
GLM with a Gamma-distributed Dependent Variable.

1 Introduction

I started out to write about why the Gamma distribution in a GLM is useful.
I’ve found it difficult to find an example which proves that is true. If you fit a GLM with the correct

link and right-hand side functional form, then using the Normal (or Gaussian) distributed dependent vari-
able instead of a Gamma will probably not result in disaster.

However, I did find out something really important, something which is mentioned in Myers, Mont-
gomery, and Vining at several points, but I did not appreciate it until now:

The GLM really is different than OLS, even with a Normally distributed dependent variable,
when the link function g is not the identity.

Using OLS with “manually transformed” data leads to horribly wrong parameter estimates.
Let yi be the dependent variable with mean µi. OLS estimates:

E(g(yi)) = b0 + b1xi

but the GLM estimates
g{E(yi)} = b0 + b1xi

Suppose your link is the “natural log” g(µi) = ln(µi) or the“inverse” g(µi) = 1/µi. The OLS and GLM
estimates will differ for any nonlinear link function.:

ln(µi) = f(Xi, b) = b0 + b1/xi

or

1/µi = f(Xi, b) = b0 + b1/xi

then you estimate a Generalized Linear model with a Gamma distribution with

glm(y˜I(1/x),family=Gamma(link=”log”))

or

glm(y˜I(1/x),family=Gamma(link=”inverse”)).

If you mistakenly use a Normal, as in

glm(y˜I(1/x),family=gaussian(link=”log”))

or

glm(y˜I(1/x),family=gaussian(link=”inverse”))

then the estimated b’s from the Gamma and Normal models will probably be similar. If your dependent
variable is truly Gamma, the Gaussian is “wrong” on a variety of levels, but the predicted values are “about
right.”

However, if you think you can just transform the variables yourself and run this through an OLS pro-
gram, as in

lm(ln(y)˜I(1/x))

or

lm(I(1/y)˜I(1/x))
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then the parameter estimates will be far from the mark. That happens because you have not transformed
the expected values, but rather the observed values.

The only time that the GLM and OLS estimates line up is when the link function is the “identity”
function

glm(y˜I(1/x),family=Gamma(link=”identity”))

will be similar to the OLS estimates from

lm(y˜I(1/x))

What do I conclude from this? You can’t stay with your old friend OLS. You really must learn and under-
stand the GLM. My feeling then is similar to the comment attributed to NBA great Bill Russell: “They
scheduled the game. We have to play. We might as well win.” If you have to learn the GLM anyway, and
you use it, you might as well use the correct distribution while you are doing it.

2 Review the Gamma Handout

The Gamma handout is available in the Distributions folder of my web site.
To review briefly, let the shape parameter be αi and scale be βi. For the i’th case being considered,

we are acting as though there are individualized parameters for each case. It is annoying to keep all of this
indexed by i , but sometimes it pays off. The probability density of observing a particular value yi given
parameters αi and βi is

f(yi) =
1

βαi

i Γ(αi)
y
(αi−1)
i e−(yi/βi) yi,αi, βi > 0

and
E(yi) = αi ∗ βi

V ar(yi) = αi ∗ β2
i

Regression with the gamma model is going to use input variables Xi and coefficients to make a pre-
diction about the mean of yi, but in actuality we are really focused on the scale parameter βi. Generally,
we assume αi = α, αi is the same for all observations. Variation from case to case in µi = βiα is due
simply to variation in βi. The shape parameter is just a multiplier (which is equal to the inverse of the
“dispersion parameter” φ that is defined for all distributions that are members of the exponential family).

3 Note the linkage between mean and variance

The ratio of the mean to the variance is a constant–the same no matter how large or small the mean is.
As a result, when the expected value is small–near zero–the variance is small as well. Conversely, when the
expected value is larger, the observed scores are less predictable in absolute terms.

