ParaMerlin

Postprocessing Merlin output with Paraview Prof. Victor E. Saouma

August 6, 2021

Acknowledgments

The author would like to thank Mr. Yuichiro Gakuhari for his assistance with some of the more obscure features of Paraview and ensuing documentation.

This program would not have been possible without the development of Merlin by Jan Červenka and accompanying post-processor Spider by Gary Haussmann. Those tools were the primary computational research tool of the author for over 30 years, and the contributions of Jan and Gary is very gratefully acknowledged.

Finally, this software wold not have been as extensively written had it not been for the Covid-19 lock-down which challenged my programming skills over countless hours. It was fun!

Contents

1	Exe	cution		2
	1.1	P1_Ma	in	2
	1.2	P2_Joi	nts	4
	1.3	P3_SC		5
	1.4	P4_Rei	inf	6
2	Par	aMerli:	n, a PreProcessor to ParaView	9
	2.1	Introd	uction	9
	2.2	Directo	ory Structure	9
		2.2.1	Input sub-folder	10
		2.2.2	Ctrl Excel File	10
		2.2.3	Output sub-folder	11
			2.2.3.1 Output: fn.mat files	12
			2.2.3.2 Excel Files	12
3	Par	aView	1	15
	3.1	Genera	al Operations	15
		3.1.1	User Interface	15
		3.1.2	Select File	16
		3.1.3	Mapped variable	16
		3.1.4		17
		3.1.5		18
		3.1.6	9	18
		3.1.7	- V	18
		3.1.8		18
		3.1.9		19
		3.1.10		19
		3.1.11	•	20

3.2	Filters	3	20
	3.2.1	Common filters	20
	3.2.2	Find data that match	21
	3.2.3	Clip mesh	22
	3.2.4	Slice mesh	23
	3.2.5	Find data	23
3.3	Select	display	23
	3.3.1	Threshold	23
	3.3.2	Extract selection	24
	3.3.3	Integration	25
	3.3.4	Spatial data analysis	25
	3.3.5	Temporal data analysis	25
	3.3.6	Split display	26
	3.3.7	Spread-Sheet view	26
3.4	Brush	Selection	27
3.5	Plot d	eformed shape	28
	3.5.1	Shrink Plot	29
3.6	Smear	ed cracks	29
3.7	Anima	ation	31
	3.7.1	Time step bar	31
	3.7.2	Save animation	31
	373	Saving display	32

List of Figures

1	Interconnection among various codes		•	•	1
1.1	Interconnection among various codes				3
1.2	Execution steps				3
1.3	Matlab plots generated by P2_Joints				4
1.4	Joints vtk visualized with ParaViewProcessed by P2_Joints; .				5
1.5	Possible displays of smeared cracks				6
1.6	Matlab generated display of reinforcement layout				7
1.7	Reinforcement displays				8
2.1	Directory structure				9
2.2	User defined Excel input file				10
2.3	Excel files generated by ParaMerlin				14
3.1	User interface				15
3.2	File selection				16
3.3	Mapped variables				17
3.4	Pipeline browser				17
3.5	Background color				18
3.6	Possible views				19
3.7	Display properties				20
3.8	Moving object				20
3.9	Adjusting opacity				20
3.10	Sharpen contrast				21
3.11	Data representation				21
3.12	Common filters				21
3.13	Selection criteria for find data				22
3.14	Extracted mesh				22
3 15	Clip mosh				23

3.16	Clip mesh	23
3.17	Find data	24
3.18	Threshold display of elements meeting certain conditional values	24
3.19	Threshold display of selected element groups	24
3.20	Extract selection	25
3.21	Integration	26
3.22	Plot data between two points	26
3.23	Temporal data analysis	27
3.24	Split display	27
3.25	Spread-Sheet display	28
3.26	Brush Selection	28
3.27	Examples of brush selections	29
3.28	Example of deformed shape	30
3.29	Shrink Plot	30
3.30	Possible displays of smeared cracks	31
3.31	Time step bar	32
3.32	Save animation	32
3.33	Display scene	33

List of Tables

2.1	.mat files	12
2.2	Mesh. structure array	13
2.3	pstValues structure array	13

Preface

Merlin (Saouma, Červenka, and Reich, 2010) is a finite element code developed by my group starting 1990¹ and extensively used for various analysis. Merlin generates a binary file .pst that is in turn read by Spider (Haussman and Saouma, 2009) which is the accompanying OpenGL/Windows based graphical post-processor.

Whereas it has served well for almost 30 years, time has come to use a better tool to visualize results. The obvious alternative is Paraview.

Hence I undertook the development of ParaMerlin, which is a Matlab®based code that reads the .pst file from Merlin and generates vtk files ready for Paraview and additional excel (and Matlab®binary) files, Fig. 1.

This document will first describe the structure and operation of Paraview, and then will serve as a guide to the Paraview operation for the resulting .vtk files.

Figure 1: Interconnection among various codes

¹Originally funded by EPRI, and subsequently by TEPSCO.

