and Tuma (1990) and Hjort
(1993).

7.1.1 Censored Survival Data
Suppose a study involves n patients, with survival times T1, . . . , Tn. Each
patient is associated with a censoring time ci and the observations are

Yi =
{

Ti Ti < ci

ci Ti ≥ ci
.

It is always known whether an observation is censored (Yi = ci) or uncen-
sored (Yi < ci).

Suppose the survival times Ti have density f(t) and distribution function
F (t) = P (Ti ≤ t). The observations Yi have density f(y) for y < ci, and
a discrete mass P (Yi = ci) = 1 − F (ci). Frequently, interest is not in f(t)
directly, but rather in the hazard rate, which represents the probability of
death at time t, given that the patient has survived until time t. Formally,
the hazard rate h(t) of a random variable T is defined as

h(t) = lim
δ→0

δ−1P (T ≤ t + δ|T ≥ t).

One can easily show that

h(t) =
f(t)

1 − F (t)
. (7.1)

The density can also be expressed in terms of the hazard rate; integrating
(7.1) gives

−
∫ t

−∞
h(u)du = [log(1 − F (u))]t−∞ = log(1 − F (t))

and hence

1 − F (t) = exp(−
∫ t

−∞
h(u)du)

f(t) = h(t) exp(−
∫ t

−∞
h(u)du). (7.2)

More discussion of hazard rates and detailed derivations of the properties
presented here can be found in books such as Miller (1981) and Cox and
Oakes (1984).
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7.1.2 The Local Likelihood Model
The likelihood for censored observations can be written in terms of the
hazard function from (7.2):

n∏
i=1

Yi<ci

f(Yi)
n∏

i=1
Yi=ci

(1 − F (Yi)) =
n∏

i=1
Yi<ci

h(Yi) exp(−
n∑

i=1

∫ Yi

−∞
h(u)du). (7.3)

Note the product is taken over only the uncensored observations, while
the sum is taken over all observations, both censored and uncensored. We
remark that work in survival analysis often assumes that the ci are random
variables and includes appropriate terms in the likelihood. Since our interest
is in the survival times, we treat censoring times as nuisance parameters
and condition on their values.

The likelihood is locally weighted, and a local polynomial approximation
for log(h(u)) leads to the local log-likelihood at a time t:

Lt(a) =
n∑

i=1

W

(
Yi − t

h

)
〈a, A(Yi − t)〉

−
n∑

i=1

∫ Yi

−∞
W

(
u − t

h

)
e〈a,A(u−t)〉du

=
n∑

i=1

W

(
Yi − t

h

)
〈a, A(Yi − t)〉

−
∫ max(Yi)

−∞
N(u)W

(
u − t

h

)
e〈a,A(u−t)〉du (7.4)

where N(u) is the number of observations at risk at time t; N(u) =∑n
i=1 I(Yi ≥ u). The local likelihood estimate of the hazard rate is

λ̂(t) = e〈â,A(0)〉

where â is the vector maximizing (7.4). Note that the local likelihood for
hazard rates is similar to the likelihood (5.3) for density estimation, but
with the factor N(u) in the integral.

Example 7.1. The local constant (p = 0) hazard rate estimate is

λ̂(t) =
1

nh

∑n
i=1

Yi<ci

W
(

Yi−t
h

)
1

nh

∑n
i=1

∫ Yi

−∞ W
(

u−t
h

)
du

. (7.5)

If W ( · ) is the rectangular weight function, then (7.5) is the number of
deaths in [t − h, t + h], divided by the at-risk time in [t − h, t + h] summed
over all observations.
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There is an alternative interpretation. Without censoring, the numerator
of (7.5) is simply the kernel density estimate (5.6), and the denominator is
the kernel-smoothed empirical cumulative distribution function. Thus,

λ̂(t) =
f̂(t)

1
h

∫∞
−∞ W

(
u−t
h

)
(1 − F̂ (u))du

, (7.6)

giving a natural estimate of (7.1).
Now suppose censoring times are drawn independently from a distri-

bution with c.d.f. G(c). In this case, the numerator of (7.5) estimates
f(t)(1 − G(t)) (termed the subdensity by Antoniadis, Grégoire and Na-
son (1999)), and the denominator estimates (1 − F (t))(1 − G(t)). Again,
we have a natural estimate of the hazard rate.

7.1.3 Hazard Rate Estimation in locfit
The local likelihoods for density estimation and hazard rate estimation are
very similar, and implementation of the hazard rate estimate just requires
the use of a special integration routine. But there are a number of other
issues that need to be considered.

The most serious problem occurs at the right boundary, especially when
the largest observation is uncensored. At this point, we have just one ob-
servation, and it dies immediately. Thus, an empirical estimate would say
that death is certain at this time, corresponding to an infinite hazard rate.
This effect is also observed in smooth hazard rate estimates; for example,
in (7.6), F̂ (u) = 1 at the largest observation, so the denominator is near 0.
This effect can lead to distracting tails on the plots of hazard rate estimates.

To reduce the visual distraction, the hazard rate estimate implemented in
locfit uses a modified form of the local likelihood (7.4), replacing N(u) by
N(u)+1. This effectively adds a censored observation to the dataset, equal
to the largest real observation. This is mainly a visual fix; since there is
usually little data to estimate the hazard rate in the right tail, the estimate
will still be highly variable, and one should beware of reading too much into
the estimate.

Hazard rate estimation in locfit is specified with family="hazard". An
indicator variable showing whether or not the ith observation is censored
can be provided as the cens argument. Other options for density estimation
are also applicable to hazard rate estimation. In particular, the identity link
(link="ident") uses local polynomial approximations for λ(t)rather than
log(λ(t)). As with density estimation, this is largely equivalent to higher
order kernel estimates, such as those proposed by Müller and Wang (1994).

Example 7.2. The Stanford heart transplant dataset, from Miller and
Halpern (1982), reports survival times of 184 heart transplant recipients.
Of these patients, 113 died during the followup period and 71 were either
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FIGURE 7.1. Local likelihood hazard estimation applied to heart transplant data

still alive when the data was collected or otherwise lost to followup. The
hazard rate is estimated using a local log-quadratic model, with α = 0.4:

> fit <- locfit(˜surv, data=heart, cens=cens, alpha=0.4,
+ family="hazard", xlim=c(0,100000))
> plot(fit, mpv=300, ylim=c(0,0.004), xlab="Survival Time",
+ ylab="Hazard Rate", get.data=T)

The censoring variable can be either logical or 0-1, with 1 or TRUE indicating
a censored observation.

The plot in Figure 7.1 shows an initially high hazard rate (up to 0.004,
or one death in 250 at-risk days), followed by a sharp drop and leveling
off at one death in 2000 days. A previous analysis by Loader (1991), using
change point models, also showed a precipitous drop around 60 days.

An important point to note is the provision of the xlim argument. In
common with density estimation, the observations are assumed (by default)
to have unbounded support, and the integral of (7.4) is evaluated with lower
limit −∞. In practice, survival times will nearly always have a support
bounded below by 0, and the xlim argument incorporates this constraint.
The large upper limit is effectively ∞.

7.1.4 Covariates
Much of the survival analysis literature considers models with covariates,
addressing (in many different ways) the question of how the covariates
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affect survival times. One approach is to estimate the conditional hazard
rate h(t|x) for a set of covariates x. Kooperberg, Stone and Truong (1995) fit
this model using regression spline models for the log hazard rate, while Gray
(1996) obtains estimates by discretizing the data and using local regression.
The problem can be addressed directly using the local likelihood approach.

Assuming the hazard function varies smoothly as a function of both time
t and covariates x, a local likelihood model is fitted by localizing on both
t and x. The local likelihood (7.4) is modified to

Lt,x(a) =
n∑

i=1

W

(
Yi − t

h
,
xi − x

h

)
〈a, A(Yi − t, xi − x)〉

−
n∑

i=1

∫ Yi

−∞
W

(
u − t

h
,
xi − x

h

)
e〈a,A(u−t,xi−x)〉du

where A(t, x) is the vector of fitting functions; for local quadratic fit-
ting with a single covariate, A(t, x) = ( 1 t x t2 xt x2 )T . W (t, x)
is the weight function; for example, the spherically symmetric weights are
W (t, x) = W0(

√
t2 + ‖x‖2) for a one dimensional weight function W0( · ).

Example 7.3. We use the Liver metastases dataset from Haupt and
Mansmann (1995) and also studied in Antoniadis, Grégoire and Nason
(1999). The dataset measures survival times for 622 patients diagnosed with
liver metastases, of which 261 are censored. The analysis of hazard rates in
Antoniadis, Grégoire and Nason (1999) shows an initially low hazard rate,
increasing to about 0.05 at t = 20 months, then slowly declining.

We fit the hazard regression model, using diameter of the metastases as
the covariate:

> fit <- locfit(˜t+dm, data=livmet, cens=1-z, scale=0, deg=1,
+ family="hazard", alpha=0.5, xlim=list(t=c(0,10000)))
> plot(fit, ylab="Diameter (c.m.)",
+ xlab="Survival Time (Months)", get.data=T)

When family="hazard", the first term in the formula is interpreted as the
survival time, and the remaining terms are covariates. The xlim argument
is used to set a lower bound for the survival times.

The result, in Figure 7.2, shows that the increase in hazard rate is nonuni-
form. For small diameters, the hazard remains roughly constant. The in-
creasing hazard is most pronounced for larger diameters.

7.2 Censored Regression

Unless large quantities of data are available, full estimation of the hazard
rate in the presence of covariates may be an unrealistic goal. Often it is
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FIGURE 7.2. Hazard regression for the liver metastases dataset.

sufficient to study covariate effects: Does a treatment increase survival time,
and by how much? The proportional hazards model is widely used:

λ(t|x) = eβ(x)λ0(t). (7.7)

Cox (1972) proposed the partial likelihood method for estimating covariate
effects, assuming a parametric model for β(x). Tibshirani and Hastie (1987)
study local versions of partial likelihood.

The partial likelihood algorithm treats the baseline hazard λ0(t) as a
nuisance parameter and only provides estimates of the covariate effects.
An alternative approach, used by Volf (1989) and Gentleman and Crow-
ley (1991), is to alternate between estimating the covariate effect and the
baseline hazard rate.

In this section the proportional hazards model is not assumed, but in-
stead we estimate the conditional mean function E(Ti|xi) for censored data.
The starting point is a regression model with additive errors. The essen-
tial idea is to replace each censored observation with a guess of the true
observation and then apply local regression to construct a mean estimate.
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The guess can be constructed using either parametric or nonparametric
methods.

In Section 7.3, the methods are extended to local likelihood estimates.
For survival data, this approach is often more realistic than the additive
error model.

7.2.1 Transformations and Estimates
The censored regression model assumes observations (xi, Yi, δi) where Yi

are censored survival times and δi are censoring indicators. The additive
error model is

Ti = µ(xi) + εi (7.8)

where the Ti are the uncensored (and unobserved) survival times. The
errors εi have mean 0, density f(t) and distribution function F (t). The ob-
ject is to estimate the mean function µ(x). Since survival times are positive,
(7.8) would normally be assumed for a transformation, such as the log of
the survival times.

In the absence of censoring, (7.8) is the ordinary local regression model.
In the presence of censoring, Yi = min(Ti, ci) where ci is the censoring time
for the ith individual. We would like to replace Yi by

Y ∗
i = E(Ti|Yi = y, ci) =

{ y y < ci

E(Ti|Ti ≥ y) y = ci
. (7.9)

That is, uncensored observations are left unchanged, while censored obser-
vations are replaced by the best guess of their true value. The unconditional
density of Ti is f(t − µi), and the mean residual life E(Ti|Ti ≥ y) − y is
found by integrating the tail of this density:

E(Ti|Ti ≥ y) − y =
1

1 − F (y − µi)

∫ ∞

y

(t − y)f(t − µi)dt. (7.10)

If εi ∼ N(0, σ2), it is fairly easy to derive the explicit expression

E(Ti|Ti ≥ y) = µi + σ
φ((y − µi)/σ)

1 − Φ((y − µi)/σ)
. (7.11)

This model can be fitted by alternating least squares, first proposed by
Schmee and Hahn (1979) for parametric regression models. First, smooth
the raw data (xi, Yi) to obtain an initial estimate of µ(x) and σ. Then
alternately estimate Y ∗

i using (7.11) and smooth (xi, Y
∗
i ). This procedure

is iterated until convergence. A variance estimate is also needed; at each
iteration, we compute

σ̂2 =
1

nu − 2tr(L) + tr(LT L)

n∑
i=1

(Yi − µ̂(xi))(Y ∗
i − µ̂(xi)),
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where nu is the number of uncensored observations. Motivation for this
estimate is given in Exercise 7.4; note that it reduces to (2.18) in the
absence of censoring.

7.2.2 Nonparametric Transformations
An objection to the preceding iterative scheme is that the transformation
(7.11) is heavily dependent on the normality assumption. This assumption
will be difficult to check, since in the presence of censoring the estimated
residuals Y ∗

i − µ̂(xi) are not normally distributed, even asymptotically.
Can Y ∗

i be estimated using less parametric methods? Often, censoring
results from termination of a study and the censoring times ci are bounded.
In this case, there is no information about the tails of the distribution of
the Yi, and hence Y ∗

i cannot be estimated consistently. Obtaining good
estimates without a fully parametric model for the residual distribution -
and determining precisely under what conditions such estimates work - is a
difficult problem. A rather technical literature has been developed for this
problem with a parametric form for µ(x); see, for example, Lai and Ying
(1991) and references therein.

In a smooth regression model, Fan and Gijbels (1994) provide the first
use of nonparametric transformations for censored observations, although
their proposed schemes have several other deficiencies (Exercise 7.2).

An alternative scheme, proposed by Buckley and James (1979) in the
context of a linear model for µ(x), is to express the mean residual life in
terms of the distribution function F (t − µ(xi)) and substitute a nonpara-
metric estimate F ( · ). Integration by parts shows the mean residual life
(7.10) is

E(Ti|Ti ≥ y) − y =

∫∞
y

(1 − F (t − µ(xi)))dt

1 − F (y − µ(xi))
. (7.12)

A suitable nonparametric estimate is the product limit estimate of Kaplan
and Meier (1958). This generalizes the empirical distribution function in the
presence of censoring. Suppose U1, . . . , Un are censored observations from
a distribution F (u), and let N(u) be the number of at-risk observations at
time u;

N(u) =
n∑

i=1

I(Ui ≥ u).

Assuming there are no ties in the data, the Kaplan-Meier estimate assigns
the probability mass P (U = u|U ≥ u) = 1/N(u) at each uncensored obser-
vation Ui = y and 0 everywhere else. This conditional mass function leads
to the cumulative distribution function estimate

P̂ (Ui > u) = 1 − F̂ (u) =
n∏

i=1
Ui≤u

(
1 − I(Ui < ci)

N(u)

)
.
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In the regression setting, the Kaplan-Meier estimate is applied to the esti-
mated residuals Ui = Yi − µ̂(xi). The resulting distribution function esti-
mate is substituted into (7.12) to estimate of Y ∗

i . This procedure is iterated,
alternately estimating the mean µ̂(x) and distribution function F (u).

Other nonparametric transformations are possible. If the censoring times
ci are assumed to be random variables with distribution G(c|x) = P (ci <
c), a transformation proposed by Koul, Sursala and Van Ryzin (1981) is

Y ∗
i =

{
Yi

1−G(Yi|xi)
Yi < ci

0 Yi = ci

. (7.13)

Leurgans (1987) proposed

Y ∗
i =

∫ Yi

0

1
1 − G(y|xi)

dy. (7.14)

Fan and Gijbels (1994) considered linear combinations of these two trans-
formations. Under some regularity conditions (in particular, that the cen-
soring distribution is unbounded), these transformations are easily shown
to be unbiased; E(Y ∗

i ) = Ti. On the other hand, the transformations have
the unintuitive behavior of transforming the uncensored observations and
inherently depend on the stochastic assumptions for the censoring times.

Example 7.4. We apply the censored regression model to the Stanford
heart transplant dataset, using the age of the patient at transplant as a
predictor variable. Since this dataset is highly skewed and bounded below
by 0, it makes little sense to fit the model (7.8) directly. We first transform
the survival times, considering the response log(∆ + surv). The shift ∆ =
0.5 avoids log(0) problems. Three fits are computed: using the raw data and
ignoring censoring, correction based on the normal model and correction
based on the Kaplan-Meier estimate.

The code follows. The censored regression iterations are performed us-
ing the locfit.censor function; for a description of how this works, see
Section B.2.2. The km=T argument uses the Kaplan-Meier estimate of mean
residual life; otherwise, the normal model is used.

> plotbyfactor(heart$age, 0.5+heart$surv, heart$cens,
+ ylim=c(0.5,16000), log="y")
> fit <- locfit(log10(0.5+surv)˜age, data=heart)
> lines(fit, tr = function(x)10ˆx)
> fit <- locfit.censor(log10(0.5+surv)˜age, cens=cens,
+ data=heart, lfproc=locfit.censor)
> lines(fit, lty=2, tr = function(x)10ˆx)
> fit <- locfit.censor(log10(0.5+surv)˜age, cens=cens,
+ data=heart, km=T)
> lines(fit, lty=3, tr=function(x)10ˆx)

Figure 7.3 shows the fits. Both the normal and Kaplan-Meier models
make a substantial correction for censoring over the left half of the plot.
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FIGURE 7.3. Stanford heart transplant dataset. Local regression and censored
regression using normal and Kaplan-Meier models.

However, the correction made by the normal model is larger than that made
by the Kaplan-Meier model. We might expect the Kaplan-Meier correction
to be inadequate for this data, since nearly all the largest survival times
are censored, and thus the estimates of the mean residual life for these
observations are likely to be downward biased. But given the substantial
extrapolation there is no real way to validate which - if either - of the
estimates is making the right correction.

7.3 Censored Local Likelihood

The regression models in the previous section assume additive errors. But
in many datasets, survival times are positive and the additive error model
is unreasonable. An alternative is to fit censored local likelihood models. If



130 7. Survival and Failure Time Analysis

the responses Ti have density f(t, θi) then (7.3) generalizes to

L(θ) =
n∑

i=1

l(Yi, θi, ci)

where

l(Yi, θi, ci) =
{

log(f(Yi, θi)) Yi < ci

log(1 − F (Y −
i , θi)) Yi = ci

;

f(Yi, θi) and F (Yi, θi) are the density and distribution function of Yi re-
spectively. This likelihood can be localized and estimates of θ obtained
following Definition 4.1.

Most of the methods developed for local likelihood in Chapter 4 can be
extended to censored local likelihood. Most importantly, the local likelihood
estimate continues to be a solution of the local likelihood equations (4.14).
The nice behavior of the solution characterized in Theorem 4.1 continues
to hold in many important cases.

For most common families, log(1 − F (Y −
i , θi)) is a monotone function of

θi and does not tend to −∞ at one boundary. However, it is bounded above
by 0, so the existence part of the theorem will continue to hold if WX has
full rank after censored observations are deleted from X. Concavity (and
hence uniqueness) can be checked in special cases. The developments of
cross validation, the influence function and AIC in Section 4.3.3 extend
to censored models, although the form of l̈(Yi, θi, ci) is quite different for
censored observations.

Example 7.5. For the geometric distribution and the log link,

P (Yi ≥ y) = qy =
eθiy

(1 + eθ
i )y

.

Thus the censored log-likelihood is

l(Yi, θ, ci) =
{

θYi − (Yi + 1) log(1 + eθi) Yi < ci

θYi − Yi log(1 + eθi) Yi = ci
.

For censored observations with Yi = ci, l(Yi, θ, ci) → 0 as θi → ∞, so
that these observations violate the conditions of Theorem 4.1. The second
derivative is

∂2

∂θ2 l(Yi, θ, ci) = − (Yi + I(Yi < ci))eθ

(1 + eθ)2
.

This is negative for any Yi > 0, so concavity is preserved. Thus the existence
and uniqueness of Theorem 4.1 continue to hold, provided only uncensored
observations with Yi > 0 are counted when determining the rank.

Results similar to Example 7.5 hold for other common likelihoods, al-
though establishing concavity tends to be messy. The Poisson family with
both the log and identity links is studied in Exercise 7.5.
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FIGURE 7.4. Batting record of Australian cricketer Allan Border. Circles repre-
sent completed (out) innings, and ‘+’ represents censored (not out) innings.

7.3.1 Censored Local Likelihood in locfit
Censored regression is currently supported in locfit for the Gaussian,
Poisson, geometric and gamma families by providing a cens argument.

Example 7.6. The sport of cricket is played between two teams. Like
baseball, players on the batting team attempt to score runs, while players on
the fielding team attempt to get batsmen1 ‘out’; for example, by catching
a ball hit by a batsman. Unlike baseball, a batsman continues batting,
and accumulating runs, until he gets out. The total number of runs scored
represents a completed innings for the batsman.

Occasionally, a batsman will not be able to complete his innings. For
example, the team may have scored sufficient runs to win the match, so
there is no point in continuing. In this case, the innings is recorded as ‘not
out’, which is treated as a censored observation. Figure 7.4 displays the
batting record between 1977 and 1994 played by Australian cricketer Allan
Border. The dataset contains 265 innings, with a total of 11174 runs. Of
these innings, 44 were ‘not out’ (censored).

There is considerable interest in measuring the performance of players,
and the most common measure of a batsman’s performance is batting av-
erage, defined as the total number of runs scored, divided by the number

1or batswomen.
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of completed innings. For the dataset in Figure 7.4, the average is

11174
265 − 44

= 50.56.

Of course, innings played in 1977 have little relevance to performance in
1990, so we would like to localize this computation. A natural model is the
geometric distribution: At any time, we suppose a batsman has a probabil-
ity 1/(1 + µ) of getting out and a probability µ/(1 + µ) of scoring another
run. Using the date of the innings as a covariate, we can now fit a local
likelihood model:

> fit0 <- locfit(runs˜day, cens=no, data=border,
+ family="geom", alpha=0.7)
> plot(fit0,get.data=T)

The fitted curve is shown in Figure 7.4. The fitted curve here is quite
flat, with perhaps a slight peak around 1986. This represents a remarkably
consistent performance over the 18 year period.

The geometric model might be criticized in the preceding example, since
no allowance is made for several sources of variation, such as strength
of the opposing side or condition of the playing field. Thus, the data
may be overdispersed, and exhibit more variability than the geometric
model would predict. This can be judged by looking at the total deviance
(-2*fit@dp["lk"]), which in this case is 429.6. Since this is much larger
than the sample size (265), the evidence is that the data is overdispersed.

In Section 4.3.4, we considered quasi-likelihood as a method for handling
overdispersion. But this strategy is not useful for censored models, since
the tail probabilities F (Y −

i , θi, ci) are needed, and specifying a relation
between the mean and variance functions is not sufficient.

An alternative is to fit a larger family of models. The negative binomial
family (4.6), with shape parameter ni, has a discrete hazard rate

P (Yi = y|Yi ≥ y) → 1 + µ(xi)

as y → ∞. When ni < 1, the hazard rate decreases to this asymptote, and
the distribution of Yi is overdispersed, relative to the geometric distribution.
This type of behavior has been observed in cricket scores previously by
Kimber and Hansford (1993) and is fairly consistent with the dataset used
in example 7.6. See exercise 7.6.

Example 7.7. We fit the negative binomial model using a global con-
stant model for the shape parameter and a local quadratic model for the
mean function. The shape parameter can be estimated by maximum likeli-
hood. There is no automated way to do this; the easiest way is to compute
the local fit for a few candidate values and carefully reconstruct the log
likelihood using the dnbinom and pnbinom functions for the uncensored
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and censored observations respectively. The following code computes the
likelihood for the shape parameter w = 0.8:

> w <- 0.8
> fit <- locfit(runs˜day, cens=no, weights=rep(w,265),
+ data=border, family="geom", alpha=0.7)
> fv <- fitted(fit)
> phat <- fv/(1+fv)
> lk <- rep(0,265)
> no <- border$no==1
> lk[no] <- 1 - pnbinom(border$runs[no]-1,
+ size=w, prob=1-phat[no])
> lk[!no] <- dnbinom(border$runs[!no], size=w,
+ prob=1-phat[!no])
> sum(log(lk))
[1] -1085.228

For this example, ŵ = 0.8 was found to be the maximum likelihood esti-
mate. The final fit is obtained with

> fit1 <- locfit(runs˜day, data=border, weights=rep(0.8,265),
+ cens=no, family="geom", alpha=0.7)

Of particular interest is the difference between the mean estimate under
the negative binomial model and the mean estimate under the geometric
model. This difference can be plotted by

> plot(0.8*preplot(fit1) - preplot(fit0))

Figure 7.5 shows the result. Since the geometric model has the ‘no-memory’
property, this provides an estimate of the effect of censoring on the bats-
man’s average. From this fit, we estimate that the batting average would
have been about 1.5 runs higher, had all innings been played to completion.

The magnitude of the difference in Figure 7.5 may be sensitive to the
negative binomial assumption. But the sign of the difference is a conse-
quence of a decreasing hazard rate (Exercise 7.3), and does not depend
on the particular model used. This is contrary to other models: Table 3 of
Kimber and Hansford (1993) suggests that means should be decreased to
compensate for censoring.

In the preceding example, the dispersion parameters ni have been mod-
eled as the global constant w. A more sophisticated approach would be
to use local models for both the mean and dispersion parameters. See, for
example, Nelder and Pregibon (1987) and Rigby and Stasinopoulos (1996).

Another distribution commonly used for survival times is the Weibull
model, with densities

f(t, a, b) =
btb−1

a
exp(−tb/a).
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FIGURE 7.5. Batting data: Estimating the censoring effect on the average.

This model is mathematically easier to work with than the negative bino-
mial and gamma distributions. Some properties are:

• The mean is
E(T ) = a1/bΓ(1 + 1/b). (7.15)

• T b has an exponential distribution, with mean a.

• The hazard rate is λ(t) = btb−1/a.

If the shape parameter b is known, the scale parameter a can be estimated
by transforming to the exponential distribution. If a = a(x) is modeled
using local likelihood, the Weibull model is a special case of the proportional
hazards model (7.7), with λ0(t) = btb−1 and β(x) = − log(a(x)).

Example 7.8. We return to the heart transplant dataset. The mean
survival time is modeled as a function of the patient’s age at transplant
using the Weibull distribution. We estimate the scale parameter using a
local quadratic model and 80% nearest neighbor bandwidth and a global
constant model for the shape parameter b. By maximum likelihood, b̂ =
0.625, and the final fit is obtained as

> fit <- locfit(I((surv+0.5)ˆ0.625)˜age, cens=cens,
+ data=heart, alpha=0.8, family="gamma")
> y <- log(heart$surv+0.5)
> plotbyfactor(heart$age, heart$surv+0.5, heart$cens,
+ pch = c("O","+"), log = "y")
> plot(fit, add=T, tr = function(x)
+ exp(x/0.625)*gamma(1+1/0.625))
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FIGURE 7.6. Heart transplant data and smooth using a censored local likelihood
Weibull model.

The transformation tr provided to the plot() call arises from (7.15) and
the log link θ = log(a) used for the gamma family.

The fit in Figure 7.6 shows the same general pattern as the earlier fits in
Figure 7.3. However, the overall level is raised, because the estimate is of
log(mean survival time), rather than mean(log survival time).

7.4 Exercises

7.1 Consider the problem of censored local regression using a normal
model. For the purposes of this exercise, suppose that σ = 1 is known.

a) The alternating (EM) algorithm proposed in Section 7.2 is per-
formed globally. If instead the iterations are performed locally
at each fitting point, show the resulting coefficients solve the
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equation
n∑

i=1

wi(x)A(xi − x)A(xi − x)T â =
n∑

i=1

wi(x)A(xi − x)Ŷ ∗
i (7.16)

where Ŷ ∗
i is obtained from (7.9) and (7.11), with µi replaced by

〈â, A(xi − x)〉.
b) An alternative is to use censored local likelihood with the Gaus-

sian likelihood. Show the local likelihood equations for this case
can also be expressed as (7.16). Thus, with known variance, the
local likelihood and alternating algorithms coincide.

7.2 In the censored regression setting, Fan and Gijbels (1994) propose
estimating Y ∗

i using the transformation

Ŷ ∗
i =

∑
j:Yj>Yi,Yj<cj

W
(

xj−xi

h

)
Yj∑

j:Yj>Yi,Yj<cj
W
(

xj−xi

h

) . (7.17)

This is a local average of uncensored observations larger than Yi. For
definiteness, take Ŷ ∗

i = Yi if the sums are empty.

a) Suppose responses Ti are exponentially distributed with mean
µ and the censoring times ci are exponentially distributed with
mean τ ; both Ti and ci are independent of xi. The observations
are Yi = min(Ti, ci). Show

E(Ti|Ti ≥ y) = y + µ; E(Ŷ ∗
i |Yi = y, Yi = ci) ≤ y + µ − µ2

µ + τ

(this would be equality if one ignores the problem of empty
sums). Thus, the Fan/Gijbels method undercorrects in this case.

b) Propose a minor modification of (7.17) to fix the undercorrec-
tion in the exponential case. To what extent is the modified
transformation nonparametric?

7.3 Suppose a random variable T has distribution function F (t).

a) Show that the mean residual life is

E(T |T ≥ y) − y =

∫∞
y

(1 − F (t))dt

1 − F (y)
.

b) Suppose the hazard rate λ(t) is a decreasing function of t. Show

1 − F (t) ≤ λ(t)
∫ ∞

t

(1 − F (u))du
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and hence

(1 − F (t))2 ≤ f(t)
∫ ∞

t

(1 − F (u))du.

c) Show that if λ(t) is a decreasing function of t, then the mean
residual life is an increasing function of t. Also show for any
c > 0,

E(T ) ≥ E(min(T, c))
P (T < c)

.

7.4 Suppose T ∼ N(0, σ2) and Y = min(T, c) where c is a censoring time.
Let

Y ∗ = Y I(Y < c) +
σφ(Y/σ)

1 − Φ(Y/σ)
I(Y = c).