V ar(yi)

E(yi)
=

αiβ
2
i

αiβi
= βi

If your Gamma variable has an expected value of 100, the variance has to be 100 · βi. Strange, but
true.

The so-called coefficient of variation, which is used in introductory statistics as a summary of variabil-
ity, is the ratio of standard deviation to mean. It is also a constant

CV =

√

V ar(yi)

E(yi)
=

√

αi · β2
i

αiβi
=

√
αiβi

αiβi
=

1√
αi

If your Gamma variable’s expected value is 100, the standard deviation is 100/
√

αi.
It seems odd (surprising, interesting, possibly mistaken) to me that the ratio V ar/E depends on βi

but the ratio of StdDev/E depends on αi.
The relationship between mean and variance here is different than some other distributions because it

is “adjustable”. In contrast, the Poisson or Negative Binomial distributions have no such tuning parameter.
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4 Gamma as a member of the Exponential Family

In order to treat this as the basis for a Generalized Linear Model, you act as though αis a known fea-
ture, the same for all observations. So we don’t need to write subscripts on α. Then we treat βi–the scale
parameter–as the parameter of interest. That is what we are trying to predict.

Recall the exponential family has this form, exp[(yi · θi − c(θi))/φ + h(yi, φ). Rearrange the density for
the Gamma as follows:

exp{−yi/βi + (α − 1)ln(yi) − ln[βalpha
i ] − ln[Γ(α)]}

exp{−yi/βi + (α − 1)ln(yi) − αln[βi] − ln[Γ(α)]}

exp{−yi/βi − αln[βi] + (α − 1)ln(yi) − ln[Γ(α)]}
Now a sneaky math guy trick appears. “Guess” that the natural parameter is

θi = − 1

αβi

Consequently,
−1

βi
= θiα

and

βi = − 1

θiα

Using those findings in the previous expression,

exp{αyiθi − αln(− 1

θiα
) − αln(α) + (α − 1)ln(yi) − ln[Γ(α)]}

exp{αyiθi − αln(− α

θiα
) + (α − 1)ln(yi) − ln[Γ(α)]}

exp{αyiθi − αln(− 1

θi
) + (α − 1)ln(yi) − ln[Γ(α)]}

exp{α(yiθi − ln(− 1

θi
)) + (α − 1)ln(yi) − ln[Γ(α)]}

That was quite a lot of work to find out that α = 1/φ and that c(θi) = ln(−1/θi). But if we re-
arrange just one more time, we find the Gamma in the form of the exponential density.

exp{yiθi − ln(−1/θi)

φ
+ (

1 − φ

φ
)ln(yi) − ln[Γ(φ−1)]}

Then you can use the GLM Facts described on my GLM handout #1.
GLM Fact #1 states that µi = dc(θi)/dθi, and so that implies the Gamma’s µi is

dc(θi)

dθi
=

dln(−1/θi)

dθi
= −dln(θi)

dθi
= − 1

θi
= αiβi

GLM Fact #2 states that V (µi) = d2c(θi)/dθ2
i , and so, in this case,

V (µi) =
d

dθ2
i

(−1/θ) =
1

θ2
i

= µ2 = (αβi)
2
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These findings are internally consistent with what we know already (or can check in textbooks).
Recall from the GLM notes that the observed variance of yi has two components: .

V ar(yi) = φiV (µi)

For the Gamma, we already know that E(yi) = µi = α ∗ β and V ar(yi) = α ∗ β2. The variance function
is V (µi) = µ2

i = α2 ∗ β2, and the dispersion parameter φi must be equal to the reciprocal of the shape
parameter 1/α. You can easily verify that all of these separate pieces work together in a logical way:

V ar(yi) = φiV (µ) = φi · a2β2

= αβ2 where φi =
1

α

Keep in mind, then, that when the GLM routine estimates dispersion–φ–it is estimating the reciprocal
of the shape parameter.