1— Execution

1.1 P1_Main

This is the main code that processes the pst file, and

- Generate the vtk files needed for visualization.
- Creates an Excel file for all the Merlin defined X-Y plots (only the last increment is tabulated, as earlier ones are not needed), §2.2.3.2, Fig. 2.3(a).
- Creates .mat files required for subsequent processing of
 - Joints (P₋₂)
 - Smeared cracks (P₋3)
 - Reinforcement (P₄)

To run Paraview you need to create a directory fn, without extension where fn corresponds to the file name, under the folder Files, Fig. 1.1. Then another sub-directory Input must be created, and you should copy into it

- the Merlin input file fn.inp
- The Merlin generated pst files (there may be multiple ones).

Note that the filename fn should not contain a space or an underscore (_).

An excel file storing control parameters must be created, refer to §2.2.2 for a full description.

To execute ParaMerlin, just run the Main.m Matlab®code.

Because some file files may be particularly large the user is kept abreast of the various execution steps, Fig. 1.2. Note that ParaMerlin can handle multiple .pst files generated by a single analysis, and thise .pst may not necessarily output records for each increment.

Output are described in §2.2.3 in conjunction with Fig. 2.1.

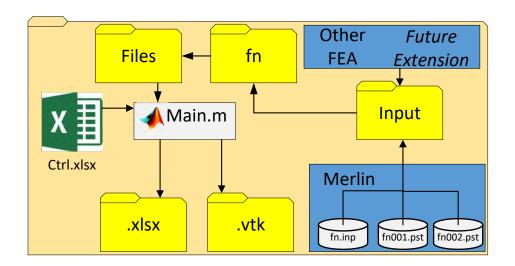


Figure 1.1: Interconnection among various codes

```
pst file Panel.pst; processing psts for record 21 (act increment 59) pst file Panel.pst; processing psts for record 22 (act increment 62)
```

```
File Panel.pst; Eig for Strains Record 51/70 (act Incr 149) File Panel.pst; Eig for Strains Record 52/70 (act Incr 152)
```

```
file Panel.pst; Saving vtk for Record 39/70 (act. incr. number 113) file Panel.pst; Saving vtk for Record 40/70 (act. incr. number 116)
```

Figure 1.2: Execution steps

1.2 P2_Joints

Joints are separately processed after P_1Main. The code will generate

- Excel file with relevant data §2.2.3.2, Fig. 2.3(b).
- Matlab based plot of all joints Fig. 1.2 where the dots (.) and circles (o) correspond to the pst joint variables location and the Merlin corresponding element centroids (they should match).

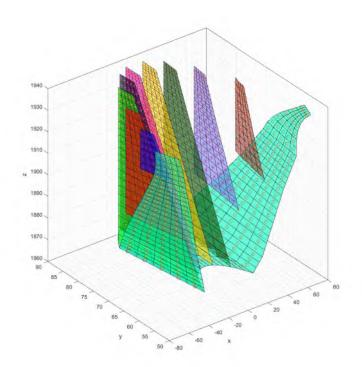
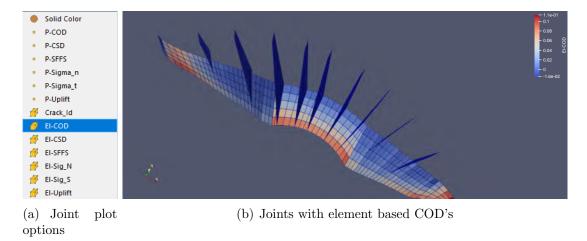
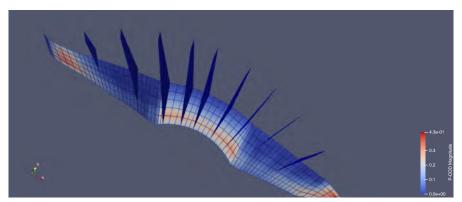
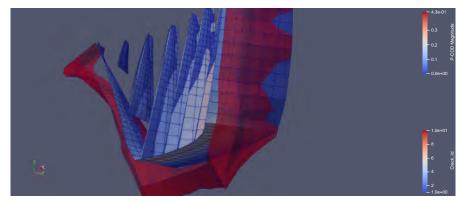





Figure 1.3: Matlab plots generated by by P2_Joints

(c) Joints with point based COD

(d) Deformed mesh of joints showing CODs

Figure 1.4: Joints vtk visualized with ParaViewProcessed by P2_Joints;

$1.3 P3_SC$

Smeared cracks are processed separately after P_1Main. The code will generate

• Excel file with all relevant data, Fig. 3.30(f), §2.2.3.2.

- Separate set of vtk file for the display of smeared crack data Fig. 1.5(a)-1.5(d)
- Histograms of COD's Fig. 1.5(e)