Show E(Y Y ∗) = Φ(c) = P (Y < c). Given n observations (Yi, ci),
show ∑n

i=1 YiY
∗
i∑n

i=1 I(Yi < ci)
→ σ2

in probability, provided
∑n

i=1 P (Yi < ci) → ∞. When σ is unknown,
show the maximum likelihood estimate is the solution of the equation∑n

i=1 YiY
∗
i∑n

i=1 I(Yi < ci)
= σ2.

7.5 Let Y have a Poisson distribution with mean λ so that Pλ(Y = y) =
Pλ(y) = λye−λ/y!. Show

d

dλ
Pλ(Y = y) = Pλ(y − 1) − Pλ(y)

d

dλ
Pλ(Y ≥ y) = Pλ(y − 1).

Use these relations to show
d2

dλ2 log Pλ(Y ≥ y)

=
1

Pλ(Y ≥ y)2

∞∑
j=y

(Pλ(y − 2)Pλ(j) − Pλ(y − 1)Pλ(j − 1)) .

Hence show log Pλ(Y ≥ y) is a concave function of λ. Derive a similar
expression for d2

dθ2 log Pλ(Y ≥ y) under the log link θ = log(λ), and
again show this is concave.

7.6 For the cricket batting dataset from Example 7.6, estimate and plot
the hazard rate. Use a local log-linear model with smoothing param-
eter α = 0.4 or smaller. Observe that the hazard rate displays an
initial sharp decrease and then remains fairly constant.
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8
Discrimination and Classification

In a classification problem, one has a set of multivariate observations from
two (or more) populations. One then wishes to define a discriminant func-
tion that can effectively classify future observations into one of the pop-
ulations. Classification problems have attracted an enormous amount of
attention in recent years; reviews from a statistical perspective include
Ripley (1994) and Langaas (1995). In this chapter we concentrate on sta-
tistical formulations of the classification problem and solutions using local
likelihood methods.

Statistical work on classification begins with Fisher’s (1936) linear dis-
criminant analysis. One assumes that the populations give rise to normally
distributed observations with different means but a common covariance
matrix. Under this model, the optimal discriminant function can be shown
to be a straight line.

More flexible classification rules can be obtained by relaxing the normal-
ity assumption and estimating the densities using local methods. The most
common rules of this type are based on kernel density estimates (Van Ness
and Simpson 1976; Kharin 1983; Murphy and Moran 1986) and nearest
neighbor methods (Fix and Hodges 1951; Cover and Hart 1967).

An alternative formulation of the classification problem uses logistic re-
gression (Day and Kerridge 1967; Anderson 1972; Efron 1975). In this ap-
proach, one attempts to estimate the probability that an observation comes
from each population. An extensive study of local logistic regression for
classification was provided by Deng and Moore (1996).
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8.1 Discriminant Analysis

We consider the two-class classification problem, where observations arise
from two populations, Π1 and Π2. Suppose one has a set of training obser-
vations (xi, Yi) where the responses Yi are indicators of class membership;
Yi = 1 for observations from population Π1, and Yi = 2 for observations
from Π2. One then wishes to define a discriminant function that can ef-
fectively classify a future observation into one of the two populations. A
decision rule δ(x) maps the sample space to {1, 2}. An observation X ∈ Π1
is correctly classified if δ(X) = 1 and misclassified if δ(X) = 2.

Suppose that for observations from Π1, xi has a density f1(x), and for
observations from Π2, xi has a density f2(x). Suppose also that the popu-
lations have prior probabilities

p1 = P (xi ∈ Π1)
p2 = P (xi ∈ Π2)

with p1 + p2 = 1. Applying Bayes’ theorem, the posterior probability that
an observation xi comes from the population Π1 is

P (xi ∈ Π1|xi = x) =
p1f1(x)

p1f1(x) + p2f2(x)
=
(

1 +
p2f2(x)
p1f1(x)

)−1

. (8.1)

We also introduce a loss function. Suppose we have an observation X = x
but the corresponding population is unknown. Suppose the observation is
classified as δ(x) = 2. If the observation is from Π2, the observation is
correctly classified and the cost is 0. If the observation is from Π1, the
object is misclassified, and the cost is c1. The expected loss is then c1 times
the probability that the observation has been misclassified:

L(x, 2) = c1P (X ∈ Π1|X = x) =
c1p1f1(x)

p1f1(x) + p2f2(x)
. (8.2)

Likewise, if misclassifying an observation from Π2 as coming from Π1 has
cost c2, the expected cost of δ(x) = 1 is

L(x, 1) = c2P (X ∈ Π2|X = x) =
c2p2f2(x)

p1f1(x) + p2f2(x)
. (8.3)

An optimal Bayes rule δB(x) chooses δB(x) = 1 for values of x with
L(x, 1) < L(x, 2), and δB(x) = 2 otherwise. Explicitly,

δB(x) =
{

1 c1p1f1(x) > c2p2f2(x)
2 c1p1f1(x) ≤ c2p2f2(x) (8.4)

or equivalently,

δB(x) =
{

1 P (X ∈ Π2|X = x) < c1
c1+c2

2 P (X ∈ Π2|X = x) ≥ c1
c1+c2

. (8.5)
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The global expected loss of the optimal rule δB(x) is obtained by integrating
the pointwise loss:

c1P (X ∈ Π1, δB(X) = 2) + c2P (X ∈ Π2, δB(X) = 1)

= c1

∫
{x:δB(x)=2}

p1f1(x)dx + c2

∫
{x:δB(x)=1}

p2f2(x)dx

=
∫

min(c1p1f1(x), c2p2f2(x))dx. (8.6)

The optimal rule δB(x) cannot be used directly since f1(x) and f2(x)
are unknown. Instead, we have to build data-based classifiers that approx-
imate, as closely as possible, this optimal rule. To estimate the optimal
discriminant rule, (8.4) and (8.5) suggest two distinct approaches. First,
we can estimate P (X ∈ Π2|X = x) directly using local logistic regression.
Alternatively, we can estimate f1(x) and f2(x) using density estimation.

8.2 Classification with locfit

To illustrate the classification methods, we use a simulated example with
two classes Π1 and Π2, and two predictor variables. Under Π1, we generate
x1,i ∼ N(0, 1) and x2,i = (x2

1,i − 2 + zi)/3, where zi ∼ N(0, 1). Under the
class Π2, x1,i ∼ N(0, 1) and x2,i = (2 − x2

1,i + zi)/3. The two classes are
equally likely, and misclassification costs are equal, c1 = c2 = 1. Under
this model, the optimal classifier δB(x) has a checkerboard pattern, with
a horizontal boundary at x2 = 0, and vertical boundaries at x1 = ±√

2.
By numerical integration, the global expected cost (8.6) is 0.1094, so that
about 11% of the observations should be misclassified by δB(x).

A training sample with 200 observations was generated:

> y <- sample(c(1,2),200,replace=T)
> x1 <- rnorm(200)
> x2 <- (x1*x1-2+rnorm(200))/3*(1-2*y)
> cltrain <- data.frame(x1=x1,x2=x2,y=y)

A test set cltest was generated similarly, also with 200 observations. The
training set contains 93 observations from Π1 and 107 from Π2. The test set
had 109 observations from Π1 and 91 from Π2. Table 8.1 summarizes the
performance of δB(x) on the test and training samples; this forms a useful
basis for comparing data-based rules later. There are 27 misclassifications
(13.5%) on the training sample and 17 (8.5%) on the test sample.
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Train Test
1 2 1 2

Classified 1 81 15 99 7
as 2 12 92 10 84

TABLE 8.1. Classification rates for δB(x) on a simulated example, with training
and test samples.

8.2.1 Logistic Regression
Local logistic regression can then be applied directly to estimate the pos-
terior probability (8.1) of class membership and hence the discriminant
rule.

Example 8.1. We fit a local logistic regression to the training dataset
generated earlier;

> fit <- locfit(I(y==2)˜x1+x2, data=cltrain, scale=0)

Note the binomial family is automatic when the response is logical. The fit
is then ploted, with a single contour at the 0.5 level:

> plot(fit, v=0.5)
> text(cltrain$x1, cltrain$x2, cltrain$y, cex=0.7)

Figure 8.1 shows the data and discriminant boundary. Although the sharp
corners of the optimal boundary have been rounded off, the estimated
boundary generally follows the same pattern as the optimal boundary. The
classification table shows a total of 27 misclassifications:

> table(fitted(fit)>0.5, class.train$y)
1 2

FALSE 80 14
TRUE 13 93

The fitted object can be used to classify the test sample, simply by
evaluating the fit at test points. The classification rule is evaluated entirely
from the fitted object using the predict() function; it does not use the
original data. This speeds up computation when the training sample is
large.

Example 8.2. We compute the predicted values for the fit computed
in Example 8.1, at the test dataset:

> table(predict(fit,cltest)>0.5, cltest$y)
1 2

FALSE 98 9
TRUE 11 82

Here, we have misclassified 20 observations, compared to 17 using δB(x).
As expected, the data-based rule is slightly worse than the optimal rule.
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FIGURE 8.1. Classification boundary for a simulated example, using logistic
regression.

8.2.2 Density Estimation
The second approach to discrimination uses density estimation. This takes a
little more work to implement, since separate fits must be computed for each
class. We actually use Poisson process rate estimation (family="rate").
As shown in Section 5.1.2, this has the effect of multiplying the estimate by
the sample size. This is desirable here since the decision rule (8.4) involves
the prior probabilities p1 and p2 and these are estimated as n1/(n1 + n2)
and n2/(n1 + n2) respectively. Implicit here is the assumption that the
sampling frequencies in the training sample reflect the general population.

Example 8.3. For each of the two classes in Example 8.1, we compute
density estimates:

> fit2 <- locfit(˜x1+x2, data=class.train, subset=y==2,
+ family="rate", scale=0)
> fit1 <- locfit(˜x1+x2, data=class.train, subset=y==1,
+ family="rate", scale=0)

To tabulate the performance of the discriminant rule on the training sam-
ple, the two fits are predicted at all the sample points:

> id <- function(x)x
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> fiy1 <- predict(fit1, class.train, tr=id)
> fiy2 <- predict(fit2, class.train, tr=id)
> table(fiy2-fiy1>0, class.train$y)

1 2
FALSE 81 14
TRUE 12 93

The predicted values are computed with the identity inverse transforma-
tion, so the returned values are estimates of the logarithm of the event rate.
This avoids numerical division-by-0 errors in sparse regions. We now have
26 misclassifications on the training sample; slightly better than δB(x) in
Table 8.1. This is to be expected; the fitted rule is tuned to the training
sample at hand, whereas the optimal rule δB(x) is tuned to the population.

Plotting the discriminant region also takes a little care. Since the two
fits are not computed at the same points, we cannot directly subtract the
fits. Rather, we must predict each fit on the same grid of points, and then
subtract the predictions:1

> pr <- lfmarg(c(-3,-2.2,3,2),c(50,50))
> plot(preplot(fit2,pr,tr=id)-preplot(fit1,pr,tr=id), v=0)
> text(class.test$x1, class.test$x2, class.test$y, cex=0.7)

The lfmarg() function is used to compute a grid of points over an appro-
priate prediction region; here, [−3, 3] × [−2.2, 2], with 50 points per side.
The discriminant boundary is shown in Figure 8.2. In this case the esti-
mated boundary is quite unlike the optimal boundary. But the differences
are largely in regions where there is very little data, so this has little effect
on the misclassification rates.

To classify the test dataset, we need to evaluate the two fits at the points
in the test dataset:

> pry1 <- predict(fit1, class.test, tr = id)
> pry2 <- predict(fit2, class.test, tr = id)
> table(pry2-pry1>0, class.test$y)

1 2
FALSE 100 7
TRUE 9 84

This produces only 16 misclassifications, beating the optimal rule δB(x) on
the test set. This can only happen by chance, since the expected loss for
the data-based rule must be larger than for the optimal rule.

1This will only work in S version 4 and higher.
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FIGURE 8.2. Classification boundary for a simulated example, using density
estimation.

8.3 Model Selection for Classification

The usual model issues: choice of local polynomial order and bandwidth
selection, arise in the classification problem. However, they manifest them-
selves in different ways, and choices that result in good visual estimates
of the densities and probability functions need not be the best choices for
classification.

Variable selection is also important in classification problems. Adding
new variables to the model reduces the optimal Bayes risk (8.6) (see Ex-
ercise 8.2). But in practice, adding variables leads to a more difficult esti-
mation problem, and it may be best to use only a subset of the available
variables.

The classification problem is ideally suited to cross validation. We ask the
question: “how would each observation be classified, when the classification
rule is defined from the remaining n−1 observations?”. The process is best
studied by examples.

Example 8.4. Fisher’s iris dataset (Fisher 1936) consists of four mea-
surements on iris flowers: petal width, petal length, sepal width and sepal
length. We consider classification of the Virginica and Versicolor species (a
third species, Setosa, is in the original dataset but is not used here).
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Each model with one or two variables is fitted local linear logistic regres-
sion and a 70% nearest neighbor smoothing parameter. Direct leave-one-out
cross validation is performed at each data point (this is feasible with only
100 observations), so each observation is being classified by the remaining
99 observations. The misclassification rate is then computed. A typical call
is

> fit <- locfit(I(species=="virginica")˜sepal.len, data=iris,
+ deg=1,ev="crossval")
> table(fitted(fit)>0.5, iris$species)

versicolor virginica
FALSE 34 11
TRUE 16 39

In this case, 27 = 16 + 11 misclassifications result. For multiple variables,
the scale=0 argument was added.

No. of Misclassifications
Variables Versicolor Virginica Total

Sepal length 16 11 27
Sepal width 23 21 44
Petal length 4 3 7
Petal width 2 4 6

Petal width, sepal length 2 5 7
Petal width, sepal width 4 6 10
Petal width, petal length 3 3 6

TABLE 8.2. Variable selection by cross validation for the iris data.

Table 8.2 shows the results for all one and two variable models. Clearly,
sepal width and sepal length have high misclassification rates, while petal
length and petal width have lowest misclassification rates. On this basis,
petal width is selected as the first variable in the model. Adding a sec-
ond variable provides no improvement. Figure 8.3 shows the classification
boundary when petal width and petal length are included in the model:

> fit <- locfit(I(species=="virginica")˜petal.wid+petal.len,
+ data=iris, scale=0, deg=1)
> plotbyfactor(petal.wid, petal.len, species, data=iris,
+ pch=c("O","+"), lg = c(1, 6.8))
> plot(fit, v=0.5, add=T)

What about the bandwidth and degree? As we have seen, these can be
crucial in effective modeling of regression surfaces, particularly in problems
where there is large curvature. But in classification problems, bandwidth
and degree often have less effect. The reason is that extremities of the
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FIGURE 8.3. Classification boundary for the iris dataset, based on petal width
and petal length.

fitted surface are less important. For example, modeling the densities of
the individual species in Figure 8.3 would need a local quadratic model
to capture peaks for the two species. But in classification, we only need
good estimates in the small region where the two species mix. Outside this
region, it is obvious what the classification rule should be, and even poor
density estimates will get this right.

Example 8.5. To see the effect of changing the smoothing parameter on
the iris data, we fit the bivariate petal.len+petal.wid model and vary the
nearest neighbor span from 0.2 to 0.9. Table 8.3 shows that the smoothing
parameter is having very little effect on the cross validated error rate.
This pattern is commonly observed in classification problems; for many
real datasets, selection of variables and data transformation are far more
important than bandwidth selection.

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Misclass. rate 5 5 7 6 6 6 6 6

TABLE 8.3. Effect of changing the smoothing parameter α on the cross validated
error rate for the iris data.

How do these results compare with other approaches to classification?
In Table 3 of Friedman (1994) the results of eight different classifiers are
reported, including CART, k-nearest neighbor and proposed scythe and
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machete methods. The results ranged from 3 to 11 misclassifications, with
five of the eight classifiers having 5 or 6 misclassifications. Clearly the
results obtained by logistic regression are comparable.

So far we have performed leave-one-out cross validation directly. This
is reasonable for the iris dataset with just 100 points; with larger sample
sizes it is less reasonable. An alternative is to use the approximate cross
validation based on influence functions developed in Section 4.3.3 for local
likelihood models. The implementation is quite simple; for example,

> fit <- locfit(I(species=="virginica")˜sepal.len,
+ data=iris, deg=1)
> table(fitted(fit,cv=T)>0.5, iris$species)

versicolor virginica
FALSE 34 11
TRUE 16 39

Compared to the direct fit, we drop the ev="crossval" argument from
the call to locfit() and add cv=T to the call to fitted(). In this case,
the result is identical to the direct cross validation. For the seven models
reported in Table 8.2, the approximate cross validation produced identical
results in five cases; the exceptions being petal.wid+sepal.len (6 mis-
classifications) and petal.wid+sepal.wid (8 misclassifications).

8.4 Multiple Classes

The classification problem can be extended to multiple classes. Suppose K
populations Π1, . . . ,ΠK have prior probabilities p1, . . . , pK and densities
f1(x), . . . , fK(x). Similarly to (8.1), the posterior probability of class i is

P (xi ∈ Πj |xi = x) =
pjfj(x)

p1f1(x) + . . . + pKfK(x)
.

Assuming a 0-1 loss function, the optimal decision rule selects the class
with maximum posterior probability,

δ(x) = argmax1≤j≤Kpjfj(x).

As in the two-class problem, we can estimate the posterior probabilities
using local logistic regression or the class densities pifi(x) using density
estimation.

Example 8.6. We use the chemical and overt diabetes dataset from
Reaven and Miller (1979) to classify type of diabetes from several pre-
dictor variables. Some inspection shows that one variable, ‘Glucose Area’,
provides good discrimination between the classes; fitting local linear logistic
regression produces a cross validated error rate of 6/145 = 4.1%. Adding
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FIGURE 8.4. Chemical diabetes dataset.

a second variable, ‘Fasting Plasma Glucose’, produces nearly perfect dis-
crimination; see Figure 8.4.

For each of the three classes, we compute the cross validated local logistic
regressions; for example,

> fit1 <- locfit(I(cc=="Overt Diabetic")˜fpg+ga,
+ data=chemdiab, scale=0, deg=1, ev="crossval")
> p1 <- fitted(fit1)

Predictions p2 and p3 are computed for the other responses ("Chemical
Diabetic" and "Normal") respectively. We then compute and tabulate the
classifications:

> z <- (p1>pmax(p2,p3)) + 2*(p2>pmax(p1,p3))
+ + 3*(p3>pmax(p1,p2))
> table(chemdiab$cc, z)

1 2 3
Overt Diabetic 33 0 0

Chemical Diabetic 0 35 1
Normal 0 1 75
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This two variable model has a cross validated error rate of 2/145 = 1.4%;
this significantly beats the eight methods in table 3 of Friedman (1994).

Example 8.7. The kangaroo skull dataset (Andrews and Herzberg,
1985 chapter 53) consists of 18 skull measurements on 148 kangaroos from
three species. Attention is restricted to the 101 skulls with a complete set
of measurements. Using local linear logistic regression, the first variable
entered is crest width, resulting in a cross validated error rate of 45/101 =
44.6%. The second variable entered is ascending ramus height, with error
rate 31/101=30.7%. An analysis of the misclassifications (Table 8.4) shows
the species giganteus and fuliginosus are being successfully distinguished,
while melanops is proving difficult to identify.

Classified as
Species Gig. Mel. Ful.

Giganteus 32 3 2
Melanops 13 5 10

Fuliginosus 2 1 33

TABLE 8.4. Classification rates for the kangaroo dataset.

Figure 8.5 displays the two selected variables. This confirms what we
observe from Table 8.4: The giganteus and fuliginosus species are fairly well
separated from each other, but melanops is difficult to distinguish. Results
in table 3 of Friedman (1994) show misclassification rates ranging from
19.8 to 48.0%; the performance of the bivariate model is average. Adding
additional variables doesn’t help much, and one begins to get numerical
problems because local logistic regression with three variables and just 101
observations is difficult.

Variable selection for the kangaroo skulls was only moderately successful.
The reason is that the eighteen variables each contribute a small amount
of information. An alternative approach is to look not just at marginal
variables, but at low dimensional projections of the data. One approach is to
look at the projections produced by linear discriminant analysis. Suppose,
for the moment, that observations from each species have a multivariate
normal distribution, with a common covariance matrix but different means.
That is, we have the model

Xi,j = µi + Zi,j ; i = 1, 2, 3; j = 1, . . . , nj .

Here, Xi,j is the vector of measurements for the jth individual from the ith
population, and µi is the mean for the ith population. The Zi,j are inde-
pendent multivariate normal random vectors with mean 0 and covariance
Σ. Let Σ = PDPT be the eigen decomposition of Σ. Then consider

Yi,j = D−1/2PT Xi,j = D−1/2PT µi + D−1/2PT Zi,j .
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FIGURE 8.5. Kangaroo skull measurements: The two best discrimination vari-
ables.

Under the normal model, all the discriminatory power is in the projection of
Yi,j onto the plane containing D−1/2PT (µ1, µ2, µ3); directions orthogonal
to this plane are irrelevant. Of course, we probably don’t believe the normal
model, but this canonical transformation provides two variables that can
be used for a fit.

Example 8.8. We apply canonical rotations to the kangaroo dataset.
The resulting cross validated classification rates are shown in Table 8.5,
and the classification boundary in Figure 8.6. Here, we have been able to
mostly separate the melanops species, and the cross validated error rate is
now 13/101 = 12.9%. This significantly beats the model based on marginal
variables and comfortably beats the best of the methods considered in
Friedman (1994).
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Classified as
Species Gig. Mel. Ful.

Giganteus 32 5 0
Melanops 7 20 1

Fuliginosus 0 0 36

TABLE 8.5. Cross validation classification rates for the kangaroo data, based on
canonical variables.
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FIGURE 8.6. Kangaroo skull measurements: Discriminant analysis based on
canonical variables.

8.5 More on Misclassification Rates

In this section we look further at the error rates of the classification rules
for the two population case. We take two approaches: a pointwise approach
(based on the work of Friedman (1997)) and a global approach. The re-
sults are used to compare the density estimation and logistic regression
approaches.
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8.5.1 Pointwise Misclassification
A data-based decision rule δ(x) can be considered (for fixed x) a random
variable, dependent on the training sample. Conditioned on δ(x), the ex-
pected loss is given by (8.3) or (8.2) as appropriate. Taking expectations
with respect to the distribution of the training sample gives the expected
loss:

P (δ(x) = 1)c2P (X ∈ Π2|X = x)+P (δ(x) = 2)c1P (X ∈ Π1|X = x). (8.7)

For the optimal rule, δB(x) is deterministic, and (except possibly on
the classification boundary) P (δB(x) = 1) will be 0 or 1. Suppose, for
convenience, that we are at a point x for which δB(x) = 1. Then the
expected loss of δB(x) is c2P (X ∈ Π2|X = x), and the expected loss (8.7) of
a data-based rule δ(x) can be written (using P (δ(x) = 1) = 1−P (δ(x) = 2))

c2P (X ∈ Π2|X = x)
+P (δ(x) = 2)(c1P (X ∈ Π1|X = x) − c2P (X ∈ Π2|X = x)).(8.8)

The first term of (8.8) is the expected loss of the optimal rule δB(x). The
second term (which is always positive) represents the increase in expected
loss due to the use of the data-based decision rule δ(x). The only component
that depends on the choice of decision rule is P (δ(x) = 2), or more generally,
P (δ(x) �= δB(x)). Thus, a good decision rule will make this probability
small.

For many classification rules - including those based on local likelihood
methods discussed earlier - the decision rule δ(x) is based on an estimate
p̂(x) of the posterior probability P (X ∈ Π1|X = x), and p̂(x) will have an
asymptotically normal distribution. In this case, P (δ(x) �= δB(x)) is simply
a tail probability for p̂(x).

Suppose the approximating normal distribution has mean p∗(x) and vari-
ance σ(x). These can be derived using (4.19) when p̂(x) is constructed using
local logistic regression or (5.23) for density estimates. Let λ be the crit-
ical value for classification; λ = c1/(c1 + c2) by (8.5). For points x with
δB(x) = 1, p(x) ≥ λ. Thus, P (δ(x) �= δB(x)) = P (p̂(x) < λ). Using the
normal approximation,

P (p̂(x) < λ) ≈ 1
σ(x)

∫ λ

−∞
φ

(
v − p∗(x)

σ(x)

)
dv

= Φ
(

λ − p∗(x)
σ(x)

)
.

In general,

P (δ(x) �= δB(x)) ≈ Φ
(

sgn(p(x) − λ)
λ − p∗(x)

σ(x)

)
.
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This error approximation has some interesting properties. Usually, we ex-
pect p(x) − λ and p∗(x) − λ to have the same sign. In this case, it is ad-
vantageous for the estimate to have small variance; P (δ(x) �= δB(x)) → 0
as σ(x) → 0. But if p̂(x) is heavily biased or x is near the optimal classifi-
cation boundary, p(x) − λ and p∗(x) − λ may have opposite signs. In this
case, small variance is a penalty: P (δ(x) �= δB(x)) → 1 as σ(x) → 0.

The conclusion here is that small classification error requires ensuring,
as far as possible, that p(x) − λ and p∗(x) − λ have the same sign. The
usual goodness-of-fit measures, such as squared error, are of less relevance.

8.5.2 Global Misclassification
The global (averaged over x) misclassification rate is∫

{x:δ(x)=1}
c2p2f2(x)dx +

∫
{x:δ(x)=2}

c1p1f1(x)dx.

For the optimal rule δB(x), this becomes∫
min(c1p1f1(x), c2p2f2(x))dx.

The rate for the data-based rule can thus be written∫
min(c1p1f1(x), c2p2f2(x))dx +

∫
δ(x) 	=δB(x)

|c1p1f1(x) − c2p2f2(x))|dx.

We restrict attention to the case where x is one dimensional. In this case,
there will (usually) be a discrete set of boundary points where c1p1f1(x) =
c2p2f2(x) and δB(x) switches from 1 to 2. Assuming our density estimates
f̂1(x) and f̂2(x) are uniformly consistent, then most misclassifications will
occur in the neighborhood of boundary points.

This point is clarified in Figure 8.7. Here, a dataset has been simulated
with xi ∼ N(0, 1) and P (Yi = 1|xi = x) = ex/(1 + ex). Clearly, the
optimal classification rule (assuming equal costs) is δB(x) = 0 for x < 0,
and δB(x) = 1 for x ≥ 0. The estimated probability, using a local quadratic
model, is shown by the solid line in Figure 8.7. Especially in the tails, this
isn’t a very good estimate. But mostly this doesn’t matter; only in the
small shaded region does the estimated rule differ from the optimal rule.
Thus, to determine the effect of estimating the classification rule, we need
only focus on this region.

For simplicity, suppose there is just a single boundary point x∗, and
the estimated decision rule results in an estimated boundary point x̂∗. In
a neighborhood of x∗, we use linear expansions f1(x) ≈ f1(x∗) + (x −
x∗)f ′

1(x
∗). Then∫

δ(x) 	=δB(x)
|c1p1f1(x) − c2p2f2(x))|dx (8.9)
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FIGURE 8.7. Estimating the classification boundary. For a simulated dataset,
the true class probability is indicated by the short dashed line and the estimated
class probability by the solid line. The estimated classification rule differs from
the optimal rule only in the vertical bar.

=
∫

[x∗,x̂∗]
|c1p1f1(x) − c2p2f2(x))|dx

≈
∫

[x∗,x̂∗]
|x − x∗|dx · |c1p1f

′
1(x

∗) − c2p2f
′
2(x

∗)|

=
1
2
(x̂∗ − x∗)2 · |c1p1f

′
1(x

∗) − c2p2f
′
2(x

∗)|. (8.10)

Thus, the global misclassification rate requires a good estimate of the
boundary point x∗, as measured by squared error loss (x̂∗ − x∗)2. Since x̂∗

is the solution of p̂(x) = p(x∗), another linear expansion gives

p̂(x̂∗) ≈ p̂(x∗) + (x̂∗ − x∗)p̂′(x∗)

x̂∗ − x∗ ≈ −p(x̂∗) − p(x∗)
p̂′(x∗)

.

Substituting into (8.10), the classification error is largely dependent on the
squared estimation error at the boundary point, (p(x̂∗) − p(x∗))2. This is
quite different from the pointwise misclassification results obtained previ-
ously. Note that variability in p̂′(x∗) can be ignored asymptotically, pro-
vided p′(x∗) is nonzero.
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8.6 Exercises

8.1 A nearest neighbor classifier places an observation X = x in the same
class as the nearest observation in the training set. In the two-class
setting, suppose the densities f0(x) and f1(x) are continuous, and let
n → ∞.

a) For fixed x, show

P (δ(x) = 0) → p0f0(x)
p0f0(x) + p1f1(x)

.

b) Show the probability of misclassification, conditional on X = x,
converges to

2
p0p1f0(x)f1(x)

(p0f0(x) + p1f1(x))2
. (8.11)

c) Show the error rate (8.11) is less than twice the corresponding
quantity for the optimal rule δB(x). Generalize this to k popu-
lations (these results were first proven by Cover (1968)).

8.2 Consider a classification problem with two predictors X = (X1, X2).
Under Π1 the observations have density f1(x1, x2), and under Π2, the
density is f2(x1, x2). Let g1(x1) and g2(x1) be the marginal densities
of X1 under the two populations. Show∫

x1

∫
x2

min(f1, f2)dx1dx2 ≤
∫

x1

min(g1, g2)dx1.

Thus show that adding the variable X2 to the model reduces the
optimal Bayes loss.

Hint. Write f1 and f2 in terms of g1, g2 and the conditional densities
of X2 given X1. Then, note that min(h1g1, h2g2) ≤ h1g1 on the set
{g1 ≤ g2} and min(h1g1, h2g2) ≤ h2g2 otherwise.

8.3 Consider the training sample (xi, Yi); i = 1, . . . , n, with xi in the
predictor space and Yi ∈ {0, 1} the indicator for class membership.

a) Use local constant logistic regression to estimate the class prob-
abilities. Show the estimate of P (X ∈ Π1|X = x) is

P̂ (X ∈ Π1|X = x) =
∑n

i=1 W ((xi − x)/h)I(Yi = 1)∑n
i=1 W ((xi − x)/h)

. (8.12)

b) Use local constant density estimation to estimate f1(x) and
f2(x). Use the same bandwidth for each estimate. Show

f̂1(x) =
1

n1h

n∑
i=1

W

(
xi − x

h

)
I(Yi = 1)
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f̂2(x) =
1

n2h

n∑
i=1

W

(
xi − x

h

)
I(Yi = 2).