5 The Reciprocal is the Canonical Link

The canonical link for the GLM with a Gamma-distributed dependent variable is the reciprocal, 1/µi.
That means that the expected value of your observed yi, (E(yi) = µi), is related to your input variables
as, for example,

1

µi
= b0 + b1x1i

Which obviously implies

µi =
1

b0 + b1x1i

Plot that! In Figure 1, you see there is some serious potential for funny business with this function.
There is funny business because:

� It is not always positive

� It has vertical asymptotes

6 Why would you want a Gamma-distributed dependent vari-

able?

This is a difficult question. Theoretically, the Gamma should be the right choice when the dependent vari-
able is real-valued on a range from 0 to ∞. And the Gamma is suitable when you suspect the linkage be-
tween mean and variance is “fixed”. If you expect a small value of yi, you should also expect only a small
amount of variability in observed values. Conversely, if you expect a huge value of yi, you should expect a
lot of variability.

However, after some testing, I have developed some doubts about the need to change from a model
based on the Normal distribution to a model based on the Gamma. The Gamma may be “theoretically
right” but there are several cases in which the old “theoretically wrong” Normal OLS model seems to do
about as well.

This is especially true if the Gamma parameters are tuned so that the distribution is symmetrical, but
even when it is pretty badly skewed, I find the OLS predictions are as good.

However, I find some cases where using the GLM with a Gamma distribution has a dramatic impact.
The differences hinge on the functional form being investigated.

So I’ve prepared some vignettes.
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Figure 2: Gamma Dependent Variable µi = 1 + 65/xi,shape=1.5
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7 Identity link, reciprocal on the right hand side: µi = bo + b1/xi

Some simulated data is presented in Figure2. The line represents the “true” value of µi, the expected value
of the dependent variable.

7.1 GLM fit for the Reciprocal Model

The Generalized Linear Model can be fit with the “identity” link with these commands.

> agam <- glm(yobs ~ I(1/xseq), family = Gamma(link = "identity"),

+ control = glm.control(maxit = 100), start = c(1, 65))

> library(MASS)

> myshape <- gamma.shape(agam)

> gampred <- predict(agam, type = "response", se = T, dispersion = 1/myshape$alpha)

(Side note about estimating dispersion: This uses the MASS library’s function gamma.shape to calcu-
late a more precise estimate of the gamma distribution’s shape parameter, which is equal to the reciprocal
of the GLM’s dispersion α = 1/φ. This is useful because the estimate of the dispersion offered by the de-
fault GLM summary command does not take into account the special information about the dispersion
that can be calculated by using the Gamma distribution. Not all GLMs have a model-specific, enhanced
way to estimate dispersion.)

> summary(agam, dispersion = 1/myshape$alpha)

Call:

glm(formula = yobs ~ I(1/xseq), family = Gamma(link = "identity"),

start = c(1, 65), control = glm.control(maxit = 100))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5702 -0.8164 -0.2555 0.3364 2.5154

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.7738 0.4524 1.71 0.0872 .

I(1/xseq) 67.7209 5.4534 12.42 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for Gamma family taken to be 0.6757266)

Null deviance: 786.66 on 799 degrees of freedom

Residual deviance: 599.11 on 798 degrees of freedom

AIC: 4756

Number of Fisher Scoring iterations: 3

7.2 Linear Model Fit with the Normal Distribution

Suppose you make the mistaken assumption that this data is Normally distributed. The default settings of
the glm estimator in R lead to estimates for a Normally distributed dependent variable with the identity
link.

> lmmod <- glm(yobs ~ I(1/xseq))

> lmpred <- predict(lmmod, se = T)
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We have asked predict for the standard errors because they are useful for plots shown below.

> summary(lmmod)

Call:

glm(formula = yobs ~ I(1/xseq))

Deviance Residuals:

Min 1Q Median 3Q Max

-21.467 -3.929 -1.500 2.537 49.790

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3723 0.5212 0.714 0.475

I(1/xseq) 71.6044 4.0309 17.764 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for gaussian family taken to be 55.12723)

Null deviance: 61387 on 799 degrees of freedom

Residual deviance: 43992 on 798 degrees of freedom

AIC: 5482

Number of Fisher Scoring iterations: 2

Please note that you get the same parameter estimate if you put the same relationship through the
ordinarly least squares regression procedure, lm.