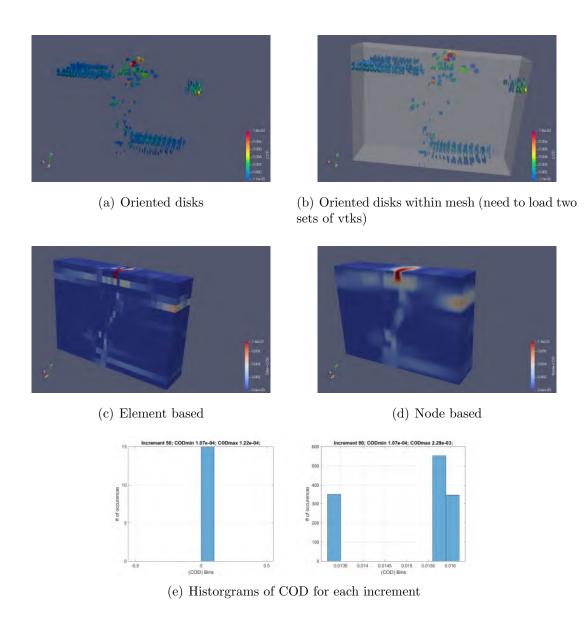


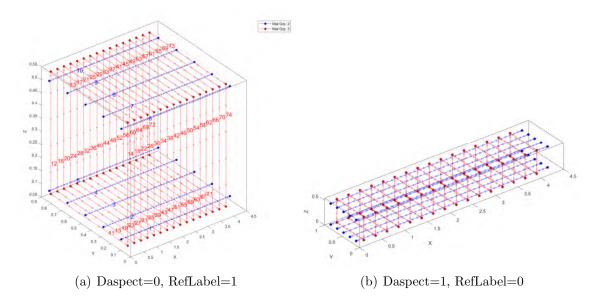
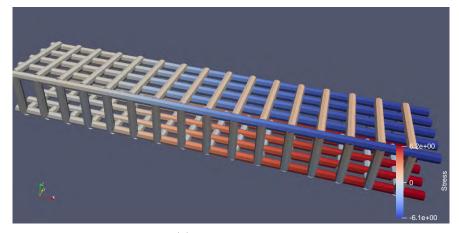
Figure 1.5: Possible displays of smeared cracks

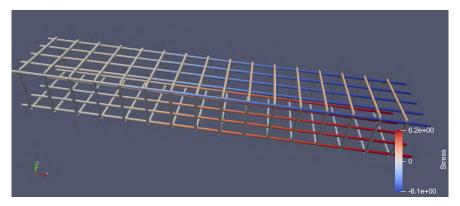
User must specify some controlling parameters as discussed in §2.2.2.

1.4 P4_Reinf

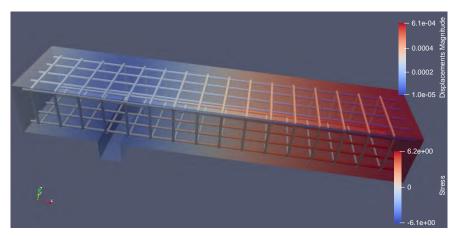
Reinforcements (defined inside Merlin by ReinfRods with start end end points) are processed separately after P_1Main. The code will generate

- Excel file with all relevant data, Fig. 2.3(d), §2.2.3.2.
- Matlab based plot of reinforcement layout Fig. 1.6.


Figure 1.6: Matlab generated display of reinforcement layout

 \bullet Separate set of vtk file for the display of reinforcement with computed strains or stresses, Fig. 1.7


User must specify some controlling parameters as discussed in §2.2.2.

(a) RadFactor=100

(b) RadFactor=300

(c) Reinforcment overlayed with structure

Figure 1.7: Reinforcement displays

2— ParaMerlin, a PreProcessor to ParaView

2.1 Introduction

Once Merlin has completed execution, it will generate one or more pst files. those would have to be preprocessed by ParaMerlin.

This chapter will describe the structure and operation of this code.

2.2 Directory Structure

The root folder of the code is illustrated by Fig. 2.1.

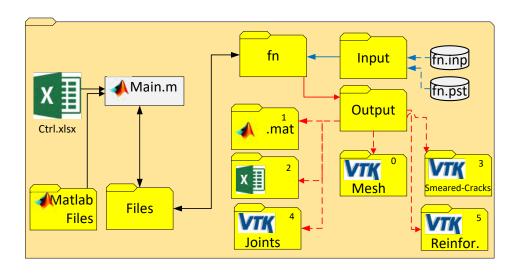


Figure 2.1: Directory structure

The main Matlab®file reads the directives for the excel file Ctrl.xlsx (including the file name fn and the corresponding input files.

The program will wipe out the corresponding Output directory and populates it with place holder for the output.

2.2.1 Input sub-folder

This sub-folder contains only two files assigned by the user

- fn1.inp: Merlin input file; note that the filename must correspond to the name of the parent directory.
- fn1.pst: Merlin .pst file

When first executed, ParaMerlin will generate a fn.dat file which is an ASCII copy of the binay .pst file.

2.2.2 Ctrl Excel File

P1_vtk_4_mesh.m is the main file that generates the vtk files for the finite element mesh, and should be the first one to be executed. Input data parameters are read from the excel file Ctrl.xlsx, Fig. 2.2

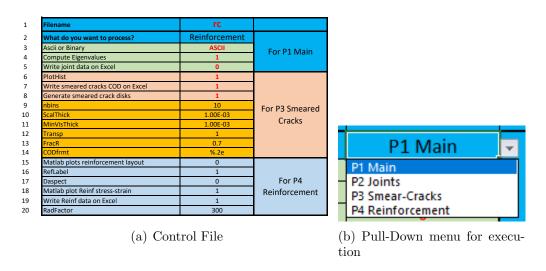


Figure 2.2: User defined Excel input file

- 1. File name (no space, no underscore (_), no extension (those are only allowed in the Merlin generated .pst files)
- 2. Flag to select program to execute. Note that P₋₁ Main will wipe out previous output directory.
- 3. VTK output format (ascii or binary)
- 4. Flag to control calculation of eigenvalues/eigenvectors (note that this can also be doe with the tensor Glyph filter in Paraview
- 5. Flag to direct storing joint data in an excel file*