Compute an estimate of the probability P (X ∈ Π1|X = x) from
the density estimates (use p̂1 = n1/(n1 + n2)). Compare with
(8.12).

8.4 The urine crystal dataset (Andrews and Herzberg, (1985), chapter 44)
contains six chemical measurements and an indicator for the presence
of calcium crystals. Use the 77 observations with no missing values.

a) Using local linear logistic regression at the default bandwidths,
show the best single predictor is calcium concentration, with a
cross validated error rate of 19/77 = 24.7%. Setting scale=0,
show that the second variable entered is urea concentration, with
a cross validated error rate of 17/77 = 22.1%.

b) Using calcium and urea concentrations as predictors, experi-
ment with changing some or all of the bandwidths, degree of
fit and scale parameters. Obtain a cross validated error rate of
14/77 = 18.2% or better. Compare these results with the results
of Friedman (1994).

8.5 (Research Problem). The approximation of global misclassification
rates in Section 8.5.2 applies only when a single predictor variable
is used for classification. Derive similar results for two (or higher)
dimensions, when the classification boundary is a curve (or surface).
Extend the results to problems with three or more classes.
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9
Variance Estimation and Goodness of
Fit

In this chapter we study inferential issues for local regression. Section 9.1
studies variance estimation, including distributional approximations and
methods for handling nonhomogeneous variance. This is applied to good-
ness of fit testing using generalizations of the F test. Section 9.2 discusses
construction of confidence intervals and bands around local regression es-
timates.

9.1 Variance Estimation

For many diagnostic purposes, such as the CP statistic introduced in Sec-
tion 2.4.1, confidence bands and the goodness of fit tests introduced later
in this chapter, it is necessary to estimate the error variance σ2. Estimates
of σ2 are also of interest in their own right, since σ2 represents the amount
of variation in the data that cannot be explained by the predictor variables.
This should be contrasted with the widely reported squared correlation co-
efficient R2, which is the fraction of variation explained by the predictor
variables. But R2 often has little meaning, since it is dictated as much by
the choice of the data points xi as by the strength of the relation between
variables. One can always increase R2, simply by repeating an experiment
but spreading the xi points out more. But as long as the error variance σ2

remains constant, variance estimates estimate the same quantity for both
experiments.
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In Section 2.3.2 we considered the residual variance estimate

σ̂2 =
1

n − 2ν1 + ν2

n∑
i=1

(Yi − µ̂(xi))2. (9.1)

The expected value follows from (2.32), assuming the errors εi are indepen-
dent with E(ε2i ) = σ2:

E(σ̂2) = σ2 +
1

n − 2ν1 + ν2

n∑
i=1

bias(µ̂(xi))2.

In particular, σ̂2 is unbiased when the estimate µ̂(x) is unbiased. This
generally holds only for a small class of mean functions, although with
small bandwidths it may be reasonable to assume the bias is negligible.

What is the distribution of σ̂2? The residual sum of squares can be
written as a quadratic form,

n∑
i=1

(Yi − µ̂(xi))2 = ‖(I − L)Y ‖2 = Y T ΛY (9.2)

where L is the hat matrix and Λ = (I − L)T (I − L). Thus,

σ̂2 =
1

tr(Λ)
Y T ΛY. (9.3)

The distribution can be found through an eigenvalue decomposition of the
matrix Λ. In particular, if the errors εi are normally distributed and σ̂2 is
unbiased (i.e., µT Λµ = 0), the distribution of the quadratic form is

Y T ΛY
L= σ2

n∑
j=1

λjZj (9.4)

where λj are the eigenvalues of Λ and Zj are independent χ2
1 random

variables.
For a parametric regression model, the λj are all 0 or 1 (i.e., Λ is idem-

potent), and Y T ΛY/σ2 has a χ2 distribution. For local regression variance
estimates, this simplification no longer holds. Numerical methods for find-
ing the distribution of quadratic forms have been discussed in Imhof (1961)
and Davies (1980).

Since Λ is an n × n matrix, finding the eigenvalues and computing the
exact distribution is expensive for large n. But simple approximations
can be derived using the mean and variance of σ̂2. Since E(Zi) = 1 and
var(Zi) = 2, (9.3) and (9.4) yield

E(σ̂2) =
σ2

tr(Λ)

n∑
i=1

λi = σ2tr(Λ)

var(σ̂2) = 2
σ4

tr(Λ)2

n∑
i=1

λ2
i = 2σ4 tr(Λ2)

tr(Λ)2
.
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α tr(Λ) tr(Λ2) ν

0.7 82.52 82.24 82.79
0.3 75.51 75.23 75.79
0.1 45.67 43.81 47.62

TABLE 9.1. One-moment and two-moment chi-square approximations. Compar-
ing degrees of freedom for the ethanol dataset.

These moments can be used as the basis of a chi-square approximation.
Letting ν = tr(Λ)2/tr(Λ2),

E(ν
σ̂2

σ2 ) = ν

var(ν
σ̂2

σ2 ) = 2ν. (9.5)

That is, the first two moments of νσ̂2/σ2 match those of a chi-square distri-
bution with ν degrees of freedom. This approximation was given for general
quadratic forms by Satterthwaite (1946) and applied to local regression
problems by Cleveland (1979) and section 6.2 of Katkovnik (1985). Simu-
lations studying the accuracy are found in Cleveland and Devlin (1988).

The computation of tr(Λ2) can be expensive. In light of (9.3) it is very
tempting to use the simpler degrees of freedom approximation ν = tr(Λ)
for the approximating chi-square distribution. Table 9.1 presents a small
comparison of the degrees of freedom for the residual sum of squares for
the ethanol dataset, using the one- and two-moment approximations. Three
different smoothing parameters are used. Except at the smallest smoothing
parameter, the three different degrees of freedom produce very similar nu-
merical values, indicating that the one-moment approximation is adequate
in this case.

9.1.1 Other Variance Estimates
Variance estimates other than the residual sum of squares can sometimes
be useful. For example, if there is substantial replication of the x values,
we can use the mean at each x value rather than a smooth function as
the center when forming residuals. If all x values are duplicated, so that
x2i−1 = x2i for all i, we could use

σ̂2 =
1
n

n/2∑
i=1

(Y2i − Y2i−1)2.

The normalizing constant is derived by observing that E(Y2i − Y2i−1)2 =
2σ2. Another class of variance estimates originated in the time series liter-
ature; see, for example, Section 3.4.4 of Anderson (1971). These estimates
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are based on difference sequences; for example,

σ̂2 =
1

6(n − 2)

n−1∑
i=2

(∇2yi)2 (9.6)

where ∇2yi = yi+1 −2yi +yi−1. In fact, this estimate can be interpreted as
the normalized residual sum of squares from a three point moving average.
But the difference interpretation is particularly intuitive and computation-
ally simple.

The variance estimates considered so far are all quadratic forms in the
data. This is convenient, since such estimates are relatively easy to com-
pute and analyse. Moreover, the use of the residual sum of squares can
be motivated as a likelihood estimate assuming a normal distribution. But
quadratic forms are extremely sensitive to outliers, and for heavy tailed
distributions can be quite inefficient.

In robust regression, scale estimates are frequently based on the absolute
values of the residuals, rather than squared residuals. For example, the scale
estimate based on the median absolute residual is

σ̂MAD = 1.4826 × median1≤i≤n|Yi − µ̂(xi)|.
The leading factor, 1.4826, is chosen to ensure σ̂MAD is a consistent estimate
of the residual standard deviation σ when the Yi are normally distributed.

9.1.2 Nonhomogeneous Variance
One of the assumptions made when motivating a least squares procedure
is that of a constant error variance. If this assumption is violated, the local
least squares criterion (2.5) can be modified to

n∑
i=1

wi(x)
σ2

i

(Yi − 〈a, A(xi − x)〉)2 (9.7)

where σ2
i = var(Yi). If the variances are known (at least up to a multiplica-

tive constant), (9.7) yields the local parameter estimates

â = (XT VWX)−1XT WVY (9.8)

where V is a diagonal matrix with elements 1/σ2
i .

When the variances are unknown, some structure has to be assumed and
the variances estimated. One common assumption is that the variance is a
function of the mean,

var(Yi) = σ2V (µ).

This model can be fitted using the quasi-likelihood procedure from Section
4.3.4; one interpretation of this procedure is an iterative algorithm in which
one updates the variance estimate V (µ̂) at each step.
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In other cases, the variance may not simply depend on the mean, but
a more complicated function of the covariates xi; σ2

i = σ2(xi). In this
case, the function σ2(x) must be estimated. An obvious approach to local
variance estimation is to begin with raw estimates of the residual vari-
ance at each data point xi, and smooth these against either µ̂(xi) (for
quasi-likelihood) or xi (for full local variance estimation). One specific im-
plementation, used in Müller (1988) and Faraway and Sun (1995), is to use
raw variance estimates based on differences; for example, σ̂2

i = (∇2yi)2/6,
and smooth these using a local average (rather than the global average used
in (9.6)). Alternatively, one can use squared studentized residuals from a
local fit. Ruppert, Wand, Holst and Hössjer (1997) use this approach in
conjunction with local polynomial smoothers. For parametric regression
models, see Carroll (1982). Exercise 9.2 gives an application to the motor-
cycle dataset.

An alternative local variance estimate, particularly suited for compu-
tation, is to use the deviations from the local polynomial in an estimate
similar to (9.1). This gives

σ̂2(x) =
∑n

i=1 wi(x)(Yi − 〈â, A(xi − x)〉)2
tr(W) − tr ((XT WX)−1(XT W2X))

. (9.9)

The estimate (9.9) is easy to implement, since the weighted residual sum
of squares is available as a by-product from the computation of â. But it
is based on a local constant approximation for σ2(x) within the smoothing
window, which in turn requires â to be computed with a small bandwidth.
This leads to a noisy estimate σ̂2(x), which can be improved by smoothing.

Remark. One could iterate this procedure, alternately estimating the
mean µ(x) and variance σ2(x). But there is usually little change in the
estimates after the first iteration.

Example 9.1. Figure 9.1 displays measurements of the acceleration of a
motorcycle that runs into a solid object. The data is from Schmidt, Mattern
and Schüler (1981) and Härdle (1990). Clearly, the measurements exhibit
nonhomogeneous variance.

To estimate the variance locally, first fit a local quadratic regression with
a 10% nearest neighbor bandwidth, alpha=0.1:

> fit <- locfit(accel˜time, data=mcyc, alpha=0.1)

From this fit, the numerator and denominator of (9.9) are found using the
predict() function; note the use of what="lik" and what="rdf" for the
two calls:

> x <- knots(fit, what="x")
> y <- -2 * predict(fit, what="lik", where="fitp")
> w <- predict(fit, what="rdf", where="fitp")

The local variance estimates are then smoothed using the gamma family;
this is appropriate since σ2 is a scale parameter:
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FIGURE 9.1. Motorcycle acceleration during a collision.
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FIGURE 9.2. Local variance estimation for the motorcycle data.

> fitv <- locfit(y˜x, weights=w, family="gamma", alpha=0.4)
> plot(fitv, get.data=T)

Figure 9.2 shows the local variance estimate. Note that successive values
of σ̂2(x), obtained from (9.9), are strongly correlated, so one should be
careful of overinterpreting patterns in this plot.
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9.1.3 Goodness of Fit Testing
One use of variance estimation is in goodness of fit testing. When a small
bandwidth is used, the function estimate µ̂(x), and hence the variance
estimate σ̂2, will be nearly unbiased. As the bandwidth is increased, the
bias increases, and this eventually translates into an increase in σ̂2.

Buckley and Eagleson (1989) used this as the basis for a graphical tech-
nique to decide whether the estimate shows lack of fit. More formally, the
residual sum of squares can be used to form significance tests for lack of
fit. These were studied in section 6.2 of Katkovnik (1985); Cleveland and
Devlin (1988) and Bowman and Azzalini (1997). For ease of exposition, we
focus on the hypotheses

H0 : µ(x) = a + bx

vs. H1 : otherwise, (9.10)

although the ideas are easily extended to other testing problems, such as
comparing local fits with different bandwidths or testing significance of
variables in multivariate local regression. Goodness of fit testing is closely
related to model selection; criteria based on the residual sum of squares
are used in both cases. But while model selection attempts to find models
favored by the data, goodness of fit tests attempt to assess a statistical
significance for features in a dataset.

Let α̂0 + α̂1x be a parametric least squares fit and µ̂(x) be a local poly-
nomial fit. Under these fits, compute the residual sums of squares:

RSS0 =
n∑

i=1

(Yi − (α̂0 + α̂1xi))2

= Y T Λ0Y

RSS1 =
n∑

i=1

(Yi − µ̂(xi))2

= Y T Λ1Y

where Λ0 and Λ1 are defined by (9.2) for the global and local fits respec-
tively. The F ratio for testing (9.10) is

F =
(RSS0 − RSS1)/(ν0 − ν1)

RSS1/ν1

=
(ν0σ̂

2
0 − ν1σ̂

2
1)/(ν0 − ν1)

σ̂2
1

, (9.11)

where νj = tr(Λj). The distribution of the ratio (9.11) can be approximated
using either the one-moment or two-moment chi-square approximations. An
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α-level test of (9.10) rejects H0 if

F ≥ Fν0−ν1,ν1(1 − α).

The choice of bandwidth for the smooth fit µ̂(x) remains. There have
also been many other statistics proposed for the hypotheses (9.10); nearly
all can be expressed as quadratic forms, and the F method can be used to
approximate significance levels. References include Cox, Koh, Wahba and
Yandell (1988), Azzalini, Bowman and Härdle (1989), Raz (1990), Azzalini
and Bowman (1993), Hjellvik, Yao and Tjøstheim (1996) and Hart (1997).

One of the main considerations for choosing a test statistic is power: For
a test of specified significance level, what is the probability that the null hy-
pothesis is rejected when it is incorrect? In the local regression framework,
there is no uniformly most powerful test, and one must compromise be-
tween power against the various models in the alternative hypothesis. Any
legitimate test of (9.10) rejects H0 : µ(x) = a+ bx if the observation vector
(Y1, . . . , Yn) lies too far from the plane spanned by the vectors (1, . . . , 1)
and (x1, . . . , xn). But departures from this plane lie in an n−2 dimensional
space, and any test trades off power against alternatives in these n − 2 di-
mensions. The F test will have most power against alternatives for which
E(RSS0 − RSS1) is large. Letting µ = (µ(x1), . . . , µ(xn))T ,

E(RSS0 − RSS1) = σ2(ν0 − ν1) + µT (Λ0 − Λ1)µ. (9.12)

Thus, the greatest power is in directions corresponding to the largest eigen-
values of Λ0 − Λ1. Typically, this matrix has a few eigenvalues close to 1
and many eigenvalues close to 0. The eigenvectors close to 1 correspond to
smooth alternatives, against which the test has most power. If the band-
width is small, then ν0 − ν1 is large and the power is spread out in many
directions. Conversely, for a large bandwidth, the power of the test is con-
centrated in relatively few directions. This is most easily visualized by
computing the decomposition in a few examples; see Exercise 9.4.

Although the F test was developed for regression models, it can be ex-
tended to likelihood models through the use of likelihood ratios or the
difference of deviances.

Example 9.2. Consider the mine dataset used in Example 4.2. Table
9.2 shows the results of applying several tests to this dataset. The columns
represent total residual deviance; residual degrees of freedom, change in
deviance, and change in residual degrees of freedom. Finally, the P-value is
computed using the chi-square distribution for ∆D(θ̂) with ∆ν degrees of
freedom.

The first line fits the null model; a global constant mean. The second
line fits a global log-linear model and compares with the global constant
model. The resulting change in deviance is very significant. The third line
fits the local linear model from Example 4.2. Again, the result is significant,
so we conclude that the response (number of fractures) is nonlinear in this
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D(θ̂) ν ∆D(θ̂) ∆ν P-value
constant 74.98 43.00

extrp (linear) 48.62 42.00 26.36 1.00 2.8 × 10−7

extrp (loc. lin.) 36.54 39.93 12.08 2.07 0.002
extrp*inb 32.42 34.24 4.11 5.69 0.62

extrp*seamh 35.34 34.09 1.18 5.83 0.97
extrp*time 30.69 35.42 5.84 4.50 0.26

TABLE 9.2. Mine dataset. Testing significance of terms for linear and local linear
models in extrp, and bivariate models.

variable. The remaining three lines test three bivariate local linear models,
against the univariate local linear model with the extrp predictor. These
models show no significant improvement over the univariate model.

9.2 Interval Estimation

An interval estimate for the mean function µ(x) has the form (L(x), U(x)).
The limits L(x) and U(x) are data-based quantities, chosen so that L(x) ≤
µ(x) ≤ U(x) with high confidence. The interval (L(x), U(x)) is a (1 −
α)100% pointwise confidence interval for µ(x) if

sup
µ∈F

Pµ(L(x) ≤ µ(x) ≤ U(x)) ≥ 1 − α. (9.13)

Here, F denotes a suitable class of smooth functions.
Many questions depend on more than just single values of µ(x). For

example, we may be interested in comparing mean responses at different
levels of the covariate x or choosing a level of the covariates to maximize the
mean response. Thus, we are also interested in constructing simultaneous
confidence bands over a set X , where X is typically taken to be a set
bounding the predictors xi. The band {(L(x), U(x));x ∈ X} is a (1 −
α)100% simultaneous confidence band if

sup
µ∈F

Pµ(L(x) ≤ µ(x) ≤ U(x) ∀x ∈ X ) ≥ 1 − α.

9.2.1 Pointwise Confidence Intervals
To derive confidence intervals, the limits (L(x), U(x)) must be specified.
Assuming εi are independent Gaussian random variables with mean 0 and
variance σ2, a local polynomial estimate µ̂(x) has the distribution

µ̂(x) − E(µ(x))
σ‖l(x)‖ ∼ N(0, 1).
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If the estimate is unbiased, so that E(µ̂(x)) = µ(x), confidence intervals
may take the form

I1(x) = (µ̂(x) − cσ‖l(x)‖, µ̂(x) + cσ‖l(x)‖), (9.14)

where c is chosen as the (1 − α/2) quantile of the standard normal distri-
bution. When σ is replaced by the residual standard deviation σ̂, c can also
be chosen from the t distribution, with degrees of freedom defined by (9.5).

Formally, the interval I1(x) is a confidence interval for E(µ̂(x)). It is
a confidence interval for µ(x) under the assumption Eµ̂(x) = µ(x). In
practice, this means undersmoothing, or choosing a small bandwidth for
which one is willing to assume the bias is small, relative to the standard
deviation of µ̂(x).

An alternative is to adjust the intervals to allow for bias. If b(x) =
Eµ̂(x) − µ(x), a bias corrected confidence interval is

I2(x) = (µ̂(x) − b(x) − cσ̂‖l(x)‖, µ̂(x) − b(x) + cσ̂‖l(x)‖).

Since b(x) is unknown, a bias estimate b̂(x) is needed to form an estimated
confidence intervals Î2(x). The most common approaches are based on the
plug-in principle: either substitute µ̂(x) directly into (2.33), or use deriva-
tive estimates in (2.34) or (2.41). But this doesn’t solve the bias problem.
Plug-in bias estimates simply amount to increasing the order of the fit. For
example, in Exercise 2.5, the double smoothing bias correction converts a
local constant estimate into a local quadratic. In this case an estimated
Î2(x) is just a construction of an undersmoothed interval centered around
the local quadratic estimate µ̂(x) − b̂(x). One has the additional problem
that var(µ̂(x) − b̂(x)) may be larger than var(µ̂(x)).

Another approach to bias adjustment is to focus on the class of smooth
functions F in (9.13). For example, if Fδ is defined to be the class of
functions for which |b(x)| ≤ δ, then

I3(x) = (µ̂(x) − δ − cσ̂‖l(x)‖, µ̂(x) + δ + cσ̂‖l(x)‖)

is a confidence interval for µ(x). Note the difference between I2(x) and
I3(x): While I2(x) attempts to recenter the bands to allow for bias, I3(x)
expands the bands. This type of expansion was used by Knafl, Sacks and
Ylvisaker (1985) to construct simultaneous confidence bands. Sharper re-
sults, in which one attempts to adjust c rather than expanding by δ, were
considered in Sun and Loader (1994). As with the bias corrected I2(x),
adjusted intervals I3(x) require estimation of the bias. But the critical dif-
ference is that I3(x) ⊃ I1(x), and thus the correction always improves the
coverage probability.

9.2.2 Simultaneous Confidence Bands
The construction of simultaneous confidence bands is similar to confidence
intervals: Begin with a band {I1(x); x ∈ X} that is valid under the as-
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sumption of no bias, and then adjust the bands to allow for bias. The
issues involved in bias estimation and adjustment are the same for simul-
taneous bands as they are for the pointwise intervals. Thus, our focus is on
construction of bands under the no-bias assumption.

Under the assumption µ(x) = E(µ̂(x)), the confidence band {I1(x); x ∈
X} covers the true mean µ(x) if and only if

Mσ̂ = sup
x∈X

|µ̂(x) − µ(x)|
σ̂‖l(x)‖ ≤ c.

To find the critical value c, we need to find the distribution of Mσ̂.
For linear regression, Scheffé (1959) showed that the distribution of Mσ is

related to an F distribution when X = Rd. For more general problems - in
particular, local regression - the exact distribution of Mσ̂ is quite intractable
and approximations must be used.

The first results approximating the distribution of Mσ̂ for local fitting
are those of Bickel and Rosenblatt (1973) who derive limiting extreme
value distributions in the kernel density estimation setting. Extensions of
this approach to kernel regression are considered in Eubank and Speckman
(1993b) and elsewhere. This approach relies on the asymptotic station-
arity of the process (µ̂(x) − µ(x))/‖l(x)‖, so the usefulness is limited in
finite sample size situations, where we have to respond to problems such
as nonuniform designs and boundary effects.

For the one dimensional case, an alternative approach based on upcross-
ing methods was studied by Knafl, Sacks and Ylvisaker (1985). Their results
were based on a discretized version of the following theorem.

Theorem 9.1 Suppose σ = 1 is known. Let T (x) = l(x)/‖l(x)‖ and as-
sume {T (x); x ∈ X} is continuous. Then

P (M1 ≥ c) ≤ 2(1 − Φ(c)) +
κ0

π
e−c2/2 (9.15)

where κ0 is the length of the path {T (x); x ∈ X}. If {T (x)} is differentiable
and X = [a, b],

κ0 =
∫ b

a

‖T ′(x)‖dx.

If the estimate σ̂2 has a χ2 distribution with ν degrees of freedom, then

P (Mσ̂ > c) ≤ P (|tν | > c) +
κ0

π

1
(1 + c2/ν)ν/2 .

The upper bound (9.15) is well known in the theory of Gaussian processes
and can be derived in several different ways; see Aldous (1989) and refer-
ences therein. The classical proof is based on Rice’s formula (Rice 1939),
which shows that the right-hand side of (9.15) is the expected number of
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crossings the process 〈T (x), ε〉 makes of the boundaries at ±c. Here, ε is
assumed to have the multivariate N(0, I) distribution. When c is large (cor-
responding to coverage probabilities close to 1), the number of upcrossings
is usually either 0 or 1, and thus (9.15) provides an excellent probability
approximation.

In multiple dimensions the simple upcrossing approach no longer works,
and more sophisticated geometric arguments must be used. The main tools
are formulae for the volumes of tubular neighborhoods of curves and sur-
faces derived by Hotelling (1939) and Weyl (1939). Modern work apply-
ing these methods to statistical problems includes Knowles and Siegmund
(1989), Naiman (1990) and Sun (1993). The application to local regres-
sion was first studied in Sun and Loader (1994). These results yield the
approximation

P (Mσ̂ ≥ c) ≈ κ0
Γ(d+1

2 )
π(d+1)/2 P (Fd+1,ν >

c2

d + 1
) +

ζ0

2
Γ(d

2 )
πd/2 P (Fd,ν >

c2

d
)

+
κ2 + ζ1 + m0

2π

Γ(d−1
2 )

π(d−1)/2 P (Fd−1,ν >
c2

d − 1
) (9.16)

where κ0, ζ0, κ2, ζ1 and m0 are certain geometric constants. In particular,
κ0 represents the area, or volume, of the set I = {T (x) : x ∈ X}. Explicitly,

κ0 =
∫

X
det 1/2[〈Ti(x), Tj(x)〉]dx,

where Ti(x) denotes the partial derivative of T (x) in the ith direction and
[ · ] denotes a matrix with the given (i, j)th elements. ζ0 is the volume of the
boundary of X and m0 is related to the corners of X . κ2 and ζ1 are more
complicated constants related to the curvature of X and the boundary of
X respectively. When d = 2 it is known that κ0 + κ2 + ζ1 + m0 = 2π for
simple sets X , such as rectangles.

Computation of κ0 requires numerical integration and is slow in multiple
dimensions or at small bandwidths. But clearly κ0 must be strongly related
to the degrees of freedom of the fit. For example, for one dimensional X , if
T (x) rotates through 90 degrees as x changes, this amounts to adding one
degree of freedom to the fit and adding π/2 to κ0. Thus, to a very rough
approximation,

κ0 ≈ π

2
(ν1 − 1)

where ν1 is the trace of the hat matrix.
Improved approximations are obtained by considering the case of a uni-

form design. When the xi are equally spaced, one can obtain a limiting
relation similar to (2.43). Table 9.3 displays some approximate results for
the tricube weight function.

The dominant term can be easily deduced. Considering the simplifica-
tion in Exercise 9.3 and ignoring boundary effects, symmetry implies that
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d Degree Limit
1 0 −1.400 + 2.0602ν1
1 1 −2.181 + 2.0602ν1
1 2 −1.764 + 1.8835ν1

TABLE 9.3. Approximate values of κ0 as a function of the fitted degrees of
freedom ν1 for different local polynomial degrees.

〈l(x), li(x)〉 = 0 for all i, and 〈li(x), lj(x)〉 = 0 for i �= j. Thus

κ0 ≈
√

var(µ̂′(x))
var(µ̂(x))

.

Using (2.39) and a similar expression for the local slope then yields

κ0 ≈ 1
h

√∫
W ′(v)2dv∫
W (v)2dv

.

Recalling the degrees of freedom approximation (2.42), we obtain

κ0 ≈
√∫

W ′(v)2dv

W (0)
κ0.

9.2.3 Likelihood Models
The preceding development of confidence bands has been for the local re-
gression model, under the normal assumption. For likelihood models, con-
fidence intervals should ideally take into account the underlying family
of distributions But the theory for deriving such intervals seems quite in-
tractable, and we must rely on methods based on normal assumption, using
the approximate variance from Section 4.4.3.

A problem that occurs in likelihood models is that var(µ̂(x) usually de-
pends on the unknown parameter µ(x), and simply substituting an estimate
(which (4.19) does, through the estimation of V) may not be satisfactory,
particularly in boundary cases. A standard example is the estimation of a
binomial parameter: Y ∼ Bin(n, p); p̂ = Y/n and the 95% confidence inter-
val using a normal approximation is p̂ ± 1.96

√
p̂(1 − p̂)/n. This obviously

fails to produce sensible results, if we happen to observe Y = 0. Using the
logistic link function θ = log(p/(1−p)) doesn’t help: on this scale, θ̂ = −∞,
and the variance estimate is also infinite.

The simple solution, within the framework of normal approximations, is
to use the variance stabilizing link. Under this link, the variance of θ̂(x) is,
at least asymptotically, independent of the true parameter θ(x), leading to
confidence intervals whose widths depend only on the design points xi.
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Example 9.3. Consider local logistic regression with the binomial fam-
ily; P (Yi = 1) = p(xi), and the arcsin link, θ(x) = sin−1(

√
p(x)). Inverting

this relation yields p(x) = sin2(θ(x)) and 1 − p(x) = cos2(θ(x)). Thus, the
log-likelihood is

l(Yi, θi) = 2Yi log sin(θi) + 2(1 − Yi) log cos(θi)

and with some manipulation, one finds

l̈(Yi, θi) = −2
(

Yi

sin2(θi)
+

1 − Yi

cos2(θi)

)
= −2

(
Yi

pi
+

1 − Yi

1 − pi

)
.

Since E(Yi) = pi, E(l̈(Yi, θi)) = −4, independent of θi. Thus, the arcsin link
is variance stabilizing for the binomial family. The variance approximation
(4.19) reduces to

var(θ̂(x)) ≈ 1
4
‖l(x)‖2,

where l(x) is the local regression weight diagram, defined by (2.12).

Variance stabilizing links for most of the families supported in locfit
were indicated in Table 4.1.

9.2.4 Maximal Deviation Tests
In section 9.1.3, goodness of fit tests using quadratic forms and approximate
F tests were introduced. These tests may not be informative, since rejecting
the null model provides no information as to what form the lack of fit takes.
Maximal deviation tests attempt to address this problem by determining
whether individual features are significant.

Suppose we are interested in testing the null hypothesis that µ(x) is
constant. We estimate µ(x) using a local polynomial (linear or higher order)
fit. Under the null hypothesis, the local slope estimate µ̂′(x) has mean 0.
As a test statistic, we can consider the scaled maximum of µ̂′(x):

Mσ̂ = sup
x∈X

|µ̂′(x)|
σ̂
√

var(µ̂′(x))
(9.17)

for a suitable set X . The problem of computing critical values for this test
statistic is closely related to the simultaneous confidence band problem,
and Theorem 9.1 can be used to compute approximate critical values. Note
that by formulating the problem as a hypothesis test, the bias problem
is avoided. Under the null hypothesis of a constant mean, the local slope
µ̂′(x) has mean 0, regardless of the bandwidth.

Example 9.4. We return to the Weibull fit of the heart transplant
dataset from Example 7.8. The question is whether the decrease in mean
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FIGURE 9.3. Testing for a significant feature: Local slopes and confidence bands
for the heart transplant data.

survival times on the right is significant. We perform this test by looking
at the local slope from the fit, and consider the test statistic (9.17).