> lmmod1a <- lm(yobs ~ I(1/xseq))

> summary(lmmod1a)

Call:

lm(formula = yobs ~ I(1/xseq))

Residuals:

Min 1Q Median 3Q Max

-21.467 -3.929 -1.500 2.537 49.790

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3723 0.5212 0.714 0.475

I(1/xseq) 71.6044 4.0309 17.764 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 7.425 on 798 degrees of freedom

Multiple R-Squared: 0.2834, Adjusted R-squared: 0.2825

F-statistic: 315.6 on 1 and 798 DF, p-value: < 2.2e-16

7.3 Is the Normal Model “Just as Good”?

No, of course it isn’t. It is the wrong model. But if you mistakenly used OLS, would you make a major
mistake? In this test case, the answer is no.
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1. The parameter estimates from the two models are “about the same.”

Gamma GLM : µ̂i = 0.77 + 67.72/xi

Normal GLM : µ̂i = 0.37 + 71.60/xi

2. Consequently, the predicted values from the two models are “about the same.”

Consider the plotted lines in Figure 3. It is difficult to distinguish the two lines representing the pre-
dicted values. I had a hard time believing that the two lines could actually be so close to one an-
other, so I printed out the first 10 observations of the two models:

> cbind(glmGamma = gampred$fit[1:10], glmNormal = lmpred$fit[1:10])

glmGamma glmNormal

1 23.34747 24.24043

2 23.18850 24.07235

3 23.03175 23.90661

4 22.87719 23.74318

5 22.72475 23.58200

6 22.57440 23.42303

7 22.42610 23.26622

8 22.27980 23.11154

9 22.13546 22.95892

10 21.99305 22.80835

The plotted estimates of the means, along with the “confidence intervals” , are illustrated in Figure
4.

3. If you (mistakenly) choose models by T statistics, you will be wrong.

It upsets me when students say one model is “more significant” to mean that a model has coefficients
with bigger t values. In this case, the t value for the coefficient of 1/xi in the Normal model is 17.76,
while the comparable value from the Gamma fit is 12.42. That does not mean the Normal model is
better, for many reasons. The fact is that these tests assume you have chosen the correct model and
then estimate on the variability of the b̂ based on your specification. They do not constitute a way to
choose between two models.

4. The Deviance is different: Gamma looks significantly better.

The residual deviance of the Gamma fit is 599.11 on 798 degrees of freedom, and the Akaike Infor-
mation Criterion is 4765. The residual deviance of the Normal model is 43992 on 798 degrees of free-
dom, and the AIC is 5482. The model with the smaller AIC is preferred.

8 Reciprocal link, reciprocal on the right hand side: µi = xi/(b1 +
b0xi)

R documents refer to this as a Michaelson-Morley model, but it has other names because it has been found
in many fields. You theorize that:

µi =
xi

b1 + b0xi

Note: the numbering of the coeffients is not mistaken.
Rewrite and you should see why the reciprocal link (the canonical link) makes sense:

1

µi
=

b1 + b0xi

xi

9



Figure 3: Fitted Models for Gamma Dependent Variable
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Figure 4: Predicted Values from glm with Gamma and Gaussian Distributions

> par(mfcol = c(2, 1))

> plot(xseq, gampred$fit, type = "l", xlab = "x", ylab = "y", main = "Gamma, link=identity")

> lines(xseq, gampred$fit + 2 * gampred$se, lty = 2, col = "green")

> lines(xseq, gampred$fit - 2 * gampred$se, lty = 2, col = "green")

> plot(xseq, lmpred$fit, type = "l", xlab = "x", ylab = "y", main = "Gaussian, link=identity")

> lines(xseq, lmpred$fit + 2 * lmpred$se, lty = 2, col = "green")

> lines(xseq, lmpred$fit - 2 * lmpred$se, lty = 2, col = "green")
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1

µi
= b0 + b1

1

xi

Write it like this and it should remind you of a logistic regression.