- 6. Flag to direct plot of COD histograms for each increment
- 7. Flag to output smeared crack COD data on an excel file*
- 8. Flag to direct generation of smeared crack oriented disks (vtk files)
- 9. Number of bins for the COD histograms
- 10. Scaling factor for the smeared crack disks
- 11. Size if the smallest visible smeared crack
- 12. Transparency of the oriented disks
- 13. Scaling factor for the radius (equal to the element size)
- 14. Format of the COD numerical value in histograms
- 15. Flag to plot all reinforcement through Matlab pre-processing
- 16. Flag to label the reinforcement in the Matlab plot
- 17. Flag to set the Matlab plot aspect ratio to the exact one
- 18. Flag to plot all reinforcement stress and strain on separate pdf files
- 19. Flag to write reinforcement data on an excel file
- 20. number to adjust diameter of rebars in paravie (radius would be equal to the maximum dimension divided by RadFactor)

Again, if the root file is being processed, it will wipe out all the previously generated vtk, mat and .xlsx files.

Similarly, processing the smeared cracks or the joints is contingent upon having previously processed the root file.

The processed file name fn should not include an underscore (_) or a blank space in its name.

2.2.3 Output sub-folder

The output sub-folders are shown in Fig. 2.1 where full names are not shown; only descriptive ones, along with the ID identifier.:

- www O-VTK-Files: Finite element mesh, one vtk per increment
- 1-mat-files: Various Matlab®binary files for subsequent use, Table 2.1:
- 2-Excel-Files Excel file with: 1) all user specified X-Y plots; 2) joint 3) smeared crack and 4) Reinforcing bars strains and stresses data.
- www 3-smeared-cracks-vtk Smeared crack (disks) only
- w 4-joints-vtk Joints only

^{*} those excel files may be necessary to determine damage indicators (DI)

• w 5-Reinf-vtk reinforcement only

2.2.3.1 Output: fn.mat files

Each .pst file will generate a corresponding .mat file that contains the following structures

Mesh stores element connectivity and nodal, Table 2.2

Increment_ID Relevant when multiple .pst files are generated.

pstData stores nodal values, Table 2.3 where

nDim Spatial dimension [2—3] nIncr Number of increments nnodes Number of nodes

Note that the labels may change depending on the type of analysis. The components are cell array containing the component labels, such as

Disp_x, Disp_y Disp_z.

Other .mat files that are to be read

- fn_XXX-JointData.mat input file for P2_vtk_4_joints.m
- fn_XXX-Reinf.mat Currently unused, contains reinforcement strains and stresses.
- fn_XXX-SmearCrack.mat input file for P3_vtk_4_sm_cracks.m

2.2.3.2 Excel Files

There are two categories of excel file:

- Those corresponding to the user specified incremental plots in Merlin. Results for the last increment will be tabulated along with the proper heading, Fig. 2.3(a).
- Those generated by processing the .pst files :

Table 2.1: .mat files

File	Processed by	Leads to
fn.mat	P1_Main.m	O-VTK-Files
${\tt fn.JointData.mat}$	$P2_Joints.m$	4-joints-vtk
${\tt fn.SmearCrack.mat}$	P3_SC.m	3-smeared-cracks-vtk
fn-Reinf.mat	P4_Reinf	5-Reinf-vtk

Table 2.2: Mesh. structure array

Mesh.Analysis	Type of analysis (Displacement, Heat, Dynamic or AAR)			
Mesh.NGroups	Number of different element groups			
Mesh.Groups	Element types, and material types associated with each element.			
Mesh.nnodes	Number of nodes			
Mesh.NCornernodes	Number of nodes			
Mesh.Dimen	[2-3]			
Mesh.nelem	Number of elements			
Mesh.MaxnumNode	Maximum number of nodes			
Mesh.Node	Coordinates of each node			
Mesh.Elem	For each element: type, group and connectivity			

Table 2.3: pstValues structure array

Order	Label	Component	Values
nDim	Prin-Strains-Min	nDim cell	$nIncr \times nnodes \times nDim double$
nDim	Prin-Strains-Inter	${\tt nDim}\ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-Strains-Max	${\tt nDim}\ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-Stresses-Min	${\tt nDim}\ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-Stresses-Inter	${\tt nDim}\ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-Stresses-Max	${\tt nDim} \ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-Plastic_strains-Min	${\tt nDim} \ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-Plastic_strains-Inter	${\tt nDim} \ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-Plastic_strains-Max	${\tt nDim}\ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-AAR_strains-Min	${\tt nDim} \ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-AAR_strains-Inter	${\tt nDim}\ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\ double$
nDim	Prin-AAR_strains-Max	${\tt nDim}\ {\rm cell}$	${\tt nIncr}{\times}{\tt nnodes}{\times}{\tt nDim}\;{\tt double}$

- fn_XXX-JointData.mat processed by P2_joints.m and generate: Crack-x-Data.xlsx where x correspond to the Merlin defined crack number, Fig. 2.3(b). Each incremental set of data will be saved in a corresponding sheet.
- fn_XXX-SmearCrack.mat processed by P3_SC.m and generate: SC-COD.xlsx Fig. 2.3(c). Each incremental set of data will be saved in a corresponding sheet.
- fn_XXX-rc-Reinf.mat processed by P4_Reinf.m and generate: Reinf.xlsx Fig. 2.3(d). The (material) group, end points coordinates, length and distance from first node are shown in columns A-J, then results for all increments are tabulated in the subsequent columns. The same sheet contains data for all reinforcements (separated by a blank line). One sheet contains strains, the other the stresses.