First, we need to compute the fit for the local slope by setting deriv=1
in the locfit() call. Then critical values for the simultaneous bands are
computed by the kappa0() function and substituted on the fit. Finally, we
plot the fit and global confidence bands:

> fit <- locfit(I((surv+0.5)ˆ0.625)˜age, cens=cens,
+ data=heart, alpha=0.8, family="gamma", deriv=1)
> crit(fit) <- kappa0(fit)
> plot(fit, band="global", xlab="Age at Transplant",
+ ylab = "Local Slope")
> abline(h=0)

Figure 9.3 shows the local slope estimate and confidence bands. For
45 < age < 55, the confidence bands do not include 0, indicating the
decrease is significant in this region. While the slope continues to decrease
as age increases to 65, the confidence bands also get wider due to boundary
variability.

The statistic (9.17) provides a legitimate test for any bandwidth h, and
different bandwidths will provide tests with different power. Thus, differ-
ent information can be obtained by looking at test statistics computed by
varying the bandwidth. Of course, this multiple testing doesn’t preserve
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the significance level of a single test. But the bandwidth h can be treated
as another dimension of the random field, leading to the test statistic

M ′
σ̂ = sup

x∈X ,h0≤h≤h1

|µ̂′(x, h)|
σ̂
√

var(µ̂′(x, h))

for a suitable range h0 ≤ h ≤ h1 of bandwidths. Critical values for M ′
σ̂ can

be computed using (9.16), except that the integral defining κ0 must now
be taken over both x and h. This approach was studied for a continuously
observed process by Siegmund and Worsley (1995).

9.3 Exercises

9.1 Let Λ be a symmetric non-negative definite n × n matrix.

a) Show tr(Λ)2/tr(Λ2) ≤ n, with equality if and only if Λ is a
multiple of the identity matrix.

b) Show tr(Λ)2/tr(Λ2) ≥ 1, with equality if and only if Λ has rank
1.

Hint: First show for diagonal Λ, then use the eigenvalue decomposi-
tion.

9.2 An alternative to smoothing the local variance estimates in Example
9.1 is to smooth the studentized squared residuals.

a) Compute the fit for the motorcycle dataset with alpha=0.1 from
Example 9.1. Compute and plot the squared residuals against
the time variable.

b) Compute a local variance estimate using local quadratic fits with
alpha=0.4. Plot the fit and compare with Figure 9.2. Try us-
ing both family="gamma" and family="gauss". Which family
appears to produce the better variance estimate?

9.3 Let

Λ =
(

a vT

v M

)
where a > 0, v is a vector and M is a symmetric matrix. Show

det Λ = a det(M − vvT /a).

Use this result to show

det[〈Ti(x), Tj(x)〉]
=

1
‖l(x)‖2d+2 det

( ‖l(x)‖2 [〈l(x), li(x)〉]
[〈l(x), li(x)〉] [〈li(x), lj(x)〉]

)
.
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where Ti(x) are as defined in Section 9.2.2. Let R = [ri,j ] be the
right triangular matrix from the QR-decomposition of the matrix
( l(x) l1(x) . . . ld(x) ). Show

det[〈Ti(x), Tj(x)〉]1/2 =
d+1∏
j=2

ri,i

r1,1
.

9.4 This exercise investigates the power of likelihood ratio type tests,
based on eigen-decompositions of the quadratic forms.

a) For the ethanol dataset, compute the hat matrix for linear re-
gression:

> L0 <- t(hatmatrix(NOx˜E, data=ethanol, ev="data",
+ kern="parm",deg=1))

Also compute the hat matrix L1 for a local quadratic fit with
alpha=0.3.

b) Compute the matrices Λ0 and Λ1 appearing in (9.12) and the
eigenvalues and eigenvectors of the difference Λ0 − Λ1.

c) Plot the eigenvalues. For the largest eigenvalues (those close to
1) plot the corresponding eigenvectors, using ethanol$E for the
x-axis. Also plot some of the eigenvectors corresponding to eigen-
values close to 0.

d) Repeat this exercise for a range of other smoothing parameters
α.

e) Repeat this exercise for other goodness of fit tests based on
quadratic forms, such as Härdle and Mammen (1993) or Hjel-
lvik, Yao and Tjøstheim (1996) (this may involve a lot of pro-
gramming, to get the correct quadratic form matrices for these
tests). Which tests seem most suited to smooth alternatives?
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10
Bandwidth Selection

In earlier chapters, statistics such as cross validation, CP and AIC have
been introduced as tools to help assess the performance of local polynomial
fits. One goal is automatic bandwidth and model selection: an algorithm
that takes the data as input and produces the best local polynomial fit as
output.

Unfortunately this goal is unattainable, since there is often considerable
uncertainty in data and it is unclear what the best fit should be. Figure 2.3
showed four local quadratic fits to the ethanol dataset, each computed with
a different smoothing parameter. As discussed in Section 2.2.1, the largest
smoothing parameter, α = 0.8, clearly oversmooths. Choosing among the
remaining fits is indecisive: While changing the smoothing parameter from
α = 0.6 to α = 0.2 results in fits showing different structure in the data,
making a definitive statement as to which fit is best is quite impossible.
That is, there is wide uncertainty in the data.

Similar behavior was seen for the Old Faithful geyser density in Figures
5.7 and 5.8. The largest smoothing parameter, α = (0.1, 1.2), appears to
oversmooth the data, trimming the left peak and filling in the valley. The
smaller smoothing parameters showed increasing amounts of structure, but
no definitive statement can be made as to which fit is best.

What should be expected from a bandwidth selector on these datasets?
In both cases, the largest bandwidth should be rejected, since the resulting
estimates do not fit the data. At the smaller bandwidths, there is uncer-
tainty in the problem, and a bandwidth selector should be indecisive: It
is unclear which fit is best, and a bandwidth selector should reflect this
uncertainty and not attempt to make a definitive judgment.
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This is precisely the behavior indicated in the GCV plot in Figure 2.7
and AIC plot in Figure 5.8 for these two examples. In both cases, the
largest bandwidths (smallest degrees of freedom) result in high GCV and
AIC scores. For the ethanol dataset, the GCV scores are 0.184, 0.123, 0.109
and 0.111 for α = 0.8, 0.6, 0.4 and 0.2 respectively, which is almost flat for
the smaller smoothing parameters. Likewise, the AIC plot in Figure 5.8 is
almost flat for the smaller smoothing parameters. Precisely, this reflects the
uncertainty in the data: Inadequate fits are rejected, while those we aren’t
sure about produce similar results.

Despite the well motivated and intuitive behavior of the cross validation
and AIC methods, these procedures have received considerable criticism in
recent literature. For example, Marron (1996) states that cross validation
methods are “widely accepted as ‘too noisy’ ”. Jones, Marron and Sheather
(1996) categorize cross validation as ‘first generation methods’, and claim
other plug-in, or ‘second generation methods’ have “a quantum leap in
terms of performance (both theoretical and practical)”.

In this chapter the bandwidth selection issue is explored in depth. In
particular, we carefully distinguish between two factors that contribute to
the performance of bandwidth selectors:

1. What are the apriori assumptions being made by the bandwidth se-
lector?

2. What is the ability of the bandwidth selector to resolve uncertainty
in the data?

When these factors are properly identified, we find that cross validation
methods far outperform the ‘second generation’ methods. Simply, the noise
and variability in cross validation reflect uncertainty in the data. Other
methods reflect this uncertainty in different ways; in particular, by missing
important aspects of difficult smoothing problems and selecting estimates
which clearly do not fit the data. The ‘second generation’ methods generally
have less ability to resolve uncertainty in the data.

The distinction between the questions stated above is important, but
requires careful thought. Some of the points made in this chapter are quite
subtle, and proper understanding will require careful reading. Some of the
examples are from Loader (1999).

10.1 Approaches to Bandwidth Selection

10.1.1 Classical Approaches
Classical approaches to bandwidth selection are extensions of model se-
lection methods used in parametric statistics. Diagnostic tools introduced
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throughout this book, such as cross validation methods, AIC, CP and good-
ness of fit tests, fall into this category.

Several variants of these ideas exist; in particular, many different penalty
functions have been considered. Kooperberg and Stone (1992) and Stone,
Hansen, Kooperberg and Truong (1997), in the context of spline models,
recommend modifying the AIC criterion (4.11) by increasing the penalty
2ν1. The choice log(n)ν1 corresponds to the BIC criterion, introduced by
Schwarz (1978). The increased penalty ensures that larger smoothing pa-
rameters are selected, and smoother fits are produced.

Other authors have proposed methods that are asymptotically equivalent
to AIC or cross validation but have different finite sample penalties. One
example is Rice’s T statistic (Rice 1984):

RT(µ̂) =
∑n

i=1(Yi − µ̂(xi))2

n − 2ν1
.

This is very similar to the generalized cross validation statistic (2.21).
Providing the fitted degrees of freedom ν1 is small relative to the sample
size n, (n − ν1)2/n ≈ n − 2ν1, so GCV and RT are almost identical nu-
merically. The difference occurs at large degrees of freedom. Since RT(µ̂)
has a singularity at ν1 = n/2, the statistic has apriori rejected any fit with
n/2 degrees of freedom and strongly penalized against any fits with close
to n/2 degrees of freedom.

It must be remembered that changing the penalty is purely an expres-
sion of prior assumption and in no way helps to resolve uncertainty in the
data. For example, the RT(µ̂) and GCV(µ̂) statistics have exactly the same
random component, namely the residual sum of squares. Therefore the two
statistics have exactly the same ability to resolve uncertainty in the data,
even though RT(µ̂) will generally prefer larger bandwidths.

10.1.2 Plug-In Approaches
The fundamental feature of plug-in selectors is direct estimation of the
bias of local estimates. The idea first appeared in Woodroofe (1970) and
was developed by Scott, Tapia and Thompson (1977) and Tsybakov (1987),
among others. The approach has been widely promoted in recent literature:
for example Park and Marron (1990), Sheather and Jones (1991), Gasser,
Kneip and Köhler (1991) and Ruppert, Sheather and Wand (1995). Jones,
Marron and Sheather (1996) describe plug-in algorithms as “second gen-
eration methods”, and suggest the Sheather-Jones algorithm should be “a
benchmark for good performance”.

Plug-in selectors are most widely developed for kernel density estimation
with a constant bandwidth h. The bias of a density estimate f̂h is written
as a function of the unknown f , and usually approximated through a Taylor
series expansion. An estimate of f is then plugged in to derive estimates of
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the bias and hence goodness of fit. One then chooses a bandwidth h that
minimizes this estimated goodness of fit.

The most commonly used goodness of fit measure is mean integrated
squared error:

MISE(f̂h, f) = E
∫ ∞

−∞
(f̂h(x) − f(x))2dx

=
∫ ∞

−∞
bias(f̂h(x))2dx +

∫ ∞

−∞
var(f̂h(x))dx. (10.1)

Using the approximations of Exercise 5.1, an asymtotic approximation is

MISE(f̂h, f) =
h4

4

(∫
v2W (v)dv

)2 ∫ ∞

−∞
f ′′(x)2dx

+
1

nh

∫
W (v)2dv + o(h4 + (nh)−1) (10.2)

where for simplicity we assume
∫

W (v)dv = 1. This result is theorem 6.1
of Scott (1992). Minimizing this approximation over h yields an approxi-
mation to the best bandwidth, stated in the following theorem.

Theorem 10.1 Let hopt be the bandwidth minimizing MISE(f̂h(x), f(x)).
Then

h5
opt =

∫
W (v)2dv

n(
∫

v2W (v)dv)2
∫

f ′′(x)2dx
(1 + o(1)) (10.3)

as n → ∞.

The bandwidth provided by Theorem 10.1 depends on the unknown
quantity

∫
f ′′(x)2dx, that must be estimated. Choose a pilot bandwidth

k, and construct a ‘pilot’ estimate of the second derivative:

f̂ ′′
k (x) =

1
nk3

n∑
i=1

W ′′
(

Xi − x

k

)
. (10.4)

Then, substituting f̂ ′′
k (x) into (10.3) provides an estimate of hopt.

Example 10.1. Figure 10.1 displays three estimates of f ′′(x)2dx for the
Old Faithful dataset. In each case, a local quadratic fit with the Gaussian
kernel and identity link is used. The corresponding estimates of

∫
f ′′(x)2dx

and bandwidth h chosen by (10.3) are shown in Table 10.1. The important
point here is the sensitivity of plug-in selection to the choice of pilot band-
width: Doubling the pilot bandwidth k changes the estimate of

∫
f ′′(x)2dx

by a factor of 10, and the selected h changes by a factor of 1.6.

The solid line in Figure 10.2 displays the full relationship between the
pilot bandwidth k and selected bandwidth h for the Old Faithful dataset.
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FIGURE 10.1. Estimating f ′′(x)2dx for the Old Faithful dataset, using three
pilot bandwidths k.

k
∫

f̂ ′′
k (x)2dx h

0.50 23.8 0.40
0.75 5.5 0.54
1.00 2.3 0.65

TABLE 10.1. Pilot bandwidths, estimates of
∫

f ′′(x)2dx and selected bandwidths
for the Old Faithful dataset.

Clearly plug-in bandwidth selection alone does not solve the bandwidth
problem, but replaces the problem with the problem of choosing pilot band-
widths. In light of the discussion in Section 6.1.1, it is clear that the second
derivative relies on a good local quadratic approximation. If k is so large as
to smooth out features, the second derivative will be underestimated, and
hopt overestimated.

Several solutions have been proposed for the pilot bandwidth problem.
The most common ideas center around assumed relations between h and
k. Some specific ideas include:

• Gasser, Kneip and Köhler (1991), working in the regression setting,
assume the relation

k(h) = hn1/10.

This relation is shown by the long dashed curve in Figure 10.2. The
selected bandwidth, h = 0.670, is defined by the intersection of the
assumed and plug-in relations.
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FIGURE 10.2. Plug-in relation (solid) between pilot bandwidth and selected
bandwidth, and two assumed relations for the Old Faithful dataset.

• The Sheather-Jones method (SJPI). The assumed relation has the
form

k(h) = Ch5/7,

where C depends on the data, but not the bandwidth h. See Sheather
and Jones (1991) for a more complete description. This relation is
shown by the short dashed curve in Figure 10.2. Again, the selected
bandwidth, h = 0.516, is defined by the intersection of the assumed
and plug-in relations.

• Biased cross validation (Scott and Terrell 1987). The name is a mis-
nomer, since the algorithm has little to do with cross validation. In-
stead of targeting the bandwidth (10.3), Scott and Terrell work di-
rectly with the asymptotic MISE (10.2). For each h, the BCV(f̂h)
criterion is obtained by substituting

B̂(f̂h, W ) =
∫ ∞

−∞
f̂ ′′

h (x)2dx − 1
nh5

∫ ∞

−∞
W ′′(v)2dv

for
∫

f ′′(x)2dx. The bandwidth is then selected as the minimum (or
a local minimum) of BCV(f̂h).

10.2 Application of the Bandwidth Selectors

In this section we study the performance of the bandwidth selectors in the
kernel density estimation setting. Both real data examples and simulations
are used.
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10.2.1 Old Faithful
The Old Faithful geyser dataset is the most widely used example in the
bandwidth selection literature. Following authors such as Sheather and
Jones (1991) and Scott (1992) we apply the kernel density estimate (5.6)
with the Gaussian kernel. Applying the likelihood cross validation criterion
(5.12) gives h = 0.315. The AIC criterion (5.15) gives h = 0.162. The LSCV
criterion (5.17) yields h = 0.249.

We have already seen that the SJPI method yields h = 0.516 and the
GKK method h = 0.670. Biased cross validation gives h = 0.705. Other
plug-in selectors produce similar results: Chiu (1991) selects h = 0.537.
Sheather (1992) reports h = 0.570 using a plug-in method of Park and
Marron (1990) and the rather larger h = 1.235 using the method of Hall,
Sheather, Jones and Marron (1991). Mostly, the plug-in selectors agree with
Silverman (1986), who smoothed the data visually and selected h = 0.625.1

Selector h h/2.5 d.f.
AIC 0.162 0.065 13.1

LSCV 0.249 0.099 9.0
LCV 0.315 0.126 7.2
SJPI 0.516 0.206 4.4
Chiu 0.537 0.215 4.2

Park-Marron 0.570 0.228 3.9
Silverman 0.625 0.250 3.6

GKK 0.670 0.268 3.4
BCV 0.705 0.282 3.3

Hall et al. 1.235 0.494 2.1

TABLE 10.2. Bandwidths selected for the Old Faithful dataset: Three classical
selectors, six plug-in selectors, and the visual selection of Silverman. The h column
uses the locfit definition of the Gaussian kernel; the h/2.5 column uses the
definition in the original sources.

Table 10.2 summarizes the selected bandwidths. There is a large discrep-
ancy between the approaches; the classical selectors select fits with smaller
bandwidths and larger degrees of freedom.

Figure 10.3 shows the density estimates produced by some of these se-
lectors. Clearly the fits are very different, corresponding to the very dif-
ferent bandwidths selected. Given the substantial discrepancy between the
bandwidth selectors in the previous section, which is right? Existing liter-
ature has strongly rejected the LSCV fit. For example, Scott (1992, page

1Important: The bandwidths reported here are 2.5 times those reported in the
original sources, reflecting the factor 2.5 in the definition of the Gaussian kernel given
in Table 3.1 and used throughout this book.
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FIGURE 10.3. Kernel density estimates for the Old Faithful dataset.

172), says the LSCV fit is “clearly undersmoothed given the sample size”.
Sheather (1992, page 234), also says “it appears (LSCV) undersmooths the
data” but goes on to add “the lack of agreement between these estimates
is a little alarming”. On the other hand, Figure 5.8 shows both the AIC
and LSCV criteria fairly strongly rejecting fits with fewer than five degrees
of freedom.

With a real dataset we can never be sure, but substantial insight can
be gained by simulating from distributions that look similar the candidate
distributions and seeing how the bandwidth selectors perform on these
simulated datasets. Random variables are generated from the density

fσ(x) =
1

107σ

107∑
i=1

φ

(
x − Xi

σ

)

where X1, . . . , X107 are the Old Faithful observations. This distribution
can be generated by resampling (with replacement) from the Old Faithful
observations and adding independent normal observations with standard
deviation σ. Samples of size 107 are drawn, and two values of σ are con-
sidered: σ0 = 0.208 and σ1 = 0.069.

For normal mixtures, the mean integrated squared error can be obtained
in a closed form; see Alekseev (1982), Taylor (1989) and Marron and Wand
(1992). The MISE-minimizing bandwidth can then be found through a
numerical computation. This leads to the bandwidths h0 = 0.516 for σ = σ0
and h1 = 0.249 for σ = σ1.
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FIGURE 10.4. Bandwidth selection for the resampled Old Faithful simulations.
Estimated densities of the bandwidths selected by the LSCV, BCV and SJPI
selectors are shown. The target bandwidth in each case is shown by the vertical
line.

locfit provides a function kdeb() that implements some of the band-
width selectors. The simulations are implemented by calling this function
in a loop:

> nsim <- 1000
> sigma <- 0.208
> Z <- matrix(nrow=nsim,ncol=3)
> meth <- c("LSCV","BCV","SJPI")
> for (i in 1:nsim)
+ { x <- sample(geyser,107,replace=T)+rnorm(107,sd=sigma)
+ Z[i,] <- kdeb(x,0.01,1.0,meth=meth)
+ }

For each value of σ, 1000 simulations are performed. In each of the six
cases (three bandwidth selectors times two standard deviations), the den-
sity of the 1000 selected bandwidths is estimated using a local log-quadratic
density estimate.

The results in Figure 10.4 are extremely interesting and informative.
The LSCV selector is indeed the most variable, particularly for σ = 0.219.
But in both cases it is correctly centered, with the peak of the estimated
density being close to the target value. The BCV selector is less variable,
but nearly always selects bandwidths that are much too large. It shows
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almost no ability to distinguish between the two models; the densities of the
selected bandwidths are similar for both values of σ. The SJPI selector is the
least variable of the selectors, but shows only modest ability to distinguish
between the two values of σ. It also substantially oversmooths, particularly
for σ = 0.07.

Returning to the questions posed in the introduction to this chapter, we
can now say that the selection of larger bandwidths by the plug-in methods
has nothing to do with resolution of uncertainty in the data. Rather, it
is entirely due to apriori assumptions implicit in the selectors: the larger
bandwidths are selected regardless of the truth.

These simulations cast considerable doubt on the performance of the
plug-in selectors on the original dataset in Figure 10.3. What should be
apparent, both from the residual analysis in Figure 5.7 and the second
derivative estimates in Figure 10.1, is that the sharpness of the left peak
is critical to the bandwidth selectors. Some probability calculations at the
left boundary (Exercise 10.1) provide further support for the smaller band-
widths produced by cross validation methods.

There is one more important conclusion to be drawn from this section.
Looking at fits alone provides no basis for rejecting fits as undersmoothed.
Selecting the best fit is a trade-off between bias and variance. Plotting
the fit, by itself, shows only variance in the estimate. Bias requires careful
comparison of the fit with the data. The graphical tools used in Section 5.3
- residual plots and AIC plots - help provide a visual display of the balance
between bias and variance.

10.2.2 The Claw Density
The claw density is defined as

f(x) = 0.5φ(x) +
2∑

i=−2

φ(10(x − i/2)).

This consists of an underlying standard normal component with five claws
superimposed. This density is from Marron and Wand (1992).

Example 10.2. Figure 10.5 shows a sample of size 54 from the claw
density, along with two kernel density estimates. The first fit is produced
by

> x <- seq(-3.5, 2.7, length=200)
> y <- dnorm(x,-1,0.1) + dnorm(x,-0.5,0.1) + dnorm(x,0,0.1)
+ + dnorm(x,0.5,0.1) + dnorm(x,1,0.1)
> y <- (y+5*dnorm(x))/10
> fit1 <- locfit(˜claw54, deg=0, kern="gauss", ev="grid",
+ mg=100, alpha=c(0,0.315), flim=c(-3.5,2.7))
> plot(fit1, get.data=T, main="h=0.315", ylim=c(0,max(y)))
> lines(x, y, lty=2)
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FIGURE 10.5. Density estimates for a sample from the claw density.

and similar code for h = 0.985.
The smaller bandwidth, h = 0.315, shows the five claws, albeit with a

lot of noise. This is to be expected, given the small sample size. The larger
bandwidth, h = 0.985, produces a smooth density estimate, which misses
the claws completely.

This problem is particularly challenging for bandwidth selectors, since
the interesting structure (the five claws) is difficult to see. Without any se-
lectors, one could easily conclude that the estimate on the right (h = 0.985)
is reasonable. Thus, the performance of bandwidth selectors, in flagging fea-
tures that might otherwise be missed, is particularly crucial in this type of
example.

Since the bandwidth selectors we consider in this chapter target the mean
integrated squared error, we must consider how this measure behaves as
a function of the bandwidth h and sample size n. When n is small, the
estimate f̂h(x) is noisy for small h, and the claws are impossible to detect.
The best h will correspond to detecting the global structure.

As n increases, the noise is reduced and the claws are more detectable.
The sample size n = 54 turns out to be critical. When n is close to 54, the
MISE curve has two local minima: A large h corresponding to the global
structure, and a small h corresponding to the claws. The cross-over value
is n = 54, where the two local minima are the same height. Thus, at this
sample size, we should expect a bandwidth selector to have about a 50%
chance of finding the claws.

As n increases further, the claws become increasingly dominant. A second
critical sample size is n = 193. At this sample size, the minimum MISE of
the local quadratic estimate of Section 5.1.1 matches that of the local con-
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FIGURE 10.6. Selected bandwidths for the claw density. For three sample sizes,
three bandwidth selectors are applied to 1000 replications. Density estimates for
the selected bandwidths are shown.

stant kernel estimate. For n larger than 193, the performance of the kernel
estimate - and hence of the bandwidth selectors - has little relevance, since
the local quadratic method provides better estimates. This is particularly
true for plug-in methods, which implicitly use the local quadratic estimate
at the pilot stage.

Figure 10.6 reports some simulation results for the LSCV, BCV and SJPI
selectors for the claw density. For three different sample sizes (n = 54,
n = 193 and n = 400), 1000 samples of size n are drawn from the claw
density. The three bandwidth selectors are applied to each sample. The
densities of the selected bandwidths are then plotted.

Clearly, only LSCV displays the behavior that should be expected of a
bandwidth selector. At n = 54, the distribution of the selected bandwidths
displays two modes, centered near the two target values. At n = 193, LSCV
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is fairly reliably finding the claws. At these smaller sample sizes, BCV and
SJPI completely fail to find the interesting structure!

10.2.3 Australian Institute of Sport Dataset
What does all this mean for real data? Figure 10.7 shows a dataset consist-
ing of the lean body mass indices of 202 athletes, broken down by gender
(female or male) and ten different sports. The data is from Cook and Weis-
berg (1994).

Figure 10.8 shows two different kernel density estimates for this dataset,
similar to Jones, Marron and Sheather (1996). The two bandwidths were
selected by LSCV and SJPI. Clearly, the SJPI fit is visually much more
pleasing than the LSCV fit.

But at this stage we cannot draw any conclusions as to which fit is best.
Figure 10.8 is remarkably similar to Figure 10.6 with the claw density; in
light of the simulations in Figure 10.5, it is clear that SJPI will select a
large bandwidth without regard to the underlying density.

Jones, Marron and Sheather (1996) note that there are differences be-
tween males and females, thus providing an explanation for the flat top or
possible bimodality displayed by the SJPI estimate. But differences between
sports are also clear from the data in Figure 10.7: The female gymnasts are
clearly distinct from the other sports. Athletes in tennis and track events
generally have smaller LBM indices than those in rowing or field events.
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FIGURE 10.8. Kernel density estimates for the AIS dataset. On the left, h = 2.66
was selected by LSCV. On the right, h = 9.39 was selected by SJPI.

Even within sports, there are differences: the coxswain clearly stands out
on both rowing teams. Thus, the dataset is not simply a mixture of male
and female distributions, but a mixture of at least 17 different populations,
and it is quite possible that some of the other features in the LSCV fit are
real.

Figure 10.9 shows the LSCV scores and plug-in relations for the AIS
dataset. Again, the LSCV plot immediately provides much information
about the relative merits of the smoothing parameters for this dataset. Fits
with fewer than seven degrees of freedom are strongly rejected. Although
the minimum occurs at about 23 degrees of freedom, fits ranging from 7 to
40 degrees of freedom show relatively little difference in the LSCV scores.
For the record, h = 9.386 produces a fit with 7.67 degrees of freedom, and
the LSCV score is −0.0216.

Once again, the LSCV plot manages to precisely reflect uncertainty in
the data. The biggest discrepancy between the two estimates in Figure
10.8 is the height of the peak with the LBM index between 53 and 57. The
smaller peaks, while visually less pleasing, have relatively little influence
on squared error. To help decide which fit is right, we round the data to
the nearest integer. The successive counts for LBM ranging from 53 to 57
are 11, 10, 7, 8 and 9. The expected count, when the density is 0.03135
(the maximum of the SJPI estimate), is 202 × 0.03135 = 6.33. Thus the
raw counts appear inconsistent with the fitted density, although analyzing
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FIGURE 10.9. LSCV scores (left) and plug-in relations (right) for the AIS
dataset.

deviance residuals (Exercise 10.4) shows that the discrepancy is not quite
enough to declare a significant lack of fit.

The conclusion here is that, once again, the LSCV plot reflects uncer-
tainty in the data. Fits smaller than seven degrees of freedom produce a
clear lack of fit.

10.3 Conclusions and Further Reading

A number of points have emerged during the course of this chapter:

• The importance of looking at the whole profile of the LSCV (or AIC,
or CP) plots, rather than just the minimizer.

• The importance of using the degrees of freedom, rather than the
smoothing parameter, as the x-axis for these plots.

• The importance of carefully comparing fits with the data, rather than
just looking at the fit. Simply adding data to the fit is a huge help.
(Compare Figure 10.3 with figure 6.17 of Scott (1992) or figure 2.2
of Sheather (1992), and look for oversmoothing of the left peak).

• The need to carefully separate prior assumptions built into selectors
from the ability to identify features in the data. This is achieved not
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by looking at single examples, but by looking at pairs of examples
and seeing how the selectors respond to changes in the underlying
problem.

• Variability of cross validation and classical methods is not a problem.
Rather, it is a symptom of the difficulty of bandwidth selection and
the problem of resolving uncertainty in the data. Plug-in methods
reflect the difficulty by oversmoothing difficult problems and have
less ability to resolve uncertainty. This is particularly true in difficult
examples – those with fine features that might be missed just by looking
at the data. These are the examples where performance of bandwidth
and model selection criteria is most critical.

The strongest arguments in favor of plug-in methods have been based on
asymptotic results, which have not been studied in this chapter. Generally,
asymptotic results establish rates of convergence to a true target band-
width. For classical selection procedures, convergence rates are typically
Op(n−1/10) (Rice 1984; Hall and Marron 1987). Plug-in methods achieve
rates up to Op(n−1/2) (Hall, Sheather, Jones and Marron 1991). See the
references for precise interpretations of these rates.

In the examples presented in this chapter, this kind of asymptotic argu-
ment clearly has little relevance. For example, in the claw density, a selector
has to choose between two competing models and decide whether or not
the claws are sufficiently well supported to represent a real feature. As was
argued in Section 10.2.2, the most relevant sample sizes are 54 ≤ n ≤ 193;
for larger sample sizes, the claws become easy to detect.

But the problems with the asymptotic analysis are much deeper, as the
discussion in Loader (1999) shows. In particular, the results for the rates
of convergence make incompatible assumptions. Essentially, the asymp-
totic results for plug-in methods make extra smoothness assumptions about
f(x), to enable the pilot local quadratic methods to work. But then, the
plug-in estimate is asymptotically beaten by its own pilot estimate, making
the performance of the selector quite uninteresting. Brown, Low and Zhao
(1997) and Cleveland and Loader (1996) explicitly show how plug-in based
estimates can be beaten: Simply choose a higher order estimate and match
bandwidths to equate (or reduce) the variance or fitted degrees of freedom.
With this bandwidth matching, the higher order fit has, asymptotically, no
bias, so must beat the kernel estimate.

An important related paper is Gu (1998), who studies the statistical
relevance of a number of issues related to smoothing parameter selection.
In particular, he questions the validity of bandwidth asymptotics and a
number of other commonly used measures. He also has several examples
relating datasets to selected smoothing parameters.