µi =
1

b0 + b1(1/xi)

One should graph that. For xi = 0, this is undefined (just as Gamma density is undefined). For very
small values of xi, say 0.001, you can see the expected value is a very small number. As xi gets bigger and
bigger, the expected value tends to 1/b0.

Variants of this are known in ecology, biochemistry, and physics. In R, one finds it discussed as the
Michaelson-Morley model.

A hypothetical example of Gamma distributed data with µi = xi/(3 + 0.25xi) with the Gamma shape
parameter equal to 1.5 is presented in Figure 5.

8.1 GLM fit with a Gamma Variable and Log Link

If one algebraically re-arranged the model as

1

µi
= b0 + b1

1

xi

then one would have to transform the input variable in the regression model, but the glm procedure
will handle the transformation of the left hand side. One should write the glm formula as

y ~ I(1/x)

but specify the link as the “inverse”, so that the mean of yi, µi, is transformed.
The glm procedure to fit a Gamma distributed dependent variable of this sort is:

> agam2 <- glm(yobs2 ~ I(1/xseq), family = Gamma(link = "inverse"),

+ control = glm.control(maxit = 100), start = c(2, 4))

> library(MASS)

> myshape2 <- gamma.shape(agam2)

> gampred2 <- predict(agam2, type = "response", se = T, dispersion = 1/myshape2$alpha)

This uses the MASS library’s gamma.shape method to get a better estimate of the dispersion param-
eter, which is then used in making predictions and also in preparing the summary output. The estimate of
the dispersion coefficient affects the standard errors, but not the estimates of the b’s.

> summary(agam2, dispersion = 1/myshape2$alpha)

Call:

glm(formula = yobs2 ~ I(1/xseq), family = Gamma(link = "inverse"),

start = c(2, 4), control = glm.control(maxit = 100))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5708 -0.8150 -0.2532 0.3325 2.5156

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.26736 0.03352 7.976 1.51e-15 ***

I(1/xseq) 2.80621 0.34735 8.079 6.54e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
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Figure 5: Gamma Dependent Variable µi = xi/(3 + 0.25xi)
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(Dispersion parameter for Gamma family taken to be 0.6756965)

Null deviance: 654.43 on 799 degrees of freedom

Residual deviance: 599.09 on 798 degrees of freedom

AIC: 2479.4

Number of Fisher Scoring iterations: 7

8.2 What if you used OLS?

You can translate this into a form that looks like an ordinary regression model: just “tack on an error
term” (recall OLS: expected value of 0, constant variance):

1

yi
= b0 + b1

1

xi
+ ei

and create transformed variables 1/yi and 1/xi and estimate this with OLS. How gauche.

> lmmod2 <- lm(I(1/yobs2) ~ I(1/xseq))

> lmpred2 <- predict(lmmod2, se = T)

There are a number of reasons why you should not do that. It violates the usual OLS assumptions. It
assumes the mismatch between the expected and observed is of a very peculiar sort, E(ei) = 0 and con-
stant variance.

The most important reason why you should not fit these parameters with OLS is that the resulting
parameter estimates are grossly wrong.

> summary(lmmod2)

Call:

lm(formula = I(1/yobs2) ~ I(1/xseq))

Residuals:

Min 1Q Median 3Q Max

-2.24314 -1.00187 -0.70688 -0.04022 34.96570

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8402 0.2020 4.159 3.55e-05 ***

I(1/xseq) 5.9798 1.5627 3.827 0.00014 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 2.878 on 798 degrees of freedom

Multiple R-Squared: 0.01802, Adjusted R-squared: 0.01679

F-statistic: 14.64 on 1 and 798 DF, p-value: 0.0001401

Note, the predicted values from this model are presented on a reciprocal scale, so the predicted values
must be transformed as 1/predicted in order to be plotted on the scale of the original, untranformed data.