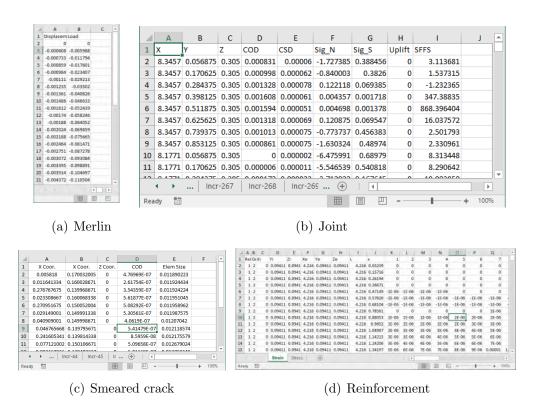


Figure 2.3: Excel files generated by ParaMerlin

3— ParaView

3.1 General Operations

3.1.1 User Interface

The User interface is composed of four parts, Fig. 3.1. Note that whenever you load a file (or sets of files), you would need to click on the Apply icon. To clear the display, you would have to ckick on the fifth icon. Displayed is the surface without the mesh, to view the mesh, you would select "Surface with Edges", for the nodes, you would select "Point Gaussian".

The displayed is rendered for the magnitude of the displacements (you could opt for individual components). You can select any of Merlin specified vectors for rendering.

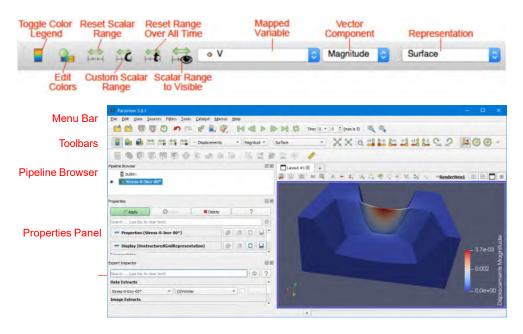


Figure 3.1: User interface

3.1.2 Select File

The process of selecting files is illustrated in Fig. 3.2. It is important to note that in Paraview, each increment (or time step) will have its own vtk file. When selecting files, Paraview can identify a series of incremental file group (by identifying similar filenames with an integer somewhere that appears to correspond to a time increment), and select all of them in one single selection. Or use may select only one of them.

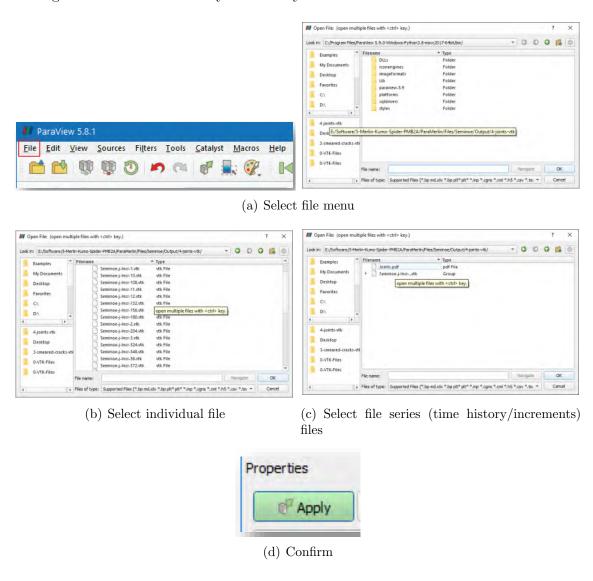
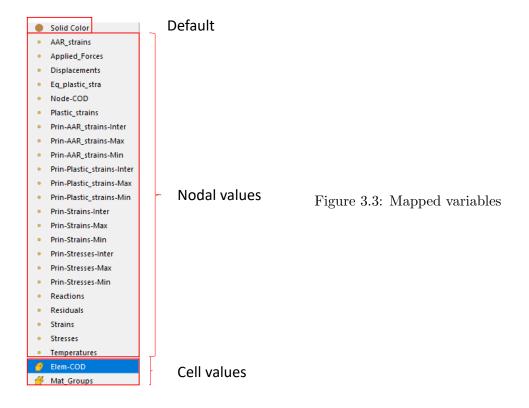



Figure 3.2: File selection

3.1.3 Mapped variable

Mapped variable is one of those specified by the vtk files at the node or cell levle, Fig. 3.3.

3.1.4 Pipeline browser

Each time to select a new display, Paraview creates a new graphical display which can be viewed, along with all previous ones, in the Pipelin browser, Fig. 3.4. You may activate view of multiple (and thus superimposed) displays. FOr instance you may display the original mesh with an opacity less than one, and superimpose on it the display of the deformed mesh.