The examples in this chapter have all used (local constant) density
estimates, since this is the setting in which plug-in bandwidth selection
methods are developed. But the arguments are equally applicable to local



10.4 Exercises 193

quadratic and higher order methods. This is discussed further in Loader
(1999).

10.4 Exercises

10.1 Let X1, . . . , Xn be an independent sample from a density f(x), and for
any subset A of the real line, let N(A) be the number of observations
in A.

a) Show P (N(A) = 0) =
(
1 − ∫

A
f(x)dx

)n.

b) Consider a kernel density estimate f̂(x) with a constant band-
width h and the Gaussian kernel; W (v) = exp(−(2.5v)2/2). Con-
sider sets of the form A = (−∞, c). Show that∫

A

f̂(x)dx =
1
n

n∑
i=1

Φ
(

2.5(c − Xi)
h

)
. (10.5)

where Φ( · ) is the standard normal distribution function.
c) For the Old Faithful dataset, take c = 1.67, so N(−∞, c) = 0.

For each of the bandwidths in Table 10.2, compute the integral
(10.5) and hence estimate P (N(A) = 0). Which bandwidths are
rejected as inadequate?

10.2 Suppose X(t) is a Gaussian process, with mean 0 covariance function
E(X(s)X(t)) = σ(s, t). The process is observed for t ∈ T where T is
a finite set of points; the object is to predict X(t0) for some t0 /∈ T .

a) A linear predictor has the form X̂(t0) =
∑

t∈T atX(t). Using the
squared error risk R(X(t0), X̂(t0)) = E(X(t0) − X̂(t0))2, show
that the best linear predictor is

X̂(t0) = σ(t0, T )T σ(T, T )−1X(T ).

b) Suppose X(t) is white noise, so σ(s, t) = I(s = t), and T is the
set of integers. Show the best linear predictor is X̂(t0) = 0 for
t0 /∈ T .

c) Suppose X(t) = W (t+1)−W (t) where W (t) is standard Brow-
nian motion E(W (s)W (t)) = min(s, t). Show that

σ(s, t) = E(X(s)X(t)) = (1 − |s − t|)+,

and hence the observed {X(t), t ∈ T} is again white noise. Show
the best linear predictor is linear interpolation:

X̂(t + λ) = (1 − λ)X(t) + λX(t + 1)

where t is an integer and 0 < λ < 1.
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Remark: This exercise shows how difficult bandwidth selection can be.
The observed processes are identical for each model, so no bandwidth
selector (or any other data-based statistic) can distinguish the two
models. Yet the optimal amount of smoothing changes from infinite
to no smoothing!

10.3 In this problem we want to estimate
∫

f ′′(x)2dx for an unknown
density f(x).

a) Let g(x) = log(f(x)). Show

f ′′(x) = f(x)(g′′(x) + g′(x)2). (10.6)

b) Compute the local log-quadratic fit for the Old Faithful dataset
used in Figure 5.1. Compute predictions of f(x), g′(x) and g′′(x)
on the grid seq(1,6,length=101) and hence an estimate of
f ′′(x) using (10.6). Plot your estimate of f ′′(x).

c) Using the trapezoidal rule, compute an estimate of
∫

f ′′(x)2dx.
Plug this into the optimal bandwidth formula (10.3), when

W (v) = e−v2/2/
√

2π;

note that
∫

W (v)2dv = 1/(2
√

π) and
∫

v2W (v)dv = 1. Compare
with the results in Table 10.2.

10.4 Compute a rounded ‘count’ version of the AIS dataset. Using local
Poisson regression, compute local constant fits similar to those in
Figure 10.8. Compute and plot the deviance residuals. How strong
is the evidence of undersmoothing at h = 9.39? Repeat with larger
bandwidths.

10.5 Generate a sample of size 100 with

Xi = Yi + Zi

where Yi is sampled (with replacement) from 10, 20, 30, . . . , 100 and
Zi ∼ N(0, 1). Select bandwidths for estimating the density of the Xi

with a Gaussian kernel density estimate, using the LSCV, SJPI, BCV
and GKK methods. Plot the density estimates and compare with the
data. Also compute cross validation plots and design similar plots for
the plug-in methods. Which plots are most informative in relation to
the data?
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Adaptive Parameter Choice

In regression situations with relatively low noise and a large amount of
structure, it is quite possible that no single smoothing parameter or degree
of local polynomial will provide an adequate fit to the data. In this case,
it may be desirable to use locally adaptive smoothing methods, which vary
the amount of smoothing in a location dependent manner, so as to obtain
a satisfactory fit.

The approach taken in this chapter is based on a simple principle:

In the neighborhood of a fitting point x, does the local polyno-
mial 〈â, A(u − x)〉 fit the data?

In Section 11.1 some measures to assess local goodness of fit are introduced.
In Section 11.2, these are applied to locally select the degree of local poly-
nomial and bandwidth. The local goodness of fit approaches were jointly
developed with Bill Cleveland and Trevor Hastie; earlier versions of the
methods were used in Cleveland and Loader (1996).

Before proceeding, we should add some notes of caution. Locally adaptive
procedures work well on examples with plenty of data, obvious structure
and low noise. But, as was argued in Chapter 10, these are not the difficult
problems for model selection. The real challenges for model selection occur
when the structure is not obvious, and there are questions as to which
features in a dataset are real. In such cases, simpler methods of bandwidth
specification, such as nearest neighbor methods and global cross validation,
are most useful, and locally adaptive methods produce little benefit.

It should also be noted that locally adaptive procedures have tuning
parameters, or penalties, that control the bias-variance trade-off, and the
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estimates can be quite sensitive to the choice of these parameters. Thus
features should not be declared real simply because they appear in adaptive
estimates. Residual analysis and goodness of fit diagnostics are just as
important for locally adaptive procedures as they are for global procedures.

Many other approaches to locally adaptive smoothing have been pro-
posed in the literature. The first method based on local polynomial fitting
was proposed in Breiman and Meisel (1976). Working in the multidimen-
sional setting, Breiman and Meisel begin with the full linear model. Then,
the dataset is split into two equally sized subsets (with a randomly cho-
sen split plane), and linear models fitted to each piece. This process is
continued recursively, as long as an F test shows a significant difference
between the two subregions. Another algorithm is the supersmoother algo-
rithm of Friedman and Stuetzle (1982), which chooses bandwidths based
on a cross validation method. The algorithms of Fan and Gijbels (1995b)
(variable bandwidth) and Fan and Gijbels (1995a) combine goodness of fit
and plug-in steps.

11.1 Local Goodness of Fit

To develop locally adaptive procedures, we need local analogs of the good-
ness of fit measures, such as cross validation and CP. Our strategy in deriv-
ing a locally adaptive fit is to compute a local goodness of fit for each of a
class of candidate fits and thereby select the best local fit. Choice of classes
of candidate fits and the fitting of the models are discussed in Section 11.2.

11.1.1 Local CP
For a fixed fitting point x, consider a local polynomial fit using degree p and
bandwidth h. Let â be the coefficients of the fitted polynomial (computed
using (9.8), to allow for nonhomogeneous variance), and let

µ̃(xi) = 〈â, A(xi − x)〉

be the local polynomial evaluated at the data point xi, The goodness of fit
measure is a locally weighted version of the loss (2.22), using the smoothing
weights to define the average:

Lx(µ̃, µ) =
∑n

i=1 wi(x)(µ̃(xi) − µ(xi))2/σ2
i∑n

i=1 wi(x)
(11.1)

where σ2
i = var(Yi).

We note several points. First, (11.1) uses the value µ̃(xi) of the local poly-
nomial fitted at x and evaluated at xi, rather than µ̂(xi). This considerably
simplifies the procedure, since it keeps the estimate µ̂(x) independent (in a
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computational, not statistical sense) from the estimate at any other point.
Second, the pointwise mean squared errors are weighted by the smoothing
weights wi(x). Third, we divide by the sum of the weights to ensure some
comparability between risk values computed at different bandwidths.

The expected value of (11.1) can be decomposed into bias and variance
terms:

E(Lx(µ̃, µ)) =
1∑n

i=1 wi(x)

(
n∑

i=1

wi(x)
σ2

i

b̃(xi)2 +
n∑

i=1

wi(x)
σ2

i

var(µ̃(xi))

)

(11.2)
where b̃(xi) = E(µ̃(xi)) − µ(xi) is the bias of µ̃(xi). Exercise 11.1 shows
that the variance component has the simpler expression

n∑
i=1

wi(x)
σ2

i

var(µ̃(xi)) = ν(µ̃) (11.3)

where ν(µ̃) is a local analog of the fitted degrees of freedom:

ν(µ̃) = tr
(
(XT WVX)−1XT W2VX

)
.

As usual, X is the design matrix, W is a diagonal matrix with entries wi(x)
and V is a diagonal matrix with entries 1/σ2

i .
A bias-variance decomposition of the local residual sum of squares yields

n∑
i=1

wi(x)
σ2

i

E(Yi − µ̃(xi))2

=
n∑

i=1

wi(x)
σ2

i

b̃(xi)2 +
n∑

i=1

wi(x)
σ2

i

var(Yi − µ̃(xi))

=
n∑

i=1

wi(x)
σ2

i

b̃(xi)2 + tr(W) − ν(µ̃). (11.4)

Eliminating the unknown bias terms from (11.2) and (11.4) gives the unbi-
ased estimate of the local goodness of fit defined by (11.1). As in the global
CP (and perhaps more so, for reasons discussed later), it is useful to also
consider a generalized version of the local CP statistic, incorporating an
arbitrary penalty on the variance term.

Definition 11.1 The local generalized CP, with variance penalty α, is

LoCPα(µ̃) =
1

tr(W)

n∑
i=1

wi(x)
σ2

i

(Yi − µ̃(xi))2 − 1 + α
ν(µ̃)

tr(W)
.

The case α = 2 gives the unbiased estimate of (11.1).
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Implementation of the local CP method requires estimating the variances
σ2

i . This can be obtained by a preliminary fit with a small bandwidth and
either computing the global estimate (2.18) or using the local variance
estimates from Section 9.1.2.

11.1.2 Local Cross Validation
We can develop local versions of the cross validation statistics from Section
2.4.1. First, we require a local analog of the prediction mean squared error
(2.19). To assess the performance of µ̃(x) within its smoothing window, the
goodness of fit measure must be appropriately weighted. This leads to the
measure

LoPMSE(µ̃) =
1

EW (xnew−x
h )

E
(

W (
xnew − x

h
)(Ynew − µ̃(xnew))2

)
.

The local cross validation score estimates this measure using the leave-one-
out approach.

Definition 11.2 The local cross validation score is

LoCV(µ̃) =
∑n

i=1 wi(x)(Yi − µ̃−i(xi))2∑n
i=1 wi(x)

where µ̃−i(xi) is the value of the leave-xi-out local polynomial.

Theorem 2.2 has a local analog:

LoCV(µ̃) =
1∑n

i=1 wi(x)

n∑
i=1

wi(x)
(Yi − µ̃(xi))2

(1 − infl(x, xi))2

where the local influence function is

infl(x, xi) = A(xi − x)T (XT WX)−1A(xi − x)wi(x).

Exercise 11.1 shows the locally weighted average of the influence values is∑n
i=1 wi(x)infl(x, xi)∑n

i=1 wi(x)
=

ν(µ̃)
tr(W)

. (11.5)

This enables us to define a localized version of generalized cross validation.

Definition 11.3 The local generalized cross validation statistic is de-
fined as

LoGCV(µ̂) = tr(W)
∑n

i=1(Yi − µ̃(xi))2

(tr(W) − ν(µ̃))2
.
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11.1.3 Intersection of Confidence Intervals
The intersection of confidence intervals (ICI), introduced in Goldenshluger
and Nemirovski (1997) and further developed by Katkovnik (1998) and
Katkovnik (1999) provides an alternative method of assessing local good-
ness of fit.

For a local regression estimate µ̂h(x), computed with a small bandwidth
h, a confidence interval for the mean µ(x) has the form

Ih(x) = (µ̂h(x) − cσ̂‖lh(x)‖, µ̂h(x) + cσ̂‖lh(x)‖).

As the bandwidth h is increased, the standard deviation of µ̂h(x), and
hence ‖lh(x)‖, decreases. Thus, the confidence intervals become narrower.
If h is increased too far, the estimate µ̂h(x) will become heavily biased.
Eventually, the confidence intervals will become inconsistent, in the sense
that the intervals constructed at different bandwidths have no common
intersection.

The ICI bandwidth is then defined to be the largest bandwidth h1 such
that ⋂

h0≤h≤h1

Ih(x)

is nonempty.
The main tuning parameter in this procedure is the critical value c in

constructing the confidence intervals. Choosing c = 1.96 leads to 95% con-
fidence intervals under normality assumptions. But the resulting adaptive
estimates tend to display bias. Smaller values of c, for example, c = 1,
sometimes produce visually superior accuracy. The bias-variance trade-off
on c and selection of c through cross validation are studied in Katkovnik
(1998, 1999).

The ICI method can be used in conjunction with any estimate for which
approximate standard errors are available. For example, it extends im-
mediately to local likelihood or local slope parameters. Applications with
nonlinear observations can be found in Katkovnik (1996) and Katkovnik
and Stankovic (1998).

A procedure closely related to ICI was introduced in Lepski, Mammen
and Spokoiny (1997). This method uses the standard deviation of the differ-
ences µ̂h1(x) − µ̂h(x); h ≤ h1 and increases h1 until a significant difference
is found.

11.1.4 Local Likelihood
The local goodness of fit criteria have been derived for local regression
models, but they can easily be extended to local likelihood. A localized



200 11. Adaptive Parameter Choice

version of the likelihood cross validation statistic (4.9) is

1
tr(W)

n∑
i=1

wi(x)D(Yi, θ̃−i(xi)) (11.6)

where D(y, θ) is the deviance function and θ̃−i(xi) = 〈â−i, A(xi − x)〉 where
â−i is the leave-xi-out estimate of the local parameters. Using a one-term
linearization of â−i, similar to that in Exercise 4.6, yields

θ̃−i(xi) ≈ θ̃(xi) − A(xi − x)T (XT WVX)−1A(xi − x)wi(x)l̇(Yi, θ̃(xi))

and

D(Yi, θ̃−i(xi)) ≈ D(Yi, θ̃(xi))
−2A(xi − x)T (XT WVX)−1A(xi − x)wi(x)l̇(Yi, θ̃(xi))2.

Substituting this approximation into (11.6) and replacing l̇(Yi, θ̃(xi))2 by
−l̈(Yi, θ̃(xi)), leads to the local Akaike criterion. We also allow an arbitrary
penalty parameter α.

Definition 11.4 The local generalized Akaike information crite-
rion, with penalty parameter α, is

LoAICα(θ̃) =
∑n

i=1 wi(x)D(Yi, θ̃i)
tr(W)

+ α
ν(θ̃)

tr(W)
.

11.2 Fitting Locally Adaptive Models

Locally adaptive fits are obtained by computing a number of candidate fits
and using one of the criteria introduced in the previous section to select
among the fits. locfit supports two classes of candidate fits, obtained
either by varying the degree of the local polynomial or by varying the
bandwidth. The latter is necessary where a high amount of adaptivity is
required, but can be less reliable in situations with high noise.

Example 11.1. A variable degree fit is obtained by specifying a deg
argument with two components. For example, deg=c(0,3) selects among
local constant, linear, quadratic and cubic fits. We apply this to the ethanol
dataset using a 30% nearest neighbor bandwidth:

> fit <- locfit(NOx˜E,data=ethanol,alpha=0.3,deg=c(0,3))
> plot(fit,get.data=T)
> plot(predict(fit,what="deg"),type="p",ylab="degree")
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FIGURE 11.1. Variable order fit for ethanol dataset (left) and selected degrees
(right).

Figure 11.1 shows the fit. The left panel shows the variable order fit. In
the right panel, the selected degrees for each fitting point are shown: deg=1
(local linear) is selected on the left, where the data is fairly linear and noise
is largest. Around the peak and on the right, local quadratic and cubic fits
are mostly preferred.

By default, the variable order fit is selected by the localized GCV crite-
rion (11.3). As in the global case, this has the advantage of not requiring a
variance estimate. If the local CP criterion is required, this can be requested
by providing a third penalty component to the smoothing parameter alpha.

The locfit implementation of a local variable bandwidth smoother is
more sophisticated. The algorithm aims to keep the number of bandwidths
tried as small as possible, to ensure that the computations can be performed
in a reasonable time. In particular, it is important to avoid computing
unnecessary fits with large bandwidths.

The implementation proceeds in three steps:

1. Choose an initial bandwidth h0 to cover p + 2 nearest neighbors,
where p is the number of parameters in the local model. This is close
to the smallest bandwidth for which the estimate is well defined.

2. Increase the bandwidth by a factor of 1.3, or in more than one di-
mension, 1 + 0.3/d. Repeat until the goodness-of-fit criterion (local
CP, AIC or cross validation) shows a sharp increase. The present
implementation requires increases of the criterion on at least three
successive steps, and the criterion to be at least 50% above its mini-
mum.
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FIGURE 11.2. Local bandwidth selection. Beginning at a small bandwidth (point
1), the bandwidth is increased in large steps until there is a large increase in the
estimated risk at point 11. Then a finer search is performed around the minimum
(points 12 to 15).

3. Beginning at the bandwidth with the minimum goodness of fit value
observed in step 2, perform a finer search for the final bandwidth,
with a search factor of 1 + 0.1/d.

The implementation of the ICI method is similar, but the second step is
terminated as soon as the intersection of the confidence intervals is empty.

Example 11.2. The motorcycle dataset used in Example 9.1 could
clearly benefit from a local bandwidth, since the dataset has both flat and
sharply curved regions. Figure 11.2 shows the local bandwidth selection
for a single fitting point; in this case at time=33.45. This uses the local
variance estimate derived in Example 9.1 and the local CP criterion.

The first fit is computed with h = 1.45; this is sufficient to get a well-
defined estimate. As the bandwidth is increased, a local minimum (point
number 3) is observed in Figure 11.2. But the increase that follows is not
sharp, so the search continues. A second local minimum (point number 8)
is observed. The following points (9, 10 and 11) exhibit a sharp increase in
the local CP criterion, indicating lack of fit of the estimate. The procedure
concludes with a finer search (points 12, 13, 14 and 15) around point 8.

Performing this procedure at a large number of points would be compu-
tationally expensive for large datasets. Also, the bandwidth as defined may
be a discontinuous function of x, leading to a discontinuous fit. However,
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FIGURE 11.3. Fitting points and bandwidths selected for the motorcycle dataset
by the adaptive fitting algorithm (top) and the resulting fit (bottom).

the computational methods of locfit come to our aid: By using adap-
tive fitting structures, the fit will only be performed at sufficient points to
define a reasonable estimate. In regions where large bandwidths are suffi-
cient, fitting points will be sparse. Where smaller bandwidths are necessary,
there will be more fitting points, but evaluation is relatively cheap in this
case. The prediction methods then interpolate between the fitting points,
resulting in a continuous fit.

Example 11.3. We continue with the motorcycle dataset. A locally
adaptive bandwidth selection is specified using the acri arugument. For
example, acri="cp" uses the local CP rule. A third component to the
smoothing parameter alpha specifies the variance penalty in (11.1). It is
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also crucial to include a variance estimate (which may be either local or
global, as appropriate to the dataset). Here, we use the local variance esti-
mate from Example 9.1:

> fit <- locfit(accel˜time, alpha = c(0,0,2), weights=1/vp,
+ acri="cp", data=mcyc.n)
> plot(accel˜time, data=mcyc, type="n")
> x <- knots(fit, what="x")
> coef <- predict(fit, where="fitp")
> h <- predict(fit, where="fitp", what="band")
> points(x, coef)
> segments(x-h, coef, x+h, coef)
> plot(fit, get.data=T)

Figure 11.3 shows the resulting fit. The top panel shows the selected
fitting points (in this case, 16 points) and the widths of the smoothing
windows. The smoothing points are closest together at the point of impact
where the smallest bandwidths are selected, and furthest apart at later
times where the largest bandwidths are used.

Example 11.4. Following Donoho and Johnstone (1994) we define the
Dopler function

µ(x) = 20
√

x(1 − x) sin(2π
1.05

x + 0.05
).

The design consists of 2048 data points, equally spaced on [0, 1]. The errors
are independent standard normal random variables. Figure 11.4 shows the
generated dataset:

> x <- seq(0, 1, length=2048)
> y <- 20*sqrt(x*(1-x))*sin((2*pi*1.05)/(x+0.05))+rnorm(2048)
> plot(x, y, pch=".")

We use the local generalized CP statistic, with penalty α = 4:

> fit <- locfit(y˜x, alpha=c(0,0,4), maxk=500, acri="cp")
> plot(x, y)
> plot(fit, mpv=2048)
> plot(preplot(fit, what="band", where="fitp"),
+ type="p", log="y", ylab="bandwidth")

The resulting fit is shown in the middle panel of Figure 11.4. The loss∑n
i=1(µ̂(xi) − µ(xi))2) is 148.0. Fairly similar results were obtained for

values of α between 2.5 and 5. For smaller values of α, spurious features
begin to appear in the fit, while for larger values of α, bias begins to show.

The bottom panel of Figure 11.4 shows the selected fitting points and
bandwidths. In this example, 124 fitting points were selected. Most of these
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FIGURE 11.4. Dopler example dataset (top), locally adpative fit (middle) and
fitting points and bandwidths (bottom).
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FIGURE 11.5. Fitting the Dopler dataset with the ICI criterion.

are clustered near the left boundary where the smallest bandwidths are
used.

Example 11.5. We repeat the Dopler example, using the ICI criterion.
This is specified with acri="ici". The critical value c in the confidence
intervals is again specified as the third component of the smoothing pa-
rameter argument alpha. In this example, we use c = 1.1:

> fit <- locfit.raw(x, y, alpha=c(0,0,1.1),
+ acri="ici", maxk=500)
> plot(fit, mpv=2048)
> plot(preplot(fit, what="band", where="fitp"),
+ type="p", log="y", ylab="bandwidth")

Figure 11.5 shows the resulting fits and selected bandwidths. In this case,
the loss was 379.6. Smaller values of c produced lower loss (the minimum
was 301.6, at c = 0.9), although the resulting estimates were less satisfying
visually. The choice of c seems to be quite delicate in this example; some
spurious noise is already beginning to appear in Figure 11.5.
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FIGURE 11.6. Locally adaptive fit to the Old Faithful geyser dataset.

Our final example fits a locally adaptive model using local likelihood. In
the analysis of the Old Faithful dataset in Chapters 5 and 10, we strug-
gled to find a fit that was satisfactory for both peaks simultaneously. This
suggests that locally adaptive methods may be useful.

One could apply the locally adaptive setting directly in the density es-
timation setting. But rounding and ties in the data, which caused some
difficulty for global bandwidth selection, cause even more difficulty for lo-
cally adaptive rules (should three tied observations represent a peak in the
data and require a small bandwidth?). Visually, the most satisfying results
are obtained using the rounded versions of the data (Example 5.8), and
using local Poisson regression.

Example 11.6. A locally adaptive Poisson regression is fitted to the
rounded version of the Old Faithful dataset:

> fit <- locfit(count˜duration, weights=rep(107*0.05,99),
+ data=geyser.round, alpha=c(0,0,2), family="poisson")
> plot(fit, get.data=T, mpv=200)

Note the weights argument; this ensures that the resulting fit is correctly
scaled to estimate the density.

Figure 11.6 shows the resulting fit. Both peaks are smoothly reproduced,
and the left peak is sharp, as the data suggests it should be.

11.3 Exercises
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11.1 a) In the notation of Section 11.1.1, show that


µ̃(x1)
...

µ̃(xn)


 = XT

(
XT WVX

)−1
XT WVY.

Thus, prove (11.3).

b) Show that
n∑

i=1

wi(x)
σ2

i

cov(Yi, µ̃(xi)) = ν(µ̃),

and hence establish (11.4).

c) Prove (11.5).

11.2 Generate a dataset from the Dopler model (Example 11.4). Fit the
locally adaptive models from (11.4) and (11.5), but with different
values of the adaptive penalty. Which penalties produce the visually
best fits? Look both at the smooth parts of the estimate on the right
and the rough parts near x = 0.

11.3 Repeat the previous exercise for the other examples from Donoho and
Johnstone (1994). Try both local quadratic and local linear fits.



12
Computational Methods

Computational algorithms for local likelihood estimation can be divided
into several steps. First, one has to select points x at which to compute
the fit. Second, one needs algorithms to compute the fit at these points.
Third, one needs to compute diagnostic information, such as variances and
the influence function.

The second step is a fairly routine problem, requiring numerical solution
of the local likelihood equations. An approach is discussed in Section 12.1.

The first step is more interesting. The main computational ideas under-
lying locfit build on those incorporated in loess (Grosse 1989; Cleveland
and Grosse 1991). The local fitting algorithm is carried out on a set of ver-
tices in the design space, and certain interpolants are used to construct
function estimates over the cells. However, the locfit implementation dif-
fers from loess in several respects. In particular, new fitting structures use
the bandwidth, rather than the density of design points, to decide when
cells are split. The algorithms are described fully in Section 12.2.

Section 12.3 discusses the influence and variance functions. Section 12.4
discusses some issues specific to the density estimation problem.

12.1 Local Fitting at a Point

To find the local likelihood estimate at a single point, we must numerically
solve the local likelihood equations (4.14). Since there is no closed form
solution, an iterative procedure must be used. The multivariate generaliza-
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tion of the Newton-Raphson method (Conte and De Boor, 1980, section
5.2) provides a convenient procedure.

Suppose we have a guess â(k) of the solution of the local likelihood equa-
tions (4.15). A linear expansion of the equations around the parameter
vector â(k) gives

XT Wl̇(Y,X(â(k) + ∇a)) ≈ XT Wl̇(Y,Xâ(k)) − XT WVX∇a, (12.1)

where V has diagonal entries −l̈(Yi,
〈
â(k), A(xi − x)

〉
). Taking

∇a(k) = (XT WVX)−1XT Wl̇(Y,Xâ(k)),

the right-hand side of (12.1) is easily seen to equal 0. This leads to the
Newton-Raphson iteration:

a(k+1) = a(k) + (XT WVX)−1XT Wl̇(Y,Xâ(k)). (12.2)

Any method for solving linear systems of equations can be used to find the
vector â(k+1). The method presently used by locfit is as follows: Let D
be the matrix of diagonal elements of J = XT WVX, and let P and Σ be
the eigenvectors and eigenvalues of D−1/2JD−1/2, so that

J = D1/2PT ΣPD1/2.

The system of equations (12.2) can then be written

a(k+1) = a(k) + D−1/2PT Σ−1PD−1/2XT Wl̇(Y,Xâ(k)).

This can easily be evaluated in a right-to-left manner.
To complete the implementation, some additional questions must be ad-

dressed:

1. What is the starting value â(0)?

2. Does the algorithm converge?

3. If the algorithm converges, does it converge to the maximizer of the
local likelihood Lx(a)?

4. What happens if the Jacobian matrix J = XT WVX is singular?

For most of the models implemented in locfit the local constant esti-
mate has a closed form expression. For likelihood regression models,

â0 = g(Ȳ )

where g( · ) is the link function and Ȳ is the locally weighted sample av-
erage. This provides a convenient starting value for the Newton-Raphson
iteration; local slopes and higher order coefficients are set to zero.
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The local constant starting values are usually poor approximations to
the final coefficient estimates, and one may be tempted to try more com-
plicated approaches. For example, one might be tempted to try using local
regression to find starting values for all coefficients. But in this author’s
experience, this saves at most one iteration, and has the added complexity
of programming the initial step. Thus the benefits would appear minimal.
Another temptation is to use coefficients from the estimate at one fitting
point to provide starting values at a neighboring point. But again this
doesn’t save much, unless one is fitting on a very fine grid of points.

Does the Newton-Raphson algorithm converge? First, consider how the
local likelihood changes in the direction the Newton-Raphson iteration
moves. Provided the matrix J is positive definite (concavity of the log-
likelihood ensures this; see Section 4.4), Exercise 12.1 shows the vector
∇a(k) is an ascent direction for the local likelihood:

Lx(ak + λ∇a(k)) ≥ Lx(ak)

for small positive λ. However, this doesn’t necessarily hold for λ = 1, and a
direct implementation of the Newton-Raphson method may not converge.

Instead, we consider a damped Newton-Raphson algorithm, choosing

a(k+1) = a(k) +
1
2j

J−1XT Wl̇.

Here, j is selected at each step to be the smallest non-negative integer that
results in an increase of the local log-likelihood. With this modification,
the local likelihood is guaranteed to increase at each step and converge to
a local maximum. For concave likelihoods, this local maximum must also
be the global maximum.

In Section 4.4 and elsewhere, conditions were derived for existence and
uniqueness of the local likelihood estimate under various models. When
these conditions fail, various instabilities occur in the Newton-Raphson
algorithm; for example, the Jacobian matrix J may be singular, or the pa-
rameters may diverge to ∞. The conditions of Theorem 4.1 can be difficult
to check directly, so checks for divergence are implemented as part of the
Newton-Raphson algorithm.

12.2 Evaluation Structures

As mentioned in Section 3.1 and elsewhere, locfit does not (by default)
perform local regression directly at every point. Rather, it selects a set
of evaluation points at which the fit is performed directly, then uses the
information from the fits at these points to interpolate elsewhere.

This section describes the manner in which evaluation points are selected,
and the interpolation schemes used. The goal here is efficiency: since the
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interpolation problem is much cheaper than the local fitting problem, the
number of evaluation points should be kept as small as possible, but re-
taining sufficient information to approximate the entire local regression
surface.

12.2.1 Growing Adaptive Trees
The simplest evaluation structure is a grid of points. Fitting limits are
determined for each predictor variable (usually the range of the variable)
and each side is divided by a specified number of grid lines. The local fit is
then carried out at each vertex of the grid.

But this is inefficient, particularly when nearest neighbor or locally adap-
tive bandwidth schemes are used. In these situations, the fitted surface may
be very smooth in regions where large bandwidths are used but rough in
regions where small bandwidths are used. Ideally, more evaluation points
should be placed in the small bandwidth regions.