8.3 But did you really need the Gamma in the glm?

Here we are back to the main question: is it the functional form that is the source of the trouble, or is it
the assumed statistical distribution.

The reason that the OLS estimation fails so dramatically is that all of the yi values are transformed.
We really only wanted to represent the transformation 1/µi, but in the lm framework, doing os requires us
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Figure 6: Fitted Models for µ = xi/(3 + .25xi) with a Gamma Distributed Variable
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Figure 7: Predicted Values from glm-Gamma and lm-Normal

> par(mfcol = c(2, 1))

> plot(xseq, gampred2$fit, type = "l", xlab = "x", ylab = "y",

+ main = "Gamma, link=inverse")

> lines(xseq, gampred2$fit + 2 * gampred$se, lty = 2, col = "green")

> lines(xseq, gampred2$fit - 2 * gampred$se, lty = 2, col = "green")

> plot(xseq, 1/lmpred2$fit, type = "l", xlab = "x", ylab = "y",

+ main = "")

> ypsem <- lmpred2$fit - 1.96 * lmpred$se

> ypsep <- lmpred2$fit + 1.96 * lmpred$se

> lines(xseq, 1/ypsem, lty = 2, col = "green")

> lines(xseq, 1/ypsep, lty = 2, col = "green")
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to transform the observe values 1/yi. We really want only to model the transformation of the mean and
GLM does that.

Now we can use glm with a Gaussian distribution but with an inverse link. And, unlike the model
discussed in the previous section, there IS a difference between using lm and glm on the same data.

To estimate the model with GLM,
1

µi
= b0 + b1

1

xi

the following R commands are used:

> lmmod3 <- glm(yobs2 ~ I(1/xseq), family = gaussian(link = "inverse"))

> summary(lmmod3)

Call:

glm(formula = yobs2 ~ I(1/xseq), family = gaussian(link = "inverse"))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3914 -1.0866 -0.3662 0.5736 11.4282

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.26355 0.03979 6.623 6.46e-11 ***

I(1/xseq) 2.85141 0.50427 5.655 2.18e-08 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for gaussian family taken to be 2.702359)

Null deviance: 2320.6 on 799 degrees of freedom

Residual deviance: 2156.5 on 798 degrees of freedom

AIC: 3069.6

Number of Fisher Scoring iterations: 7

Note that the parameter estimates coincide with the GLM-Gamma estimates of the earlier analysis.
Figure 8 plots the predicted values for the glm models fit with the Normal and Gamma distributions. The
predicted values once-again coincide in these two models fit with glm.

8.4 In the end, its all about the deviance

The residual deviance for the GLM-Gamma model in section 8.1 was 599.09 on 798 degrees of freedom
with an AIC of 2479.4. The GLM-Normal model has deviance of 2156.6 and the AIC was 3069.6.

9 Final note about the shape parameter

You might have noticed that the Gamma is a two-parameter distribution. However, it is not necessary to
know α before doing the estimates of the slope coefficients. After fitting the slope coefficients, then the
dispersion can be estimated (similar in the way OLS estimates the slopes and then the variance of the er-
ror term).

In MASS 4ed, Venables and Ripley justify the separate estimate of the dispersion coefficient from the
other coefficients by observing that they are orthogonal (p. 185). They observe (revising terminology to fit
this note)

E

(

∂l(θ, φ; y)

∂θ∂φ

)

= 0
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Figure 8: Fitted Models for µ = xi/(3 + .25xi) with a Gamma Distributed Variable
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In words, the likelihood’s rate of change in θ is not affected by a change in φ, and conversely, the rate
of chage in φ is not affected by θ. So we can estimate the b coefficients which impact θ separately from φ.
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