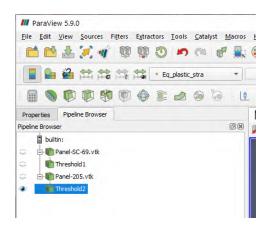


Figure 3.4: Pipeline browser

3.1.5 Background Color

Background color can be altered, Fig. 3.5.

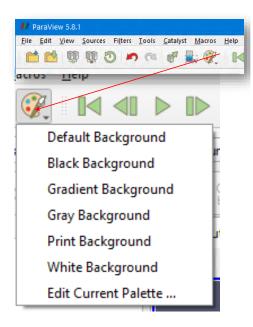


Figure 3.5: Background color

3.1.6 Mesh display

User may select one of many different representations of the mesh, Fig. 3.6.

3.1.7 Display Properties

Display properties, Fig. 3.7: of particular relevance is the "Opacity" to make a mesh transparent. Note that more options can be selected if you click on the "setting icon" in the upper right.

3.1.8 Moving Objects

Moving objects can be achieved either by mouse operation:

• Rotate: Mouse left button

• Scale: Mouse right button

• Translate: Mouse center button

or from te bar for "quantum" operations.

Likewise, you may undo and redo basic operations.

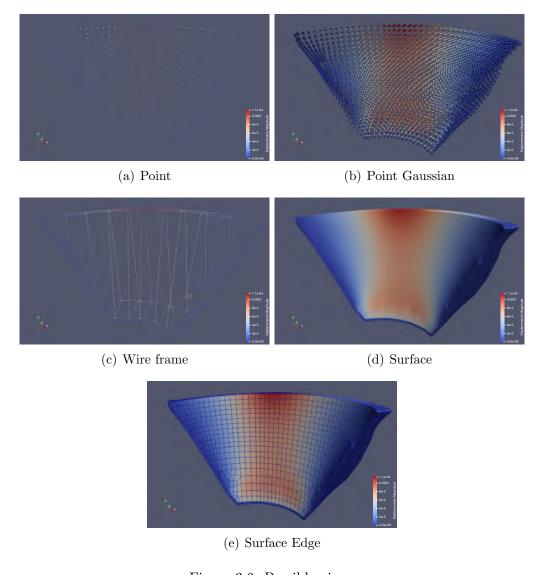
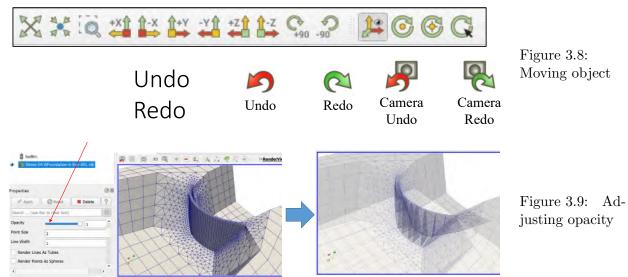


Figure 3.6: Possible views

3.1.9 Opacity


Mesh can be made transparent by selecting the opacity of the display, Fig. 3.9.

3.1.10 Sharpen Contrast

You can sharpen contrast by clicking on Edit in the coloring menu and then select Interpret values as categories, Fig. 3.10. Note that in this figure annotation (of material ID in this case) was added.

Figure 3.7: Display properties

3.1.11 Data Representation

Data representation 3.11

Most important ones are the Mapped variable, the vector component and the representation itself (surface, surface with edges, Point Gaussian or wireframe.

3.2 Filters

3.2.1 Common filters

Common filters are shown in Fig. 3.12

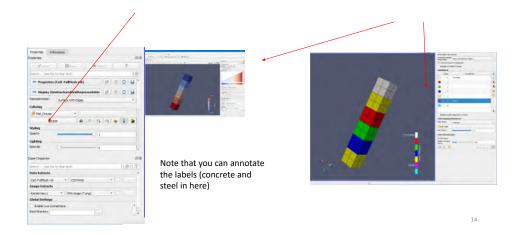
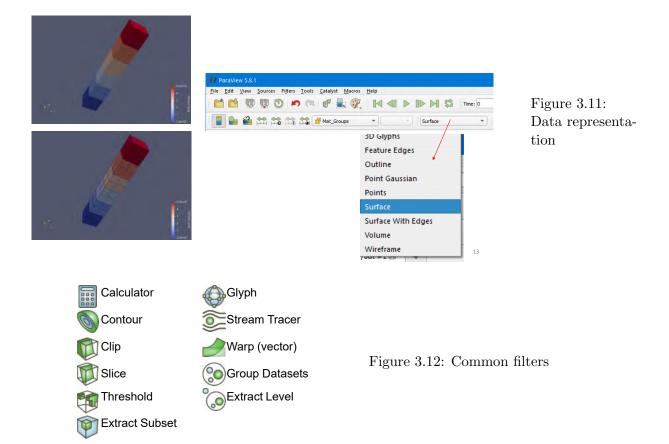



Figure 3.10: Sharpen contrast

3.2.2 Find data that match

You can find data that match certain criteria by

- 1. Edit-¿Find Data,
- 2. Click on either point or cell data
- 3. Click on the variable name
- 4. Click on criteria Fig. 3.13