The k-d tree structure (Friedman, Bentley and Finkel 1977) was used
for this purpose in loess (Cleveland and Grosse 1991). One begins by
bounding the data in a rectangular box and evaluating the fit at the vertices
of the box. One then recursively splits the box into two pieces, then each
subbox into two pieces, and so on. At each stage, the split is chosen so
that the remaining data points are divided into two subsets of equal size.
Refinement continues until each lowest level box contains at most k points,
where

k = 0.2nα.

Here α is the nearest neighbor component of the bandwidth.
The main evaluation structure used in locfit is a tree-based structure

similar to the quadtree in approximation theory literature (Seidel 1997).
The algorithm begins by bounding the dataset in a rectangle and suc-
cessively dividing into two equally sized pieces. While based on similar
principles to the k-d tree, this has a number of important differences:

• Recursion is based on bandwidths rather than on number of design
points. Thus the algorithm isn’t restricted to nearest neighbor band-
widths.

• The decision to split an edge is based solely on the bandwidths at the
two ends of the edge; the rest of the cell is irrelevant.

• An edge is always split at the midpoint.

The first point is important, since it means the algorithm selects points
according to the resolution of the estimate, and is no longer restricted to
nearest neighbor bandwidths. For example, Figure 11.4 showed the fitting
points selected for the Dopler example. This varies in accordance with the
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FIGURE 12.1. Growing a rectangular tree. The cell (v0, v1, v2, v3) is split by the
line (v4, v5). Then, (v4, v1, v5, v3) is split by (v6, v7).

locally adaptive bandwidth: Most fitting points are in regions where small
bandwidths are chosen.

The second and third points are important at the interpolation stage
and for improved efficiency. In two (or more) dimensions, an edge may be
shared by two (or more) adjacent cells. Under the k-d tree algorithm, the
edge may be split in two different places, and preserving continuity of the
surface becomes a difficult problem.

The procedure by which locfit grows an adaptive tree is illustrated in
Figure 12.1. Initially, the dataset is bounded in a box, and local fitting is
carried out at the vertices. For an edge of the box joining vertices vi and
vj , a score is defined:

ρi,j =
‖vi − vj‖

min(hi, hj)
(12.3)

where hi and hj are the bandwidths used at the vertices. Any edge whose
score exceeds a critical value c (c = 0.8 by default) needs to be split.

In Figure 12.1, the initial rectangle has vertices at (v0, v1, v2, v3), and
suppose the local fitting algorithm selected bandwidths (1.8, 1.0, 1.6, 1.1).
For the present discussion, it doesn’t matter how these bandwidths are ob-
tained. The generation of evaluation structures depends only on the band-
widths and not the algorithm used to generate them.

The longest edges of the initial rectangle are (v0, v1) and (v2, v3); the
scores are ρ0,1 = 1.5/1.0 = 1.5 and ρ2,3 = 1.5/1.1 = 1.36 respectively. Both
these sides require splitting, so new vertices are added at v4 = (0.75, 0) and
v5 = (0.75, 1.0). Suppose the bandwidths at these points are h4 = 1.3 and
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FIGURE 12.2. Evaluation structures: A k-d tree (left) and adaptive rectangular
tree (right). In both cases, 34 evaluation points result.

h5 = 1.5. The left cell (v0, v4, v2, v5) does not require any further splits,
since the largest score is ρ4,5 = 1.0/1.3 = 0.77.

The right cell (v4, v1, v5, v3) does require splitting, since ρ1,3 = 1.0/1.0 =
1.0. We now have a problem. The horizontal split requires adding two
vertices, v6 and v7. But v6 splits the edge (v4, v5), and the score (12.3)
dictates that this edge should not be split. The local fit at this vertex can’t
be used, since this would lead to the k-d tree blending problem.

The solution is to create v6 as a pseudo-vertex. Rather than carrying out
the split directly at v6, the fit will be defined from the fits at v4 and v5 in
a manner so as to preserve continuity and differentiability across the cells.

Example 12.1. Figure 12.2 shows a k-d tree (left) and adaptive rect-
angular tree (right) for the trimodal dataset used in example 5.5. In both
cases a nearest neighbor smoothing parameter α = 0.35 is used, and fitting
is performed directly at 34 points (for the rectangular tree, this required
slight adjustment of the default cut parameter). The points selected by the
rectangular tree algorithm cover the data more efficiently; in several places,
the k-d tree algorithm chooses two points very close to each other.

Note the plot.eval() function is used to plot the evaluation structure:

> fit <- locfit(˜x0+x1, data=trimod, deg=1,
+ alpha=0.35, ev="kdtree")
> plot.eval(fit)
> points(trimod$x0, trimod$x1, cex = 0.3)
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> fit <- locfit(˜x0+x1, data=trimod, deg=1,
+ alpha=0.35, cut=0.85)
> plot.eval(fit)
> points(trimod$x0, trimod$x1, cex = 0.3)

12.2.2 Interpolation Methods
After computing the fit at the evaluation points, we need to specify an
interpolation method to define the fit at any other point. For simplicity, we
first consider the one dimensional case.

The simplest method is linear interpolation. If v0 ≤ x ≤ v1 for two
evaluation points v0 and v1, we define

µ̂(x) = µ̂(v0)
x − v1

v0 − v1
+ µ̂(v1)

x − v0

v1 − v0
.

Linear interpolation is usually unsatisfactory, since the resulting curve is
not differentiable. A fine grid of points will be needed to avoid trimming in
regions of high curvature.

To reduce these problems, the locfit algorithm also uses derivative
estimates at the vertices; these are readily available when local linear or
higher order fitting is used. To interpolate over the interval [v0, v1], the four
values µ̂(v0), µ̂(v1), µ̂′(v0) and µ̂′(v1) are used. These define a unique cubic
polynomial, given explicitly by

µ̂(x) = φ0(λ)µ̂(v0) + φ1(λ)µ̂(v1)
+(v1 − v0) (ψ0(λ)µ̂′(v0) + ψ1(λ)µ̂′(v1)) (12.4)

where

λ =
x − v0

v1 − v0

φ0(λ) = (1 − λ)2(1 + 2λ)
φ1(λ) = λ2(3 − 2λ)
ψ0(λ) = λ(1 − λ)2

ψ1(λ) = −λ2(1 − λ).

Some important properties of this interpolation scheme are:

1. The resulting surface has a globally continuous first derivative, since
the fitted derivatives are preserved at the vertices vi.

2. Preservation of a polynomial up to degree 3. This is important, since
the attractive properties of local polynomial fitting stem from its local
nature and preservation of polynomials up to the degree of fit. The
interpolation scheme preserves this for fitting up to local cubic.
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FIGURE 12.3. Interpolation over a grid cell. First, collapse the cell in the vertical
direction, then in the horizontal direction.

3. Rapid to compute at a large number of points. This contrasts with
direct fitting, which requires going back to the original data.

This construction can be extended to the multivariate case by succes-
sively collapsing each dimension, as illustrated in Figure 12.3. Suppose a
point x = (x0, x1) is in the cell bounded by vertices [v0, v1, v2, v3]. Define

λi =
xi − v0,i

v3,i − v0,i
; i = 0, 1.

First, the rectangle is collapsed along the vertical axis, interpolating the
function values and horizontal derivatives to v4 and v5. This yields

µ̂(v4) = φ0(λ1)µ̂(v0) + φ1(λ1)µ̂(v2) + ψ0(λ1)µ̂1(v0) + ψ1(λ1)µ̂1(v1)

and

µ̂0(v4) = φ0(λ1)µ̂0(v0) + φ1(λ1)µ̂0(v2) + ψ0(λ1)µ̂0,1(v0) + ψ1(λ1)µ̂0,1(v1)

and similar expressions for µ̂(v5) and µ̂0(v5). The subscripts of µ̂ denote
derivatives: µ̂1 is derivative in the vertical direction, µ̂0 in the horizon-
tal direction and µ̂0,1 is the mixed second order derivative. Secondly, the
function values are interpolated to the point x, along the dashed line:

µ̂(x) = φ0(λ0)µ̂(v4) + φ1(λ0)µ̂(v5) + ψ0(λ0)µ̂0(v4) + ψ1(λ0)µ̂0(v5)

The remaining problem is pseudo-vertices, such as v6 in Figure 12.1,
where the fit is not computed directly. For computation of the interpolant
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over the cell v6, v7, v5, v3, the value f̂(v6) is defined as the cubic interpolant
along v4, v5. This preserves continuity on the adjacent cells. Formally, we
have

µ̂(v6) =
1
2
(φ0(0.5)µ̂(v4) + µ̂(v5)) +

1
8
(µ̂0,1(v4) − µ̂0,1(v5))

µ̂1,0(v6) =
1
2
(µ̂1,0(v4) + µ̂1,0(v5)) +

1
8
(µ̂1,1(v4) − µ̂1,1(v5))

µ̂0,1(v6) = −3
2
(µ̂(v4) − µ̂(v5)) − 1

4
(µ̂0,1(v4) + µ̂0,1(v5))

µ̂1,1(v6) = −3
2
(µ̂1,0(v4) − µ̂1,0(v5)) − 1

4
(µ̂1,1(v4) + µ̂1,1(v5)).

It is important to interpolate all coefficients at the pseudo-vertices. If a local
linear model is fitted, then by construction we use µ̂1,1(v4) = µ̂1,1(v5) =
0. But the interpolated value µ̂1,1(v6) defined by (12.5) will usually be
nonzero.

12.2.3 Evaluation Structures in locfit
By default, locfit uses the adaptive rectangular tree structures described
earlier. But a number of other structures are also supported and can be
specified by the ev argument:

• ev="grid" for a grid.

• ev="kdtree" for a k-d tree.

• ev="tree" for an adaptive rectangular tree.

• ev="phull" for triangulation, similar to Loader (1994).

• ev="data" for direct evaluation at data points.

• ev="cross" for leave-one-out cross validation at data points.

The default is the tree structure, described in the previous section. The
phull structure bounds the data in a polyhedron and divides the poly-
hedron into triangles; the division is again based on an adaptive scheme
using bandwidths. The interpolant is constructed using the Clough-Tocher
method (Clough and Tocher 1965).

The data and crossval structures evaluate directly at each data point;
crossval uses leave-one-out cross validation. Due to computational cost,
this should only be used for n small. Note also that these structures can’t
be interpolated, and the fits can’t be plotted.

Several other parameters also control the evaluation structure. For the
rectangular structures, flim enables the user to specify the initial bounding
box for the fit.
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For grid structures, mg is used to control the number of grid lines per
side. The default is 10. In the multivariate case, mg may be either a single
number or a vector.

For the rectangular tree and triangulation structures, the cut specifies
the critical value used in the score criterion (12.3).

An important argument is maxk. For the adaptive structures, it is dif-
ficult to guess in advance how many vertices the final tree will contain.
Thus, locfit can’t always guess the right amount of memory to allocate
in advance, and dynamic allocation isn’t feasible in the S interface. If the
locfit() call produces a warning about insufficient space, then increase
maxk. This is especially likely to be needed in small bandwidth situations
or high dimensions. The default value is maxk=50.

12.3 Influence and Variance Functions

So far we have only discussed computing the fit. We are also interested
in other quantities, in particular the influence and variance functions. The
influence function at the fitting points is available as a direct byproduct
of the fit. Since the Cholesky decomposition of the matrix XT WVX is
available from the final iteration of the fit; XT WVX = RT R; we can
rapidly compute

v = (RT )−1e1,

and hence the influence function, infl(x) = ‖v‖2W (0). The variance (4.19)
is slightly more work, since we must also compute the matrix

J2 = XT W2VX.

To compute the fitted degrees of freedom, these quantities must be inter-
polated to the data points. To enable cubic interpolation, derivatives must
be obtained.

Suppose x is a fitting point. For small δ, the fit at x + δ is

µ̂(x + δ) = µ̂(x) + δµ̂′(x) + O(δ2)

and
var(µ̂(x + δ)) = var(µ̂(x)) + 2δcov(µ̂(x), µ̂′(x)) + O(δ2).

The derivative is

d

dx
var(µ̂(x)) = 2cov(µ̂(x), µ̂′(x)). (12.5)

If the local slopes are used as the derivative estimates, the covariance terms
are an immediate consequence of the variance computation.

The influence function can be handled similarly:

infl(x + δ) ≈ infl(x) + δeT
1 (XT WX)−1e2W (0). (12.6)
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Given the derivatives (12.5) and (12.6), the influence and variance func-
tions can now be interpolated using the methods of Section 12.2.2.

12.4 Density Estimation

The local likelihood density estimate of Chapter 5 presents some additional
computational difficulties. As with local likelihood regression, the local like-
lihood equations (5.5) can be solved numerically using the Newton-Raphson
method. But the integrals must also be evaluated numerically, and this can
become expensive in multiple dimensions.

If the Gaussian weight function is used, the integrals in the local likeli-
hood equations, and the estimate itself, have closed form expressions. See
Exercise 5.2 and Hjort and Jones (1996). The disadvantage of the Gaus-
sian weight function is that the parameter space is bounded: The integral in
(5.3) is infinite, if the quadratic coefficients are too large. The result is that
local quadratic fitting has trouble modeling deep troughs in the density.

For local log-linear fitting with a spherically symmetric weight function,
the multivariate integrals can be reduced to one dimensional ones (Exercise
12.5). These integrals are usually relatively cheap to evaluate using Taylor
series.

For local log-quadratic fitting and compact weight functions, there are
no general simplifications of the integrals, and the evaluation is performed
using quadrature rules. An alternative is to use the product model, which
replaces the spherically symmetric weights (2.11) by

wi(x) =
d∏

i=1

W

(
xi,j − x.,j

hsj

)

and drops cross-product terms from the local model. This enables the mul-
tivariate integrals to be factored into one-dimensional integrals.

locfit supports these simplifications, using the itype argument;

locfit(...,itype="mult")

Usually, this need not be given, since by default the best method for the
given parameter settings will be used. The four methods are:

prod Evaluate the integrals as a product of one dimensional integrals. This
is used with the product model (kt="prod"). The one dimensional
integrals are evaluated using series expansions (for degree 0, 1 or 2
fitting) and Simpson’s rule for cubic fitting.

mlin Use series expansions for multivariate local constant and log-linear
models.

mult Multivariate fitting using Simpson’s rule; when nothing else works.
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hazd Integration method for hazard rate estimation.

Example 12.2. We generate 100 points from a trivariate standard
normal model and fit local log-quadratic models. First, we fit the product
model, using the compact tricube weight function. Second, we fit the full
model, using the Gaussian kernel. Finally, we fit the full model using the
spherically symmetric tricube kernel; this uses numerical integration. The
timings, in S-4 on a 400 MHz. Pentium PC, are:

> x <- matrix(rnorm(300),ncol=3)
> unix.time(locfit.raw(x,kt="prod",maxk=200))
[1] 0.69 0.00 0.73 0.00 0.00
> unix.time(locfit.raw(x,kern="gauss",maxk=200))
[1] 1.08 0.02 1.10 0.00 0.00
> unix.time(locfit.raw(x,maxk=200))
[1] 35.50 0.00 35.52 0.00 0.00

The first fit uses the product tricube weight function and takes 0.69 sec-
onds. The second fit uses the Gaussian weight function and takes 1.08
seconds. The third model uses the spherical tricube weight function and
uses numerical integration. This takes 35.5 seconds. These times are system
dependent, but the ratios should be similar on other systems.

12.5 Exercises

12.1 Recall the local likelihood Lx(a) defined by (4.2).

a) For any vectors a and v, and scalar λ, show

∂

∂λ
Lx(a + λv)

∣∣∣∣
λ=0

=
〈
v,XT Wl̇(Y,Xa)

〉
.

b) For v = J−1XT Wl̇(Y,Xa), show this reduces to

(XT Wl̇(Y,Xa))T J−1XT Wl̇(Y,Xa).

Assuming J is positive definite, show the vector ∇a(k) produced
by the Newton-Raphson algorithm is an ascent direction.

12.2 Consider local constant regression (with the Gaussian likelihood) for
censored data. Suppose σ = 1 is known.

a) Using the updating scheme based on (7.9) and (7.11) locally at
each fitting point, show that the iterations for µ̂(x) satisfy

µ̂(j+1)(x) = µ̂(j)(x) +
1∑n

i=1 wi(x)

n∑
i=1

wi(x)ui (12.7)
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where

ui =

{
φ(Yi−µ̂(j)(x))

1−Φ(Yi−µ̂(j)(x)) Yi = ci

(Yi − µ̂(j)(x)) Yi < ci

.

b) Using the Newton-Raphson algorithm, show the iterations for
µ̂(x) are

µ̂(j+1)(x) = µ̂(j)(x) +
1
D

n∑
i=1

wi(x)ui

where

D = −
n∑

i=1

wi(x)l̈(Yi, ci, µ̂
(j)(x)).

c) Show 0 ≤ −l̈(y, c, µ) ≤ 1 for all y, c, µ (the algebra is difficult;
you may want to use plots at some steps). Hence, show the step
sizes taken by (12.7) are too small, compared to the Newton-
Raphson algorithm.

12.3 Consider one dimensional interpolation on an interval [v0, v1], based
on values µ̂(v0), µ̂(v1), µ̂′(v0) and µ̂′(v1).

a) The values µ̂(v0), µ̂(v1) and µ̂′(v0) define a unique quadratic
polynomial µ̂0(x) for v0 ≤ v ≤ v1. Derive an expression for this
quadratic polynomial. Similarly, derive the quadratic interpolant
µ̂1(x) based on µ̂(v0), µ̂(v1) and µ̂′(v1).

b) Show the cubic interpolant (12.4) can be expressed as

µ̂(x) = (1 − λ)µ̂0(x) + λµ̂1(x)

where λ = (x−v0)/(v1−v0) (this shouldn’t require much algebra;
just verify the boundary conditions).

12.4 The object of this exercise is to compare the accuracy of direct fitting
and the interpolated fits for local regression models. Use the loss
measure

d(µ̂, µ̂∗) =
n∑

i=1

|µ̂(xi) − µ̂∗(xi)|

where µ̂ is the direct fit (ev="data") and µ̂∗ is the interpolated fit.

a) For the ethanol dataset, compute the fit of Example 3.1, using
ev="data". Also compute the fit and discrepancy d(µ̂, µ̂∗), using
ev="tree" and a range of values of the cut parameter. Plot
d(µ̂, µ̂∗) against the number of fit points (in locfit, this can
be obtained as summary(fit)@nv). Repeat for other evaluation
structures, such as ev="grid" and ev="kdtree", and compare
the results.
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b) Repeat for fits from other examples in this book, such as the
bivariate Example 3.7 or the adaptive fit in Example 11.4.

12.5 Consider local log-linear density estimation in d dimensions, with
a spherically symmetric kernel. We need to evaluate the integral∫

W (‖x‖/h)A(x)A(x)T ea+bT xdx, with the integrals taken over Rd.

a) Using a canonical rotation and symmetry, express this integral
in terms of the four integrals

∫ 
1
x1
x2

1
x2

2


W (‖x‖/h)ea+‖b‖x1dx.

b) Expanding the exponentials in a Taylor series, reduce these inte-
grals to sums of positive terms, with terms like

∫
x2j

1 W (x/h)dx

and
∫

x2j
1 x2

2W (x/h)dx.

c) Let

Id(j1, . . . , jd) =
∫

Sd

|x1|j1 . . . |xd|jddSd

where Sd is the surface of the unit sphere in Rd. Show that∫
|x1|j1 . . . |xd|jdW

(‖x‖
h

)
dx1 . . . dxd

= Id(j1, . . . , jd)
∫ ∞

0
rj1+...+jd+d−1W

( r

h

)
dr.

d) Show that

Id(j1, . . . , jd)

=
Γ( jd+1

2 )Γ( j1+...+jd−1+d−1
2 )

Γ( j1+...+jd+d
2 )

Id−1(j1, . . . , jd−1)

= 2
Γ( j1+1

2 ) . . .Γ( jd+1
2 )

Γ( j1+...+jd+d
2 )

.

The beta integral,
∫ 1
0 xa−1(1 − x)b−1dx = Γ(a)Γ(b)/Γ(a + b),

may be assumed.



13
Optimizing Local Regression

Previous chapters have developed local regression and likelihood in many
settings and provided considerable intuitive motivation and examples to
support the methods. In this chapter, more formal results characterizing
the performance of local regression are reviewed and developed.

Section 13.1 studies rates of convergence for local regression and their
optimality properties. Section 13.2 studies optimal constants and efficiency
of the weight functions. Section 13.3 develops finite sample minimax prop-
erties of local regression. Section 13.4 studies design adaptation properties
of the minimax estimates and discusses some important points about model
indexing.

13.1 Optimal Rates of Convergence

The pioneering results for asymptotic optimality of local regression was
the series of papers by Stone (1977, 1980, 1982). These papers in turn
established consistency, optimality of pointwise rates of convergence and
optimality of global rates of convergence, and the results in this section
largely follow Stone’s work. Earlier results for density estimation can be
found in Farrell (1972).

When discussing optimality properties, one has to carefully consider what
is required. For example, it is meaningless to talk about a single estimation
problem. A perfectly legitimate estimate in the regression problem is to
ignore the data and take µ̂(x) to be an arbitrary function, say µ̂(x) =
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e−2x + x3. This estimate will beat any data-based estimate, if the true
mean function happens to be µ(x) = e−2x + x3. On the other hand, this
estimate will be poor if µ(x) happens to be anything else.

Thus a local regression estimate cannot be optimal in any sense, if we
consider the performance one function at a time. Rather, the simultaneous
performance of the estimate over a class of candidates for µ(x) must be
considered, for example, by requiring uniformity over the class. In this
chapter we consider classes of the form

FM,p,x =
{

µ : |µ(y) − 〈g, A(y − x)〉 | ≤ Mp+1

(p + 1)!
‖y − x‖p+1 ∀ y

}
(13.1)

where g is the vector of Taylor series coefficients of µ(x) up to order p. The
class FM,p,x is a superset of all (p +1) times differentiable functions whose
(p + 1)st derivative is bounded by M .

A sequence of estimates µ̂n(x) is said to have rate of convergence n−α;
µ̂n(x) − µ(x) = O(n−α) in probability, if

lim
c→∞ lim sup

n→∞
sup

µ∈FM,p

P (|µ̂n(x) − µ(x)| > cn−α) = 0. (13.2)

If nα(µ̂n(x) − µ(x)) has a limiting distribution,

nα(µ̂n(x) − µ(x)) ⇒ Z,

then limn→∞ P (|µ̂n(x) − µ(x)| > cn−α) = P (|Z| > c), and clearly (13.2)
holds. However, the definition (13.2) is weaker; roughly, it says the distri-
bution of nα(µ̂n(x) − µ(x)) must not drift off to ∞.

Example 13.1. For any local regression estimate µ̂n(x), Chebychev’s
inequality implies that

P (|µ̂n(x) − µ(x)| > cn−2/5)

≤ E
(
(µ̂n(x) − µ(x))2

)
c2n−4/5

=
n4/5var(µ̂n(x)) + n4/5bias(µ̂n(x))2

c2 . (13.3)

Now suppose x is one dimensional, µ̂n(x) is local linear regression and
the bandwidth is h = n−1/5. By (2.44) and (2.45), both the variance and
squared bias are of size n−4/5. In fact, the bias is uniform over the class
FM,1,x:

sup
µ∈FM,1,x

|E(µ̂n(x)) − µ(x)| ≤ M

2

n∑
i=1

|li(x)|(xi − x)2 = O(n−2/5).

This implies that the right-hand side of (13.3) has a finite limit, which
tends to 0 as c → ∞. Thus, µ̂n(x) − µ(x) = O(n−2/5) in probability.
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Generalizing this example to arbitrary dimension d and degree p leads
to the following result.

Theorem 13.1 Suppose µ(x) has bounded partial derivatives of order p+1
and the estimate µ̂n(x) is local regression of degree p with bandwidth hn =
n−1/(2p+2+d). Fix x with f(x) bounded away from 0 in a neighborhood of
x. Under the basic design assumption (2.36),

µ̂n(x) − µ(x) = O(n−α)

in probability, where

α =
p + 1

2p + 2 + d
. (13.4)

Theorem 13.1 derives the rate of convergence achieved by a local re-
gression estimate. It remains to show that this is the best possible rate of
convergence, as provided by the following definition.

Definition 13.1 The rate n−α is

• achievable if there exists a sequence of estimates µ̂n(x) for which
µ̂n(x) − µ(x) = O(n−α) in probability FM,p,x.

• a lower bound on the rate of convergence if no sequence of estimates
converges faster than n−α uniformly over FM,p,x. That is, no sequence
of estimates satisfies

lim sup
n→∞

sup
µ∈FM,p,x

P (|µ̂n(x) − µ(x)| > cn−α) = 0

for all c > 0.

• the optimal rate of convergence if it is both achievable and a
lower bound.

By Theorem 13.1, local regression of degree p achieves the rate of con-
vergence n−α with α = (p + 1)/(2p + 2 + d) over FM,p,x. The following
theorem shows that this rate is also a lower bound and therefore optimal.

Theorem 13.2 Consider the regression model (2.1) and suppose the errors
εi are independent with the N(0, 1) distribution. Let hn = n−1/(2p+2+d),
and suppose the design sequence satisfies the basic assumption (2.36) with
h = hn. Then n−α, with α given by (13.4), is the optimal rate of conver-
gence over the class FM,p.

Proof: For simplicity, suppose we are fitting at x = 0. The proof is for
d = 1 and p = 1; the general case is left as an exercise.
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Let µ0(x) = 0 for all x and choose µ1 ∈ FM,1,0 with µ1(u) = 0 for |u| > 1
and µ1(0) > 0. A satisfactory choice is

µ1(x) =
{

M
π2 (1 + cos(πx)) |x| ≤ 1
0 |x| > 1

.

For a sequence hn, define the scaled µ1,n(x) = h2
nµ1(x/hn). Note that

µ1,n ∈ FM,p for all n.
Consider the problem of testing the hypotheses

H0 : µ = µ0

vs. H1 : µ = µ1,n. (13.5)

Given a sequence of estimates µ̂n(x), one possible test statistic is µ̂n(0),
with the decision rule

δ(x) =
{

0 µ̂n(0) ≤ µ1,n(0)/2
1 µ̂n(0) > µ1,n(0)/2 . (13.6)

Clearly, if µ̂n(0) has convergence op(h2
n), then this test will be consistent;

that is, both error probabilities tend to 0.
Conversely, consider the sequence of likelihood ratio tests for these hy-

potheses. By the Neyman-Pearson lemma (Lehmann, 1986, Section 3.2)
these tests are most powerful. If the likelihood ratio tests cannot consis-
tently distinguish between the hypotheses (13.5), then no other test - in
particular, the test (13.6) - can consistently distinguish the hypotheses. In
this case, h2

n is a lower bound on the rate of convergence.
The log-likelihood ratio test for (13.5) rejects H0 for large values Λn,

where

2 log(Λn) =
n∑

i=1

Y 2
i −

n∑
i=1

(Yi − µ1,n(xi))2

= 2
n∑

i=1

µ1,n(xi)Yi −
n∑

i=1

µ1,n(xi)2.

Let Tn =
∑n

i=1 µ1,n(xi)2. Then 2 log(Λn) is normally distributed, with
mean −Tn under H0 and Tn under H1. The variance is

var (2 log(Λn)) = 4
n∑

i=1

µ1,n(xi)2 = 4Tn.

Clearly, for the test to consistently distinguish between the hypotheses
requires the standard deviation 2

√
Tn to be of smaller order of magnitude

than Tn; that is, Tn → ∞. But

Tn

nh5
n

=
1

nhn

n∑
i=1

µ1

(
xi

hn

)2

→ f(0)
∫

µ1(x)2dx.
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In particular, if hn = n−1/5, Tn remains finite and the hypotheses cannot
be consistently distinguished. Consequently, h2

n = n−2/5 is a lower bound
on the rate of convergence of µ̂(x). �

Stone (1982) also develops a theory for optimal global rates of conver-
gence. This considers Lq-norm loss functions:

(∫
|µ̂(x) − µ(x)|q

)1/q

, (13.7)

where the integral is taken over a compact set, typically the domain of the
data. The special case q = 2 corresponds to mean integrated squared error.
For 1 < q < ∞, the optimal rates match the pointwise rates (Theorem 13.1)
under some regularity conditions. As q → ∞, the loss (13.7) is essentially
the maximal deviation supx |µ̂(x)−µ(x)|. Under this loss, Stone shows the
optimal rate, achieved by local regression, is

sup
x

|µ̂(x) − µ(x)| = Op

((
log(n)

n

)α)
, (13.8)

which is slightly slower than the rates in Theorem 13.1. Konakov and Piter-
barg (1984) and Härdle and Luckhaus (1984) also discuss uniform conver-
gence of smooth regression estimates. The corresponding result for density
estimation is in Khas’minskii (1978).

Uniform convergence results such as (13.8) are relevant to several results
in this book. First, it provides lower bounds on the size of simultaneous
confidence bands (Section 9.2.2). Second, the classification error probabil-
ities in Section 8.5.2 require uniform convergence of the local likelihood
estimate. A more subtle application was in Exercise 6.5, where the consis-
tency of the change point estimates requires ∆̂t → 0 uniformly away from
the change point.

Other types of convergence results can also be considered. Katkovnik
(1983), Ioffe and Katkovnik (1989), Devroye, Györfi, Krzyzak and Lugosi
(1994) and others consider strong convergence, or convergence with proba-
bility 1, in various settings. Horváth (1991) and references therein provide
results on the asymptotic distribution of the Lq-norm for density estima-
tion.

13.2 Optimal Constants

Consider one dimensional local linear regression with unbounded support.
The asymptotic bias is

E(µ̂(x)) − µ(x) =
1
2
h2µ′′(x)

∫
v2W (v)dv∫
W (v)dv

+ o(h2) (13.9)
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and the asymptotic variance is

var(µ̂(x)) =
σ2

nhf(x)

∫
W (v)2

(
∫

W (v)dv)2
+ o((nh)−1). (13.10)

Suppose the weight function satisfies∫
W (v)dv = 1∫

v2W (v)dv = 1 (13.11)

(for non-negative weight functions, this can always be achieved by rescal-
ing). Let W0(v) = c(1 − v2/k2)+ with k2 = 15/4 and c = 3/(4k). Then
W0(v) is the version of the quadratic weight function rescaled to satisfy
(13.11).