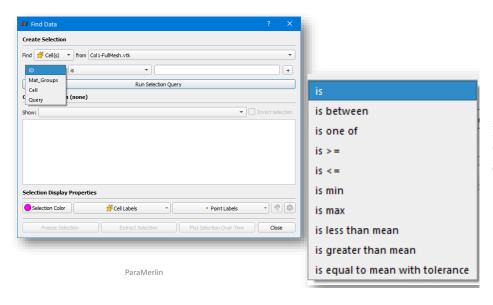
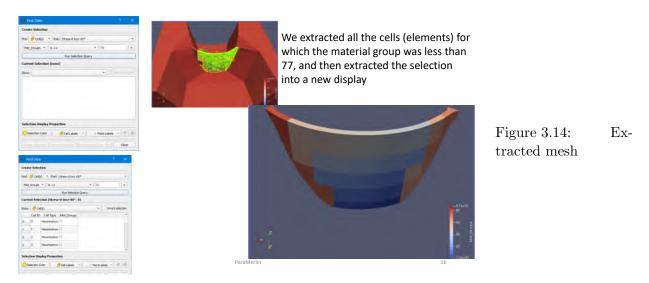



Figure 3.13: Selection criteria for find data

- 5. Run Selection Query (data will be displayed in a table)
- 6. Extract Selection, and then Apply to change the view of only cells/points that meet the criteria, Fig. 3.14

3.2.3 Clip mesh

Display can be clipped by selecting clip plane, Fig. 3.16

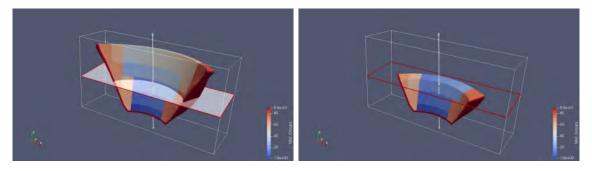


Figure 3.15: Clip mesh

3.2.4 Slice mesh

Display can be clipped by selecting clip plane, Fig. 3.16

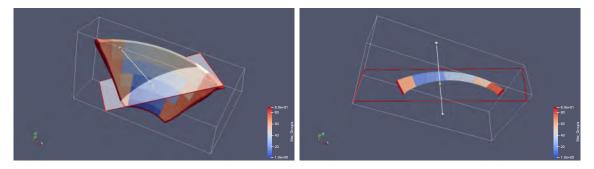


Figure 3.16: Clip mesh

3.2.5 Find data

You can find selected nodes that meets a certain criteria, Fig. 3.17

3.3 Select display

3.3.1 Threshold

You may use the Threshold filter to display cells within a minimum and a maximum, Fig. 3.18-3.19

In doing so, Paraview will either delete elements outside the range, or reverse, just keep elements within it.

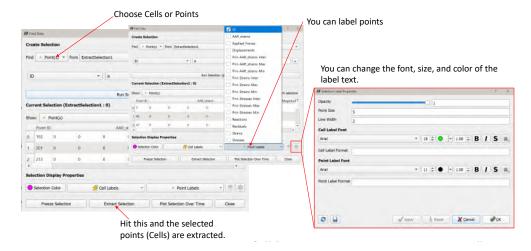


Figure 3.17: Find data

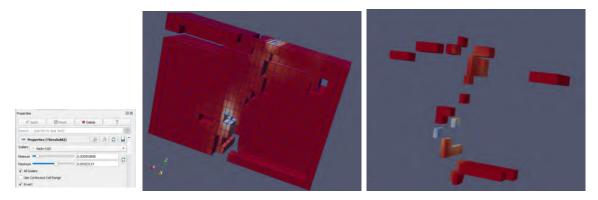
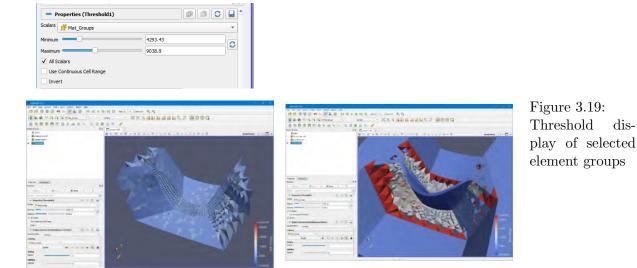



Figure 3.18: Threshold display of elements meeting certain conditional values

3.3.2 Extract selection

You may use the Threshold filter to display cells within a minimum and a maximum, Fig. 3.20. Careful, if you extract selection, node IDs are renumbered. However you may still view

original ones in the spreadsheet view under "vtkOriginalPointids".