Let W (v) be any other non-negative weight function satisfying (13.11);
this implies that the asymptotic biases (13.9) for W (v) and W0(v) are
equal. We have∫

W (v)W0(v)dv ≥ c

∫
W (v)(1 − x2/k2)dv = c(1 − 1/k2)

with equality when W = W0. In particular, this implies
∫

W0(v)(W (v) −
W0(v))dv ≥ 0. Thus,∫

W (v)2dv =
∫

(W0(v) + W (v) − W0(v))2dv

=
∫

W0(v)2dv +
∫

(W0(v) − W (v))2dv

+2
∫

W0(v)(W (v) − W0(v))dv

≥
∫

W0(v)2dv.

Thus, the quadratic weight function, appropriately scaled, is optimal in
the sense that any weight function producing the same asymptotic bias has
larger asymptotic variance. This result was originally due to Epanechnikov
(1969).

How good are other weight functions? From (13.9) and (13.10), the
asymptotic mean squared error is

ASE(h) =
h4µ′′(x)2

4
(
∫

v2W (v)dv)2

(
∫

W (v)dv)2
+

σ2

nhf(x)

∫
W (v)2dv

(
∫

W (v)dv)2
.

Minimizing over h, the ‘optimal’ bandwidth is

h5 =
σ2
∫

W (v)2dv

nf(x)µ′′(x)2(
∫

v2W (v)dv)2
(13.12)
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eff2(W ) eff4(W )
Epanechnikov 1.000 1.000

Tricube 0.998 0.997
Bisquare 0.994 0.994
Triweight 0.987 0.987
Triangle 0.986 0.990
Gaussian 0.951 0.932

Rectangular 0.930 0.959

TABLE 13.1. Asymptotic pointwise efficiencies of weight functions for local linear
and local cubic smoothing.

and the corresponding mean squared error is

min
h

ASE(h) =
5µ′′(x)2/5σ8/5

4n4/5f(x)4/5

(
∫

W (v)2dv)4/5(
∫

v2W (v)dv)2/5

(
∫

W (v)dv)2
.

For Epanechnikov’s weight function, the component dependent on W is

(
∫

W (v)2dv)4/5(
∫

v2W (v)dv)2/5

(
∫

W (v)dv)2
=
(

6√
125

)4/5

.

The efficiency of a weight function is defined as the ratio of sample sizes to
obtain the same asymptotic MSE as Epanechnikov’s weight function:

eff2(W ) =
6
(∫

W (v)dv
)5/2

√
125

(∫
v2W (v)dv

)1/2 ∫
W (v)2dv

.

Similar calculations can be performed for local cubic fitting. The mini-
mized asymptotic mean squared error is

9µ(4)(x)2/9σ16/9

8 · 721/9(nf(x))8/9

(∫
W ∗(v)2dv

)8/9 ∣∣∣∣
∫

v4W ∗(v)dv

∣∣∣∣
2/9

where W ∗(v) = eT
1 M−1

1 A(v)W (v) is the equivalent kernel (2.40). Epanech-
nikov’s kernel W (v) = (1−v2)I[0,1](v) is again optimal, and the asymptotic
efficiency of other weight functions is

eff4(W ) =
5

4 × 211/4

(∫
W ∗(v)2dv

)−1 ∣∣∣∣
∫

v4W ∗(v)dv

∣∣∣∣
−1/4

.

Table 13.1 summarizes the asymptotic efficiencies of weight functions
supported in locfit. The bisquare, tricube and triweight weight functions
are all very efficient, and their smoothness makes them preferable to the
Epanechnikov weights in practice. The rectangular and Gaussian weights
are slightly less efficient but are sometimes preferred for simplicity.
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13.3 Minimax Local Regression

Consider a linear estimate µ̂(x) =
∑n

i=1 li(x)Yi. Recalling the mean and
variance expressions (2.13), the mean squared error of the estimate is

R(l(x), µ) = σ2
n∑

i=1

li(x)2 +

(
n∑

i=1

li(x)µ(xi) − µ(x)

)2

.

What is the best possible weight diagram l(x)? This can’t be answered
directly, since it depends on the unknown µ(x). Rather, we have to consider
simultaneous performance over a class of possible mean functions. In this
section we find l(x) to solve the minimax problem:

min
{l(x)}

sup
µ∈FM,p,x

R(l(x), µ) (13.13)

where FM,p,x is defined by (13.1).
Similar results in related settings are given in Legostaeva and Shiryayev

(1971) and Sacks and Ylvisaker (1978, 1981). An asymptotic variant of the
results for local regression was studied in Fan (1993). Specifically, he showed
that the local linear smoother with Epanechnikov’s weight function is the
minimax linear estimate. This is much more powerful than the results of
the previous section; the previous results only showed that Epanechnikov’s
weight function was the optimal choice for the local linear estimate. For
other asymptotic minimax results in regression problems, see Brown and
Low (1991), Low (1993) and references therein.

The requirement that R(l(x), µ) be bounded over FM,p,x is equivalent to
the conditions

n∑
i=1

li(x)(xi − x)j =
{

1 j = 0
0 1 ≤ j ≤ p

. (13.14)

Henderson’s theorem (Theorem 2.1) then implies the minimax smoother is
a local polynomial fit of degree p, provided the condition on sign changes
is satisfied.

By considering the mean function

µ(xi) =
M

(p + 1)!
‖xi − x‖p+1sgn(li(x)),

we can reduce (13.13) to min{l(x)} Rsup(l(x)), where

Rsup(l(x)) = σ2
n∑

i=1

li(x)2 +
M2

(p + 1)!2

(
n∑

i=1

|li(x)|‖xi − x‖p+1

)2

. (13.15)
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The minimum is now taken over all weight diagrams satisfying the con-
straints (13.14). The following theorem shows the solution has the form

lα,γ
i (x) = (〈α, A(xi − x)〉 − γ‖xi − x‖p+1)+

−(〈α, A(xi − x)〉 + γ‖xi − x‖p+1)− (13.16)

for an appropriate vector α and constant γ.

Theorem 13.3 For any γ, choose α = α(γ) so that {lα,γ
i (x)} satisfies

(13.14). Suppose also, there exists a γ such that

γ =
M2

σ2(p + 1)!2

n∑
i=1

|lα,γ
i (x)|‖xi − x‖p+1. (13.17)

Then lα,γ
i (x) is the minimax optimal weight diagram.

Remark. Clearly γ ≥ 0; this implies that for any xi, at most one of the
components on the right of (13.16) is nonzero. If 〈α, A(xi − x)〉 > 0, then
lα,γ
i (x) ≥ 0. If 〈α, A(xi − x)〉 < 0, then lα,γ

i (x) ≤ 0. Thus, {lα,γ
i (x)} has sign

changes corresponding to the zeros of 〈α, A(u − x)〉, and by Henderson’s
theorem, {lα,γ

i (x)} is a local polynomial estimate of degree p. Explicitly,
the non-negative weights are

wi(x) =
(

1 − γ
‖xi − x‖p+1

| 〈α, A(xi − x)〉 |
)

+
.

Example 13.2. Suppose xi = i/n; i = . . . ,−1, 0, 1, . . . and x = 0 (the
doubly infinite sequence avoids boundary effects). Consider the case p = 1
and α = (α0, α1). By symmetry, α1 = 0, and

lα,γ
i (x) = (α0 − γx2

i )+ = α0(1 − γ

α0

i2

n2 )+.

That is, the minimax weight diagram is Epanechnikov’s weight function,
with bandwidth h =

√
α0/γ. Since

n∑
i=1

x2
i li(x) ≈ nα0

∫ h

−h

x2(1 − (x/h)2)dx =
4
15

nα0h
3

and γ = α0/h2, (13.17) is approximately

α0

h2 =
M2

4σ2

4
15

nα0h
3,

giving

h5 =
15σ2

nM2 .
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This replicates the optimal bandwidth (13.12), with µ′′(x) = M , f(x) = 1
and W (v) = (1 − v2)+.

Proof: The proof we give here is based on Lagrange multipliers, although
the reader may object to this since (13.15) is not differentiable. An alter-
native longer proof involves substituting the claimed solution into (13.15)
and showing that this is a minimum.

Consider the quantity

1
2σ2 Rsup(l(x)) −

〈
α,

n∑
i=1

li(x)A(xi − x)

〉
;

α is the vector of Lagrange multipliers. Differentiating with respect to lj(x)
yields the equation

lj(x) + γ · sgn(lj(x))‖xj − x‖p+1 − 〈α, A(xj − x)〉 = 0

with γ defined by 13.17. This gives

lj(x) =
{ 〈α, A(xj − x)〉 − γ‖xi − x‖p+1 if +ve

〈α, A(xj − x)〉 + γ‖xi − x‖p+1 if −ve

with α chosen to satisfy the constraints (13.14). �

13.3.1 Implementation
The minimax weight diagrams are found numerically. The implementation
has two steps:

1. For any γ, find α(γ) so that {lα,γ
i (x)} satisfies (13.14).

2. Find the γ satisfying (13.17).

The constraints (13.14) can be written in the form

e1 + γ
∑

lα,γ
i

(x) 	=0

sgn(lα,γ
i (x))|xi − x|p+1 =

∑
lα,γ
i

(x) 	=0

A(xi − x)A(xi − x)T α.

This is not a linear system of equations, since the domain of the sums
depend on α. But it provides the basis for an iterative algorithm: From an
initial α, evaluate the sums, solve for α, and iterate to convergence. In fact,
this is the Newton-Raphson algorithm for minimizing the convex function

L(α) =
1
2

n∑
i=1

lα,γ
i (x)2 − α0.

The minimax weights are implemented in locfit, using kern="minmax".
Of course, M/σ is usually unknown and needs to be specified. But this
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can be treated as a smoothing parameter, and cross validation and other
diagnostics can help choose this.

The minimax weights are useful in small samples with nonuniform de-
signs. In these cases, both constant and nearest neighbor bandwidths often
have problems with sparse neighborhoods, and produce unsatisfactory fits.
Locally adaptive bandwidths, such as those considered in Chapter 11, will
also be unsatisfactory, since there is insufficient data for the local criteria
to work well.

Example 13.3. The mmsamp datset is generated with n = 50, xi ∼ U [0, 1]
and

Yi = 2 − 5xi + 5 exp(−(20xi − 10)2) + εi

with εi ∼ N(0, 1). The mean function is essentially linear, with a sharp
peak at x = 0.5. This model was considered by Seifert and Gasser (1996)
with smaller error variance.

The maximum (absolute) second derivative is M = 4000. The minimax
fit is computed by setting kern="minmax":

> fit1 <- locfit(y˜x, data=mmsamp, deg=1, kern="minmax",
+ alpha=4000, ev="grid", mg=100, flim=c(0,1))

With mimimax weights, alpha is interpreted as M/σ, rather than as a near-
est neighbor bandwidth. For comparison, the fit with constant bandwidth
h = 0.05 is also computed:

> fit2 <- locfit(y˜x, data=mmsamp, deg=1, alpha=c(0,0.05),
+ ev="grid", mg=100, flim=c(0,1))

The bandwidth was chosen to match the fitted degrees of freedom; both
fits produce ν2 = 19.

The fits in Figure 13.1 are clearly a mess. This isn’t surprising, since
extremely small bandwidths are being used to model the peak. But the fit
with constant h is quite unreasonable, with several spurious sharp peaks.
The problem is that in some regions, the constant bandwidth is essentially
a linear extrapolant from nearby points. The design adaptation of the min-
imax weights nicely solves the problem.

Remark. One might try to smooth the mmsamp dataset with the locally
adaptive bandwidth rules of Chapter 11, since with knowledge of the true
mean, the bandwidths should clearly be much larger near the boundaries.
But this is unlikely to be successful: If the adaptive rule is sensitive enough
to detect the true peak (represented by a single observation), then other
clusters of observations may be falsely detected.
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FIGURE 13.1. Smoothing a dataset with sparse data regions and small band-
widths.

13.4 Design Adaptation and Model Indexing

The success of the minimax methods in the previous section centers around
the use of the smoothness class FM,p,x and then allowing the minimax
optimality criterion to dictate the choice of smoothing weights. The ratio
M/σ plays the role of the smoothing parameter: Changing M/σ controls
the bias-variance trade-off and the roughness of the resulting estimate. The
ratio can be interpreted as a signal-to-noise ratio. M represents a bound
on the signal, as measured by the (p+1)st derivative, and σ represents the
noise.

The minimax method leads to the rather obscure form of the smoothing
weights. The computation can be tricky when M/σ is large and the result-
ing fit should be close to interpolation. But this is precisely the case for
which design adaptation provided by the minimax method should be most
useful.

An alternative is to solve a restricted version of the minimax problem,
where (13.15) is minimized over a smaller class of weight diagrams. For
example, consider only the weight diagrams resulting from standard local
regression weighting schemes, and choose the resulting variable bandwidth
h = h(x) to minimize the risk function Rsup(l(x)). We refer to the result-
ing estimate as M-indexed local regression. Like nearest neighbor and con-
stant bandwidth methods, the M-indexed method is linear: The smoothing
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weights depend on the design points xi and the bandwidth h, but not on
the responses Yi.

The M-indexed estimate can be implemented along the lines of the lo-
cally adaptive bandwidth algorithm in Section 11.2: Begin with a small
bandwidth and increase until the minimum risk is found. This is imple-
mented in locfit by setting the adaptive criterion acri="mindex". The
third component of the smoothing parameter alpha is then interpreted as
M/σ.

To illustrate the performance of this method, we present a simulation
study of the model from Example 13.3.

Example 13.4. 1000 datasets are generated from the model used in
example 13.3 (using a new set of design points xi for each dataset). For each
dataset, local linear smooths are computed by the minimax, M-indexed
and constant h methods. The smooths are evaluated at 101 points, equally
spaced on [0, 1], and the sum of squared errors is computed. The sum of
squared errors is then averaged over the 1000 replications. Thus, the final
loss is

1
1000

1000∑
i=1

100∑
j=0

(µ̂(vj) − µ(vj))2

with vj = j/100. The loss is computed for various values of the smoothing
parameters M and h.

Figure 13.2 shows the results. The correspondence h5 = 1.36608/M2 is
used, motivated by (2.46) with µ′′(x) replaced by M . The minimax and
M-indexed methods produce almost identical results, indicating that there
is very little loss in using M-indexing in place of the minimax method. The
results with constant h are vastly inferior. Note also that the best mean
squared errors are obtained at M = 500, whereas sup |µ′′(x)| = 4000.

It should be noted that both the M-indexed and constant h curves in
Figure 13.2 are computed with the same estimates: Local linear estimates
with the tricube weight function. What changes is how the estimates are
averaged. For the M-indexed method, estimates are averaged with the same
assumption about the true mean function.

By contrast, under the constant h method, fits are being averaged with
completely different assumptions and amounts of smoothing: An interval
(x − h(x), x + h(x)) may contain no observations for some realizations and
several observations for other realizations. The results indicate the severe
problem of the constant bandwidth specification rather than problems with
local regression as Seifert and Gasser (1996) attempted to argue.

Gu (1998) has extensively discussed model averaging, and in particu-
lar emphasized the point that averaging must be with respect to an as-
sumption about the smoothness of the underlying function rather than the
smoothing parameter. But Gu specified smoothness assumptions in the
form

∫
f ′′(x)2 < λ and obtained smoothing splines as the optimal solution.
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FIGURE 13.2. Average sum of squared errors for constant bandwidths, minimax
bandwidths and minimax local regression.

The importance of using finite sample variances and risk, rather than
asymptotic approximations, must also be emphasized. The asymptotic min-
imax arguments (Fan 1993 and Example 13.2) yield, for a uniform design,
a constant bandwidth estimator. But for the problem in Example 13.4, the
asymptotic theory is clearly inadequate.

13.5 Exercises

13.1 Suppose we have observations (xi, Yi); i = 1, . . . , n with the sequence
{xi} and bandwidth h satisfying the basic assumption (2.36). Suppose
also E(Yi|xi) = µ(xi) and var(Yi|xi) = σ2(xi); both µ( · ) and σ2( · )
are continuous functions. Let Sn =

∑n
i=1 K(xi−x

h )Yi. Show that

E(Sn/nh) = µ(x)f(x)
∫

K(v)dv + o(1)

var(Sn/nh) =
f(x)σ2(x)

nh

∫
K(v)2dv + o((nh)−1)

and hence Sn/(nh) converges in probability to f(v)µ(x)
∫

K(v)dv.
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13.2 Complete the proof of Theorem 13.2 for general p and d.

13.3 Consider local regression at a point x. Suppose the design density
satisfies f(u) ∼ (u − x)α as u → x, with α fixed.

a) Under the condition nhα+1
n → ∞, provide a modification of the

basic assumption (2.36).
b) Derive first order asymptotic approximations to the bias and

variance; show these are of size O(hp+1
n ) and O(1/(nhα+1

n )) re-
spectively. Hence derive the optimal size of hn and obtain the
best possible rate of convergence achieved by the local polyno-
mial estimate.

c) Show this rate is optimal for all estimates.

13.4 (Double smoothing, continued)

a) For the double smooth in Exercise 2.5, the weight diagram is,
for large h, approximately W ∗(i/h) where

W ∗(x) =




1
2 + |x|

4 |x| ≤ 1
− 1

2 + |x|
4 1 < |x| < 2

0 elsewhere

.

Show W ∗(x) is a fourth order kernel (
∫

v2W ∗(v) = 0 ), and the
asymptotic efficiency of this weight function is 0.775.

b) Some authors recommend different bandwidths h1 and h2 at the
two stages of the double smooth. Show the weight diagram for
this double smooth is approximately

W ∗(x) = Wh1(x) + Wh2(x) − (Wh1 ∗ Wh2)(x).

Assuming W (x) is a symmetric second order kernel, show W ∗(x)
is a fourth order kernel.

c) Taking h1 = 1, h2 = h and W (u) = exp(−u2/2)/
√

2π, evaluate
the asymptotic efficiency as a function of h. Show that the max-
imum efficiency, 0.918, is attained at h = 1 and the efficiency
tends to 0 as h → 0 or h → ∞.

d) Using a symbolic algebra package such as Maple, perform similar
computations for the compactly supported weight functions.

13.5 For the mmsamp dataset used in Examples 13.3 and 13.4, compute
and plot the minimax and M-indexed local linear fits for values of
M ranging from 100 to 4000. Plot the fits, and compute the sum of
squared errors over an equally spaced grid. Repeat for constant and
nearest neighbor bandwidths over a comparable range of smoothing
parameters, and compare the results.
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Appendix A
Installing locfit in R, S and S-Plus

The locfit S interface was developed in version 4 of S (Chambers 1998).
The software is also compatible with versions of S-Plus that support, as a
minimum, the level of S functionality described in Becker, Chambers and
Wilks (1988) and Chambers and Hastie (1992). locfit has been success-
fully used with S-Plus versions 3.3, 3.4, 4.0 and 5.0. Users of S-Plus 4.5
will need the professional version; the standard version lacks the standard
S programming interface, and locfit will be difficult or impossible to use
in this environment.

The free R package (Ihaka and Gentleman 1996) is also largely compat-
ible with (although developed independently of) S version 3. locfit has
been successfully compiled and run with R version 0.63.

This appendix describes installation for various environments: S-Plus 3.3
and 4.0 for Windows (Section A.1); S-Plus 3.3 and 3.4 for UNIX (Section
A.2); S-Plus 5.0 for UNIX (Section A.3) and R 0.63 (Section A.4).

The locfit software can be obtained from the World-Wide Web at the
address

http://cm.bell-labs.com/stat/project/locfit

A.1 Installation, S-Plus for Windows

1. Download the self-extracting zip file for S-Plus 3.3 or S-Plus 4.0 as
appropriate. Save to your Temp directory.
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2. Determine your SHOME folder. The default is C:\spluswin for S-Plus
3.3 and C:\program files\splus4 for S-Plus 4.0.

3. Run the self-extracting zip file. Extract to SHOME\library\locfit.

4. (Optional) Add the line

locfit Local Regression and likelihood

to the file SHOME\library\readme.txt.

locfit is now ready to run. Start an S-Plus session, and type

> library("locfit",first=T)

to attach the locfit library.

A.2 Installation, S-Plus 3, UNIX

Installation in S-Plus 3.3 and 3.4 requires compiling the C code and using
dyn.load.shared(), dyn.load() or dyn.load2(), depending on what is
supported on your system. As distributed, the installation files are set up
to make a shared library, for use with dyn.load.shared().

1. Save the locfit.shar file in a new locfit directory (if you are a site
administrator, use $SHOME/library/locfit). Unpack the file with

% sh locfit.shar

2. If your SHOME is not /usr/splus (type Splus SHOME to be sure), you
need to change SHOME at the top of Makefile.S3.

3. Install with the command

% sh install.S3

4. On some systems, the shared library file may be called locfit.sl,
rather than locfit.so. In this case, you’ll need to change locfit’s
.First.lib() function. In S-Plus:

> .First.lib() <- function(library, section)
+ dyn.load.shared(paste(library, section,
+ "locfit.sl", sep = "/"))

5. (For site administrators) Add the line

locfit Local Regression and Likelihood
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to the file /usr/splus/library/README.

6. locfit should now be ready to use. Start S-Plus (in another direc-
tory) and attach the library with

> library("locfit",first=T,lib.loc=getenv("HOME"))

Note the lib.loc argument should be the parent of your locfit
directory; this can be omitted if you followed the site administrator
installation.

7. (Optional; check locfit is working first.) Remove the source files.
On your locfit installation directory, remove everything except the
locfit.so file and the .Data subdirectory and contents.

For systems that don’t support shared libraries, but support dyn.load()
or dyn.load2(), edit Makefile.S3 and change the WHICH_LOAD lines to

# WHICH_LOAD=static.load
WHICH_LOAD=dyn.load
# WHICH_LOAD=dyn.load.shared

Then run the install.S3 script. This will build the object file locfit_l.o.
Run S-Plus, and change the .First.lib() function to

> .First.lib() <- function(library, section)
+ dyn.load(paste(library, section, "locfit_l.o", sep = "/"))

A.3 Installation, S-Plus 5.0

S-Plus 5.0 is based on S version 4; some advanced features of locfit require
these versions of S and S-Plus to operate correctly. At the time of writing,
the routines for installing libraries in S-Plus 5.0 are unreliable; see the
locfit web page for any updates.

1. Unpack the locfit source archive in a clean directory. If possible,
use $SHOME/library/locfit.

2. Ensure the SHOME environment variable is properly set.

3. Run the install.S5 script:

% sh install.S5

This should make some subdirectories, and compile the necessary
source files.

4. Start S-Plus, and source the S files:
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> source("locfit.s")
> source("locfitdat.s")
> source("locfit4.s")
> rm(.First.lib)

locfit should now be ready to use. From another directory, the library is
attached with

> library("locfit",first=T)

with a lib.loc argument if necessary.

A.4 Installing in R

R is a free statistical programming language, available from the Compre-
hensive R Archive Network (CRAN) archive,

http://lib.stat.cmu.edu/R/CRAN
The R langauge is very similar to S version 3, and most features of locfit
will work with R. The installation instructions here are designed for UNIX
systems. For Windows users, compiled versions of the locfit library are
usually available from CRAN.

To install the locfit library in R 0.63:

1. Download the locfitR.tar.gz file. Save in a convenient place, such
as $RHOME/src/library.

2. Unpack and install with:

% gunzip locfitR.tar.gz
% tar -xvf locfitR.tar
% R INSTALL locfit

To access locfit from R:

% R
> library("locfit")
> data(ethanol)
> fit <- locfit(NOx˜E,data=ethanol)
> plot(fit,get.data=T)

locfit in R is largely compatible with S version 3. The major exception
(as of R version 0.63) is the lack of a Trellis library for displaying fits in
three of more dimensions. Datasets must be explicitly loaded before use;
data(ethanol) in the above example.



Appendix B
Additional Features: locfit in S

This appendix describes a number of features of locfit in S that haven’t
been described elsewhere in this book. Section B.1 covers the predict()
and preplot() functions. Section B.2.2 discusses iterative procedures using
locfit. Section B.3 covers arithmetic operators for "locfit" objects and
other uses of S version 4 classes and methods. Section B.4 discusses some
ways to interface between locfit and trellis displays.

B.1 Prediction

As described in Chapter 12, locfit selects a small number of points at
which to compute the local fit. Two functions, predict.locfit() and
preplot.locfit(), are used to interpolate the fit to additional points.
The difference:

• predict.locfit() returns a vector of the interpolated values.

• preplot.locfit() returns an object with the "preplot.locfit"
class, which contains the interpolated values and some additional in-
formation.

As its name suggests, preplot.locfit() is a preliminary step for plot-
ting a "locfit" object; plot.locfit() simply sets up a grid of prediction
points, calls preplot.locfit() and plots the resulting "preplot.locfit"
object. In fact, plot(fit) is largely equivalent to plot(preplot(fit)).
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The arguments to preplot.locfit() and predict.locfit() are simi-
lar. The two most important arguments are the object and newdata. The
newdata can be specified in several forms. A vector of points may be pro-
vided for a one dimensional fit or matrix of points for a multidimensional
fit. Alternatively, a data frame can be provided; the names must match the
variables used in the original fit. A list can also be provided as newdata:
In this case, prediction is performed on a grid, with the components of the
list representing the grid margins. If no newdata is provided, prediction is
at the fit points.

An alternative to newdata is where, a character string controlling gener-
ation of a set of prediction points. Allowed values include where="grid" (a
grid generated by the lfmarg() function), where="data" (the data points)
and where="fitp" (the selected fitting points).

Other arguments for predict.locfit() and preplot.locfit() include

• what= controls what is predicted: "coef" (the function values, de-
fault), "infl" (the influence function), "nlx" (‖l(x)‖), "band" (the
bandwidth) and "deg" (the local polynomial degree).

• band= Computes standard errors and confidence bands for the fit.
Available choices are "none" (the default), "global", "local" and
"prediction".

• tr a back-transformation function. The default is the inverse of the
link function, so the prediction will be for the mean function for
regression models or the density for density estimation.

• get.data= If TRUE, the data will be stored on the result. This is most
useful for plotting, since the data points are then added to the plot.

B.2 Calling locfit()

There are many instances where one needs to write functions that call
locfit() and do some additional processing before returning required re-
sults. Examples include gcv() and other model assessment functions in Sec-
tion 3.4.2. We may also want to write functions that iterate through several
calls to locfit(), for example, the locfit.robust() function mentioned
in Section 6.4. This section discusses implementation of such functions.

B.2.1 Extracting from a Fit
A first attempt to implement the gcv() function may be

gcv <- function(...)
{ fit <- locfit(...)
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n <- fit@mi["n"]
df <- fit@dp["df1"]
-2 * n * fit@dp["lk"]/(n-df)ˆ2

}

This will work, but problems arise with the approach. The L1 cross vali-
dation function (Exercise 3.3) needs a call to residuals(); modifying the
preceding code to this case will not work properly.

A more robust approach is to construct a call to the locfit() function.
The precise implementation of gcv() is

gcv <- function(x,...)
{
m <- match.call()
if(is.numeric(x))
m[[1]] <- as.name("locfit.raw")

else {
m[[1]] <- as.name("locfit")
names(m)[2] <- "formula"

}
fit <- eval(m, sys.parent())
dp <- fit@dp
z <- dp[c("lk", "df1", "df2")]
n <- fit@mi["n"]
z <- c(z, (-2 * n * z[1])/(n - z[2])ˆ2)
names(z) <- c("lik", "infl", "vari", "aic")
z

}

The match.call() line simply returns a list containing all the arguments
provided to the gcv() function. This is converted into either a locfit()
or locfit.raw() call, depending on the type of the first argument. The fit
is evaluated by

eval(m, sys.parent())

and the returned object is the standard locfit() object from which the
desired information can be extracted.

B.2.2 Iterative Use of locfit()
In a number of applications, we want to call locfit() repeatedly to arrive
at a single fit, changing some of the variables (for example, the response
or prior weights) at each iteration. One such example is the lowess style
robustness iterations described in Section 6.4, where prior weights must be
determined at each iteration based on residuals from the previous fit. An-
other example is the censored regression model from Section 7.2, where the
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response must be updated at each iteration, estimating the mean residual
life from the previous fit. A third example is the quasi-likelihood procedure
(Section 4.3.4) for observations with unequal variances.

These problems can be solved by performing the iterations locally for
each fitting point. locfit also provides functions to do the iterations glob-
ally: locfit.robust() for robust regression, locfit.censor() for cen-
sored regression and locfit.quasi() for quasi-likelihood. This approach
allows more control over the procedure: for example, to change the weight-
ing scheme for robust regression or to change the mean residual life estimate
for censored regression.

How are these functions written? One could write a loop to call either
locfit() or locfit.raw(); the second is easier and avoids repeated inter-
pretation of the model formula (an expensive operation). Let’s look at the
locfit.quasi() function:

> locfit.quasi <-
function(x, y, weights, ..., iter = 3,
var = function(mean) abs(mean))

{
m <- match.call()
n <- length(y)
w0 <- lfq.wt <- if(missing(weights)) rep(1, n) else weights
m[[1]] <- as.name("locfit.raw")
for(i in 0:iter) {
m$weights <- lfq.wt
fit <- eval(m, sys.parent())
fh <- fitted(fit)
lfq.wt <- w0/var(fh)

}
fit

}

This function accepts the same arguments as locfit.raw(). At each iter-
ation, it computes the weights lfq.wt and substitutes these in the call to
locfit.raw(). There are two additional arguments: iter to set the num-
ber of iterations and var to specify the variance function (expect trouble,
if this can return negative numbers!).

Remark. The locfit.quasi() function actually has additional code not
shown above, so it can be called with a model formula. The implemen-
tation in this case is to recall locfit(), setting the lfproc argument to
locfit.quasi().
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B.3 Arithmetic Operators and Math Functions

In version 4 S, arithmetic operators such as +, comparison operators such
as < and mathematical functions such as log() are all generic functions:
Methods can be defined so that these functions can operate on non-numeric
data. For a complete description of these capabilities, see Chapter 8 of
Chambers (1998).

The "Math" group of functions contains log() and other common func-
tions. A method is provided for the "preplot.locfit" class:

> setMethod("Math", signature(x="preplot.locfit"), lfm)

where the method lfm() is defined as

> lfm <- function(x)
{ fit = x@trans(x@fit)
x@fit = callGeneric(as.numeric(fit))
x@trans = function(x) x
x

}

Thus,

> fit1 <- locfit(NOx˜E, data=ethanol, alpha=0.5)
> pred <- log(preplot(fit1, lfmarg(fit1)))
> plot(pred)

will plot the log of the fitted curve.
Suppose we write a new math function, expit() to compute the function

ex/(1 + ex). This must be written in a stable form to avoid unnecessary
overflow:

> expit <- function(x)
{ y <- numeric(length(x))
y[x>0] <- 1/(1+exp(-x[x>0]))
z <- exp(x[x<=0])
y[x<=0] <- z/(1+z)
y

}

As written, this function will only work for numeric data. To ensure it works
for "preplot.locfit" objects (and any other classes for which "Math"
methods are defined), use the command

> setGeneric("expit",group="Math")

The use of "Math" functions has a couple of deficiencies that should
be noted. First, no attempt is made to preserve standard errors for the
transformed values. Second, if the data is stored on the "preplot.locfit"
object, this will not be transformed.
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Methods are also defined for the operator group "Ops", which includes
both arithmetic and comparison operators. These differ from "Math" func-
tions in that two operands are required and either one or both of these may
be "preplot.locfit" objects. For example, suppose we want to average
two different fits:

> fit1 <- locfit(NOx˜E,data=ethanol,alpha=0.5)
> fit2 <- locfit(NOx˜E,data=ethanol,alpha=0.7)
> newx <- lfmarg(fit1)
> pred1 <- preplot(fit1,newx)
> pred2 <- preplot(fit2,newx)
> plot((pred1+pred2)/2)

Here, we compute fits on the ethanol dataset with two different bandwidths,
make predictions on a grid of points and average the two predictions.

A limited number of arithmetic operators are also available to operate
directly on a "locfit" object, as summarized in Table B.1. For likelihood
models, note these methods are implemented directly on the estimation
scale, unlike the operators for "preplot.locfit" objects.

e1 e2 Operators
"locfit" "locfit" +,-
"locfit" "numeric" +,-,*,/
"numeric" "locfit" +,-,*

TABLE B.1. Operators available for "locfit" objects.

B.4 Trellis Tricks

In several examples, we have used trellis displays, where each panel contains
a smooth of the same dataset, but with different smoothing parameters.
Directly producing these using xyplot() is difficult, since one would have
to replicate the original data frame an appropriate number of times, then
add additional level variables.

A shortcut is to set up dummy variables to set up the Trellis display, and
get the real data inside the panel function. Thus, the real code producing
Figure 2.3 is

> a <- c(0.2,0.4,0.6,0.8)
> anames <- paste("a =",a)
> xyplot(a˜I(a)|as.factor(anames)),
+ xlim=range(ethanol$E), ylim=range(ethanol$NOx),
+ panel = function(x, ...)
+ { xd <- ethanol$E
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+ yd <- ethanol$NOx
+ fit <- locfit.raw(xd, yd, alpha=x)
+ panel.xyplot(xd, yd, cex = 0.7)
+ lines(fit)
+ },
+ strip=strip.loc, ylab="NOx",
+ xlab = "Equivalence Ratio")

The vector a contains the four smoothing parameters and is used in the
model formula. Thus, when Trellis calls the panel function, the x argument
will be the smoothing parameter. Thus, the panel function must first get
the real data (xd and yd) and call locfit.raw() using alpha=x as the
smoothing parameter.
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Appendix C
c-locfit

The examples in this book have included the S code for implementation
with locfit. It is also possible to run locfit as a stand-alone program,
known as as c-locfit.

C.1 Installation

C.1.1 Windows 95, 98 and NT
You should have the self-extracting zip file. Run this file (if it didn’t run
automatically when downloading); the contents should be extracted to a
C:\locfit folder. The locfit executable is C:\locfit\locfit.exe; the ex-
ample datasets should be automatically installed in the LFData subfolder.

C.1.2 UNIX
You should have the locfit source archive. Unpack this file in a new
locfit directory. Before compiling, the correct version must be defined in
the local.h file. Edit this file, so the first few lines are

#define CVERSION
/* #define RVERSION */
/* #define SVERSION */
/* #define INTERFACE */

Then at the UNIX prompt, type
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% make locfit

Remark. To compile c-locfit without code for the X Window System,
edit the Makefile and replace the line

COBJ= main.o cmd.o lfd.o pout.o arith.o

by

COBJ= mainnox.o cmd.o lfd.o pout.o arith.o

Also, set LDFLAGS=-lm. The default graphics will then be ASCII style.
Assuming compilation was successful, install the example datasets:

% locfit
locfit> run install.cmd
locfit> exit

To make c-locfit accessible to multiple users, move the locfit.sh
script to /usr/local/bin/locfit. You’ll need to edit the LFHOME variable
in that script.

C.2 Using c-locfit

To start c-locfit, type

% locfit

at the UNIX prompt (Windows users should click the locfit icon in the
installation directory). You should obtain the prompt

locfit>

A large number of commands are available; some are described in the re-
mainder of this appendix. The easiest way to explore the capabilities is the
example command:

locfit> example
Example 3.1. Local Regression with plot
Example 3.3. Local Regression; print results
Example 3.4. Residual plots for Local Regression
...

With no arguments, example just prints one-line descriptions of the avail-
able examples. The numbers match the example numbers in this book. To
obtain the code for an example, simply give the example number:

locfit> example 3.1

Example 3.1. Local Regression with plot
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locfit NOx˜E data=ethanol alpha=0.5
plotfit data=T

The arguments to c-locfit’s locfit function are in direct correspondence
to the S version arguments. To actually run the example, type

locfit> example 3.1 run

C.2.1 Data in c-locfit
In its simplest use, c-locfit is a calculator:

locfit> 3*4+6
18.00000

Results can also be assigned to variables:

locfit> c1=3*4+6
locfit> c1
18.00000

Creating and assigning vectors is easy:

locfit> x=seq(0,1,5) y=10*sqrt(x)+rnorm(5)
locfit> x y
0.00000 -0.06061
0.25000 6.43409
0.50000 7.75524
0.75000 10.47189
1.00000 10.37475

This creates five equally spaced points on [0,1] for the independent (x)
variable and a response vector as yi = 10

√
xi + εi with εi standard normal

noise.
The readfile command reads data from a file:

locfit> ethanol=readfile file=ethanol.dat NOx C E

This reads the file ethanol.dat (the file= can be omitted, as long as the
filename is given as the first argument), creating three variables: NOx, C
and E. The dataset is saved (in a binary format) as a c-locfit dataset, in
the file LFData/ethanol.lfd. One could also achieve this in two separate
commands:

locfit> readfile file=ethanol.dat NOx C E
locfit> ethanol=savedata NOx C E

Another optional argument to readfile is arith. If arith=T, then each
item in the input file is parsed by c-locfit’s arithmetic interpreter before
being assigned to the data matrix. If the input file is numeric, this has



254 Appendix C. c-locfit

little effect other than to slow things down slightly. One use of the arith
argument is processing categorical input:

locfit> versicolor=0 virginica=1
locfit> iris=readfile iris.dat arith=T spec sl sw pl pw

Here, the input file contains a categorical variable, spec, that can’t be
handled by c-locfit. By first assigning numeric values to the two species
and then specifying arith=T, the species variable will be created with 0-1
values.

In addition to user-defined variables, a number of predefined constants
point to components of the fit: alpha, h, pen (the three components of the
smoothing parameter), like (the likelihood at the fitted values), infl, vari
(fitted degrees of freedom by the tr(L) and tr(LT L) definitions) and resv
(estimate of the residual variance). These constants can also be assigned
to, although should only be done with extreme care. More usefully, these
constants can be used in computations:

locfit> locfit NOx˜E data=ethanol alpha=0.7
locfit> alpha vari 88*(-2*like)/(88-infl)ˆ2

0.7 4.76494 0.151757

Here, a local quadratic model is fitted to the ethanol dataset. Then, the
smoothing parameter, fitted degrees of freedom and the generalized cross
validation statistic are printed.

Recognized components of arithmetic expressions include:

• Floating point numbers.

• Parenthesized expressions such as 4*(3+5).

• Arithmetic operators +,-,*,/ and ˆ. Precedence of *,/ over +,- is
recognized; the ˆ (exponentation) operator has top precedence.

• Comparisons <,>,<=,>=,== and <>.

• The , operator for catenation. Lists of numbers in a function argu-
ment must be parenthesized. For example, min(1,2) will interpret 1
and 2 as two separate arguments and produce an error message. The
correct call is min((1,2)).

• Subsets. For example, x[3,5,2] will return the third, fifth and second
elements of x.

• Common mathematical functions such as sin() and sqrt(), and
summary functions including min(), max(), sum() and mean().

• Random number generators: rexp(), rnorm(), runif(), rpois()
for exponential, normal, uniform and Poisson random variables. All
expect the sample size as the first argument; rpois is given the mean
as the second argument.
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• sample(x,n) draws random sample of size n (with replacement) from
x.

C.3 Fitting with c-locfit

The main purpose of c-locfit is local fitting, using the locfit command.
The simplest use is

locfit> readdata ethanol
locfit> locfit NOx˜E

where the first argument NOx˜E specifies a model formula. The model for-
mula is similar to that in the S version: NOx˜E+C specifies a model with
two predictors; ˜E specifies a density estimation model with no response.
One difference is that variables cannot be created in the formula. Thus
log(NOx)˜E is not valid; instead, use

locfit> readdata ethanol
locfit> NOx=log(NOx)
locfit> locfit logNOx˜E

The relocfit command is used to recompute a fit with new parameters:

locfit> readdata ethanol
locfit> locfit NOx˜E alpha=0.6 deg=1
locfit> plotfit data=T
locfit> # try smaller value of alpha
locfit> relocfit alpha=0.3
locfit> plotfit data=T

The locfit command has numerous optional arguments, mostly in one-
to-one correspondence with the same arguments in the S version. See the
online examples for usage.

Fits can be saved in a binary format. The commands are savefit and
readfit, to save and read the fit respectively. For example,

locfit> readdata ethanol
locfit> locfit NOx˜E alpha=0.5
locfit> savefit ethanol

creates a file LFPlot/ethanol.fit. savefit can also be accomplished by
assigning the locfit command:

locfit> ethanol=locfit NOx˜E alpha=0.5 data=ethanol
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C.4 Prediction

c-locfit includes predict, fitted and residuals commands that are
similar to the S version methods. Thus

locfit> readdata ethanol
locfit> locfit NOx˜E alpha=0.5
Evaluation structure 1, 8 points.
locfit> predict E=0.6,0.8,1.0
0.600000 0.723941
0.800000 2.754441
1.000000 3.118365

interpolates the fit to the three points 0.6, 0.8 and 1.0. Alternatively,

locfit> predict where=data
0.907000 3.745299
0.761000 2.244242
1.108000 1.418052

...

gives fitted values at the data points. There is also the what argument that
is similar to the S version (Section B.1). For example, what=nlx interpolates
‖l(x)‖. The fitted and residuals commands produce fitted values and
residuals respectively; these have optional type and cv arguments.

C.5 Some additional commands

The following commands can also be used:

outf filename a Sets output file for results, default is standard output.
Important output is sent to this file, while working output, such as
the prompt and error messages, are still be sent to terminal. If the
a is specified, output will be appended to the file. The default is to
overwrite.

run file.cmd Read commands from the command file file.cmd.

for i=1:10 A for loop, repeats following commands ten times. The loop
is terminated by a endfor command. Any numeric variable can be
used as the loop variable; for x=rnorm(100) is legitimate, and x
loops through 100 standard normal variables.

seed -(ThcjK2 Set the seed for the random number generator. A string
of eight characters should be used.

exit exits locfit.
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Plots from c-locfit

c-locfit plots are produced using the plotdata and plotfit commands.
By default, plots are produced in a c-locfit plot window. If the fmt=post
argument is given, a PostScript file, lfplot.ps, is generated:

locfit> locfit NOx˜E data=ethanol
locfit> # plot the fit on the screen.
locfit> plotfit
locfit> # generate a PostScript file
locfit> plotfit fmt=post

Two more advanced plot commands are setplot and track. setplot is
used to automatically generate a plot when a model is fitted. For example,

locfit> setplot 0 plotfit

will automatically plot the fit using the plotfit command every time a
fit is generated (this command is included in the default LFInit.cmd file,
which is executed at startup). track is used to accumulate a set of points -
for example, a goodness of fit statistic - over successive calls of the locfit
command.

Under the X Window System, a plot will be damaged when you move
or resize graphics windows. Pressing return should result in a redraw. If
it doesn’t, force a redraw with the replot command:

locfit> replot win=0

replot can also change some graphical parameters, including plot styles
and the viewpoint for three dimensional plots.
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D.1 The plotdata Command

The plotdata command produces scatter plots of the data:

locfit> readdata ethanol
locfit> plotdata E NOx
locfit> plotdata x=E y=C z=NOx

In c-locfit, all plots are set up with three axes (x, y and z). Two dimen-
sional plots are simply produced by setting the viewing angle so that one
axis is not visible.

The first plotdata command above produces an x−y scatter plot of the
E and NOx variables. The second plotdata produces a three dimensional
scatterplot. The view point can be set with the argument view=a1,a2
with longitude a1 and latitude a2. view=0,0 views from the North pole,
displaying the x-y plane. The default (when x, y and z arguments are all
provided) is view=45,45.

An optional type= argument controls the style of the plot:

locfit> readdata ethanol
locfit> plotdata E NOx type=p
locfit> plotdata E NOx type=l
locfit> plotdata E NOx type=b
locfit> plotdata E NOx C type=q view=0,0

The first three types, p, l and b stand for points, lines and both, respec-
tively. type=q color codes points according to a greyscale, colored according
to levels of the z variable (C in this example).

A c-locfit plot can be built of several components, each with its own
x, y and z variables. To add a component to an existing plot, use add=T:

locfit> readdata ethanol
locfit> plotdata E NOx
locfit> locfit NOx˜E
locfit> fit=fitted
locfit> plotdata E fit add=T type=s

This first plots the data. Then fitted values from a local regression fit are
computed and added to the plot. type=s results in segements joining the
new component (the fit) with the previous component (the data).

D.2 The plotfit Command

The plotfit command is used to plot fits. Its arguments largely correspond
to the S version plot.locfit() function.

Example D.1. A local quadratic fit is computed and plotted:
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FIGURE D.1. Plotting a fit, with data and error bars.

locfit> locfit NOx˜E data=ethanol alpha=0.5
locfit> plotfit band=l data=T type=lnsp fmt=post w=112 h=75

This requests that both confidence intervals (band=l) and data (data=T)
be added to the plot. Thus the plot consists of four components: the
fit, the lower confidence limits, the upper confidence limits and the data.
type=lnsp specifies plot styles for the four components: lines, none, seg-
ments (joining upper and lower limits) and points. Figure D.1 shows the
result. Note that fmt=post w=112 h=75 specifies a PostScript file with di-
mensions 112 × 75 millemetres.

Important: Fits are plotted in the x-z plane, rather than the x-y plane.
Thus, adding data to the plot separately:

locfit> plotfit
locfit> plotdata E NOx add=T

will not produce the desired result. Instead, use

locfit> plotfit
locfit> plotdata E z=NOx add=T

For fits with two predictor variables, the default plot type is a contour
plot. Plot types supported for two dimensional predictors are

locfit> plotfit type=c Contour Plot
locfit> plotfit type=w Wire Frame
locfit> plotfit type=i Colored level plot
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FIGURE D.2. c-locfit plot of a two dimensional density

Example D.2. The trimodal dataset from Figure 5.4 is fitted with a
bandwidth 0.35:

locfit> locfit ˜x0+x1 alpha=0.35 data=trimod
locfit> plotfit type=w

The wireframe plot is shown in Figure D.2.

Confidence bands can be added to the two predictor plots, but the result
will usually be messy. The most satisfactory results may be obtained with
type=wns on a low resolution plot:

locfit> plotfit band=g type=wns m=20

Generally, confidence intervals are better viewed through one dimensional
cross sections.

Fit surfaces with three or more predictors can’t be directly plotted, but
one or two dimensional cross sections can be. For example,

locfit> x1=runif(100) x2=runif(100) x3=runif(100)
locfit> locfit ˜x1+x2+x3
locfit> plotfit x2=0

produces a contour plot of the fit in x1 and x3, with x2 fixed at 0.
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D.3 Other Plot Options

A number of other options for controlling features such as labels and colors
are available. These can be given as arguments to plotfit, plotdata or
replot commands:

• win=3. c-locfit supports up to five graphics windows, numbered 0,
1, 2, 3 and 4. The win= argument controls which window is used.

• add=T causes the plot to be added to an existing plot.

• split=3,4,5 For contour plots, the split argument is used to specify
contour levels.

• xlim, ylim and zlim specify ranges for the axis. Note, when using
plotfit these do not affect the domain over which the plot is com-
puted. Thus

locfit> locfit NOx˜E data=ethanol
locfit> plotfit E=0.75,1

would be more desirable than

locfit> plotfit xlim=0.75,1

• xlab, ylab, zlab and main give labels for the x, y and z axis, and
a main title. Note spaces cannot be used in these arguments, but
underscores ( ) will be converted to spaces.

Colors. Colors available in locfit are white, black, red, green, blue,
magenta, yellow and cyan. There is also a greyscale used in image plots;
the colors used in the greyscale can be set using

locfit> greyscale red blue

to set the greyscale running from red to blue (ideally, this should be set in
the LFInit.cmd file). To change colors used for other components of the
plot, use the setcolor command:

locfit> setcolor back=black fore=red text=green

will set the background color to black, the foreground color to red, and
the text color to green. Available arguments to setcolor are back (back-
ground), fore (everything else except patch2), axis, text, lines, points,
cont (contours), clab (contour labels), seg (segments), patch1 and patch2
(used in wireframe plots).
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adaptive smoothing, 110, 195
design adaptation, 234
ICI method, see intersection of

confidence intervals
local likelihood, 199–200, 207
local variable bandwidth, 201
local variable degree, 200

additive model, 12, 53, 107
AIC plots, 186
aicplot() AIC plot function, 70, 93
Akaike information criterion (AIC),

69, 183
density estimation, 92
local generalized, 200

ang() angular model term, 107, 109
angular data

predictors, 105
responses, 65

arithmetic operators, 247–248
asymptotic

bias, 40, 224
degrees of freedom, 40
density estimate, 98
equivalent kernel, 40
influence function, 39
local likelihood estimate, 75
mean squared error, 41, 228

normality, 42
variance, 39, 224

ATS method, 71
Australian Institute of Sport dataset,

189

backfitting algorithm, 10, 54, 107
bandwidth, 7, 16, 20–22

asymptotically optimal, 42
constant, 20, 235
nearest neighbor, 20, 47
optimal, 180, 228

bandwidth selection, 10, 177–194
apriori assumptions, 178, 191
classical methods, 178
plug-in, 179
uncertainty, 33, 177, 178, 186,

190, 192
bandwidth selection, see model se-

lection
batting dataset, 131, 133, 137
bias, 20, 40

density estimation, 82
local likelihood, 76
local regression, 37, 224
of density estimate, 98

bias correction, 11
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bias estimation, 103, 168
bias-variance trade-off, 7, 14, 20, 26,

186
biased cross validation, see cross val-

idation, biased
BIC, 179
boundary bias, 22
boundary effect, vi, 29
boundary kernels, 11
boundary problem, 3

canonical link, 61
carbon dioxide dataset, 105, 109, 116
censored local likelihood, see local

likelihood estimation, cen-
sored

censored regression, 124–129, 246
censoring, 119
change point estimation, 110, 117
chemical and overt diabetes dataset,

148
circular data, see angular data
classification, 139

density estimation, 144
error rate

global, 154
pointwise, 140, 153

logistic regression, 142, 149
model selection, 145
multiple classes, 148
nearest neighbor, 156
optimal, 140

claw density, 186
c-locfit, 45, 251
Clough-Tocher method, 217
Comprehensive R Archive Network

(CRAN), 242
computational model, 48, 209
conditionally parametric models, 55
confidence intervals, 29, 46, 167

likelihood models, 171
CP, 31, 37, 51

local, 196
local generalized, 197, 204

CP plot, 32
cp(), 51
cpar() conditionally parametric term,

57
cpplot(), 51

cross validation, 30, 35, 49
biased, 182, 189
classification, 145
density estimation, 90
generalized, 31, 50, 58, 201
L1, 44, 57
least squares, 92, 100, 183, 185,

188, 189
likelihood, 183
local, 198, 200
local generalized, 198
local likelihood, 68, 78

cross validation plot, 32, 50, 94

degree of local polynomial, see local
polynomial, degree

degrees of freedom, 27–29, 40
computing, 218
density estimation, 92
for variance estimate, 161
local, 197
local likelihood, 69, 75
residual, 37

density estimation, 79–100
computational issues, 219
consistency, 99
discrete data, 82–83, 85, 94
kernel, 81

high order, 81–82, 84
local likelihood, 80
local log-linear, 98
multivariate, 86
probability contours, 87

derivative estimation, 101, 116, 180,
194

design matrix, 33, 197
deviance, 66, 166, 200
diabetes dataset, 57
diagnostics

density estimation, 87
local likelihood, 66
local regression, 24, 49

discriminant analysis, 139–141
density estimation, 143–144
logistic regression, 142–143

Dopler dataset, 204, 206
double smoothing, 43, 237

empirical distribution function, 88
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equivalent kernel, 40
estimation error, 31
ethanol dataset, 17, 21, 22, 25, 32,

49, 51, 200
evaluation structures, 211–218

adaptive tree, 212, 217
cross validation, 50, 217
k-d tree, 212, 217
triangulation, 217

example c-locfit command, 45, 252
exponential family, 61

failure times, 119
fitted c-locfit command, 256
fitted.locfit()

cv cross validated fit, 148
fixed design, see regular design
forecasting, 110, 117

gam() generalized additive model, 54
gam.lf() locfit additive model fit,

54
gcv(), 50, 245
gcvplot(), 50
generalized linear models, 59
geometric distribution, 65, 130
goodness of fit tests, 165

F ratio, 165
maximal deviation, 172
power, 166, 175

graduation, 2
greyscale c-locfit command, 261

hat matrix, 28, 175
hazard rate, 120

estimation, 120–124
heart transplant dataset, 122, 128,

134, 172
Henderson’s ideal formula, 9, 10, 14
Henderson’s theorem, 34, 230

local slopes, 102
Higham’s Rule, 13
histogram, 79

influence function, 27–29, 36
computing, 218
density estimation, 92
local likelihood, 69, 75

intensity function, 82

interpolation, 24
cubic, 215
linear, 215

intersection of confidence intervals,
199, 206

iris dataset, 145

k-d tree, 212
kangaroo skull dataset, 150
Kaplan-Meier estimate, 127
kappa0() confidence band critical val-

ues, 173
kdeb() kernel density bandwidth se-

lectors, 185
kernel density estimation, see den-

sity estimation, kernel
kernel methods, 11
kernel regression, see local constant

regression

lcv(), 51
lcvplot(), 51, 93
least squares, 2
left(x) left one-sided smooth, 111
leverage, 28
lf() locfit additive model term,

54
lfmarg() generate grid from locfit

object, 244
linear estimation, 11, 27, 33–38
lines.locfit() superimpose fit on

plot, 112
link function, 61, 81
liver metastases dataset, 124
local constant

density estimate, 80
hazard rate estimate, 121
regression, 17

local likelihood equations, 72
density estimation, 80, 96
solving, 209

local likelihood estimation, 59
asymptotic representation, 75,

97
Bernoulli family, 77
binomial (logistic) family, 60, 63,

64, 172
censored, 129–135
consistency, 74
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definition, 60
derivatives, 104
existence and uniqueness, 73, 77,

96
gamma family, 65, 163
geometric family, 65, 130
hazard rate, 121, 124, 137
Poisson family, 62, 64, 77, 83
von Mises family, 65
Weibull family, 134, 173

local linear regression, 18
local polynomial, 1, 7, 16, 19

degree, 22–23, 47
local regression, 11, 15

definition, 16
fitting criterion, 24
interpretation, 18
multivariate, 19, 51
univariate, 15–18
with locfit, 46

local slope estimate, 102
locfit, vi, 45

installation, vi, 239, 251
WWW page, vi, 239

locfit(), 46
acri adaptive criterion, 203, 206,

235
alpha smoothing parameters, 46,

201, 203
cens censoring indicator, 122,

131
cut tree refinement parameter,

218
data data frame, 46
deg degree of local polynomial,

47, 200
deriv derivative, 104
ev evaluation structure, 217
family local likelihood family,

62, 71, 83, 122
flim fitting limits, 84, 217
formula model formula, 46, 51,

57, 107, 111
itype integration method, 219
kern weight function, 47, 232
lfproc processing function, 246
link link function, 84
maxk maximum tree size, 218
mg grid size, 218

renorm renormalize density, 89,
93

scale scale variables, 53, 107,
109

subset subset dataset, 112, 117
weights prior weights, 63
xlim dataset bounds, 112, 123,

124
locfit c-locfit fitting command,

255
locfit.censor(), 128, 246
locfit.quasi(), 246
locfit.raw(), 46
locfit.robust(), 115, 246
loess, 19, 55, 209
logistic regression, 60
lowess, 11, 113

M-estimation, 113
M-indexed local regression, 235
Mauna Loa dataset, see carbon diox-

ide dataset
mean residual life, 126, 127, 136
mean squared error, 41, 230

integrated, 180
prediction, 30
prediction error, 117

mine dataset, 62, 69, 166
minimax local regression, 230–233,

235
model indexing, 235
model selection, 30

classification, 145
local, see adaptive smoothing

model selection, see Akaike informa-
tion criterion, CP and cross
validation

mortality dataset (Henderson and Shep-
pard), 63, 67, 76

mortality dataset (Spencer), 1, 118
motorcycle acceleration dataset, 202
motorcycle dataset, 163, 174
moving average, 2, 5, 12

Nadaraya-Watson estimate, see lo-
cal constant regression

nearest neighbor, see bandwidth, near-
est neighbor
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negative binomial distribution, 65,
132

neural networks, 12
Newton-Raphson method, 210
Neyman-Pearson test, 226

Old Faithful geyser dataset, 84, 90,
94, 104, 116, 180, 183, 194,
207

one-sided smoothing, 110
optimal weights, 8, 228
overdispersion, 70, 132

P-P plot, 89
partial linear model, 55
penalized likelihood, 59
penny thickness dataset, 111
periodic smoothing, 106
periodogram, see spectral density
plot.locfit(), 46, 243

band add confidence intervals,
46, 173

get.data add data to plot, 46,
84

pv panel variable, 53
tv trellis variable, 53

plotdata c-locfit command, 258,
261

plotfit c-locfit command, 258, 261
point process, 82
Poisson distribution, 137
Poisson process rate estimation, 82,

143
postage stamp data, 85, 100
power, see goodness of fit tests, power
predict c-locfit command, 256
predict.locfit(), 48, 142, 243
prediction, 243
prediction error, 30, 117
prediction intervals, 30
preplot.locfit(), 48, 243

band confidence bands, 244
get.data store data on predic-

tion object, 244
newdata prediction points, 244
object locfit object, 244
tr transformation, 244
what what to predict, 244
where to predict, 244

preplot.locfit class, 48, 243
product limit estimate, see Kaplan-

Meier estimate
projection pursuit, 12
proportional hazards model, 125, 134
pseudo-vertex, 214

Q-Q plot, 25, 89
quadratic forms, 160
quasi-likelihood, 71, 246

R, vi, 45, 242
R2, 159
random design, 38
rate of convergence, 223

local regression, 225
optimal, 225

readfile Read c-locfit data file,
253

readfit Read c-locfit fit, 255
regression trees, 12
regular design, 38
relocfit c-locfit command, 255
replot, 261
replot c-locfit command, 257, 261
residual plots, 25, 68, 90
residuals, 25–27, 49

density estimation, 88
deviance, 67
likelihood derivative, 67
local likelihood, 67–68
pearson, 67
response, 67

residuals c-locfit command, 256
residuals.locfit(), 49, 67

cv cross validated fit, 51
Rice’s formula, 169
Rice’s T statistic, 179
right(x) right one-sided smooth, 111
robust smoothing, 10, 113, 246
running medians, 110

S, vi, 45, 239
version 3

UNIX, 240
version 4, 241

Satterthwaite’s approximation, 161
savedata Read c-locfit data file,

253
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savefit Save c-locfit fit, 255
seed Seed c-locfit random number

generator, 256
setcolor c-locfit command, 261
setplot c-locfit command, 257
Sheather-Jones (SJPI) selector, 182,

186, 189
simultaneous confidence band, 167–

171
spectral density, 10
Spencer’s rule

15-point, 2
21-point, 3, 13

splines, 12, 235
S-Plus, vi, 45

version 3.3
UNIX, 240
windows, 239

version 3.4, 240
version 4, 239
version 4.5, 239
version 5, 241

summation formulae, 2
survival data, 119, 120

time series, 10
track c-locfit command, 257
transformation, 70

censored data, 126
Trellis display, 53, 248
trellis variable, 53
trimodal dataset, 86

UNIX, 240, 251
upcrossing methods, 169
urine crystal dataset, 157

variance, 20
of density estimate, 98
of local likelihood estimate, 75
of local M-estimate, 114
of local regression estimate, 28,

36, 39, 58
variance estimation, 30, 71, 159–162

censored data, 126, 137
local, 163, 174
robust, 115

variance reducing factor, 7, 9, 28
variance stabilizing link, 61, 171

varying coefficient model, 57
visualization, 53
volume-of-tubes formula, 170

wavelets, 12, 110
Weibull distribution, 133
weight diagram, 6, 27, 34, 75

local slopes, 102
minimax, 231

weight function, 16, 23–24, 47
asymptotic efficiency, 228–229
Epanechnikov, 48, 229, 230
product, 219
spherically symmetric, 20
tricube, 16, 48

Woolhouse’s rule, 13

X Window System, 252, 257
X-11 method, 10