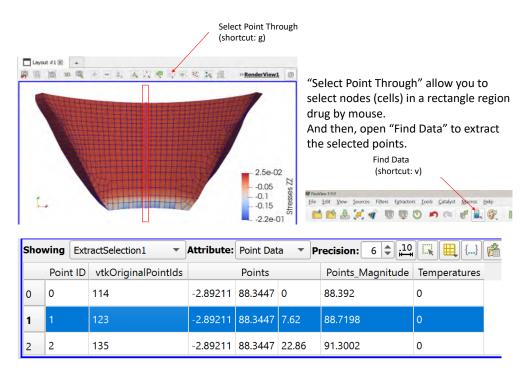
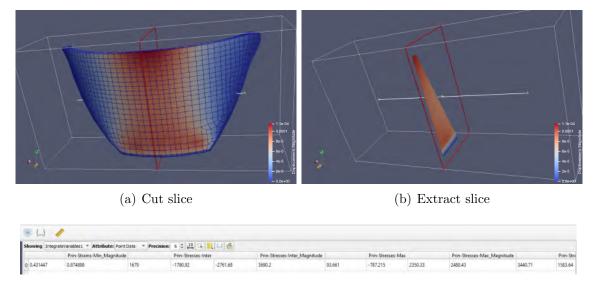


Figure 3.20: Extract selection

3.3.3 Integration

Integration over a surface can easily be performed, Fig. 3.21. Note that integration over a volume is also possible.

3.3.4 Spatial data analysis


You can plot data between two arbitrary points, Fig. 3.22(a).

File-¿Data Analysis-¿Plot over line. You may then use the cursor to adjust location of end points (intersection of mesh and line), and then under x-axis Properties, select which variable to display along the y axis.

At first all parameters are plotted, you can then select those of interest, Fig. 3.22(b).

3.3.5 Temporal data analysis

Temporal data analysis initiates by first selecting a point, and then point the plot selection over time icon. You may select which variable to be plotted, Fig. 3.23.

(c) Integration of all variables

Figure 3.21: Integration

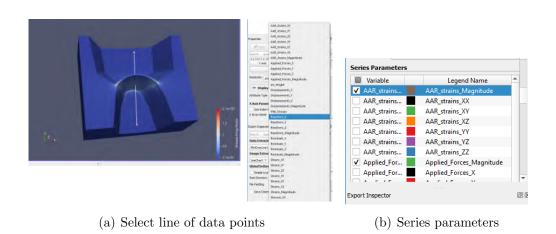


Figure 3.22: Plot data between two points

3.3.6 Split display

You can split the main window (as many times) and eeither display another view or a spreadsheet view, Fig. 3.24.

3.3.7 Spread-Sheet view

You can view any of the cell or point values on a table (that can be saved in csv formatted file, Fig. 3.25. Note that the point or cell selected in the table is also highlighted in the display.

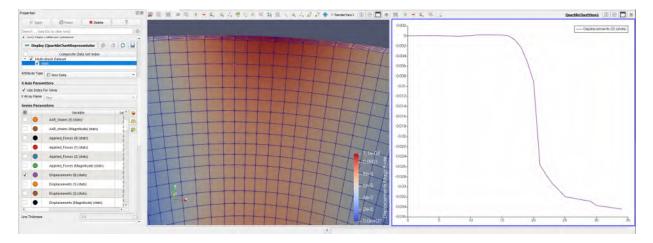
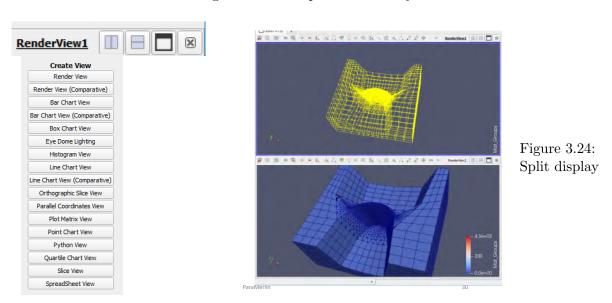



Figure 3.23: Temporal data analysis

3.4 Brush Selection

The Brush selection provides numerous useful tools, Fig. 3.26. For the most part they are self-explanatory. Of particular importance are, Fig. 3.27

- Hover to display relevant point or cell data
- Select point or cells (lasso type) for extraction
- Interactively select (surface or through) points or cells

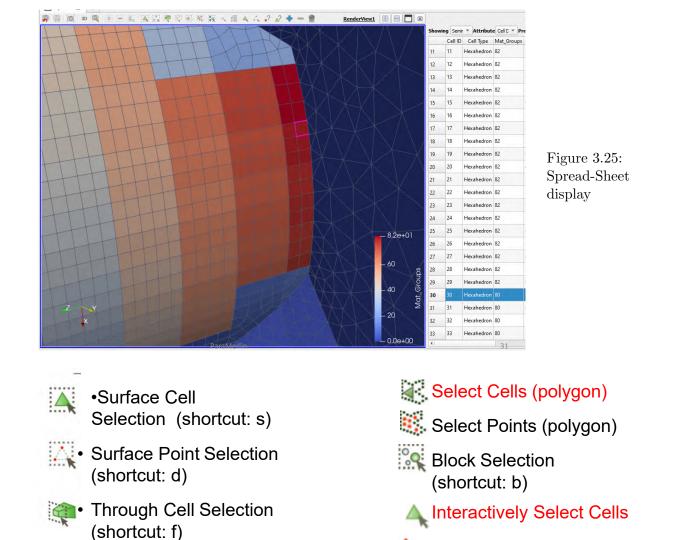


Figure 3.26: Brush Selection

Interactively Select Points

Hover Point Query

Hover cells on

3.5 Plot deformed shape

Through Point Selection

(shortcut: g)

Clear markups

You can plot the deformed shape based on any vector (not necessarily displacements), Fig. 3.28. In Paraview jargon, this is called Wrap by a vector

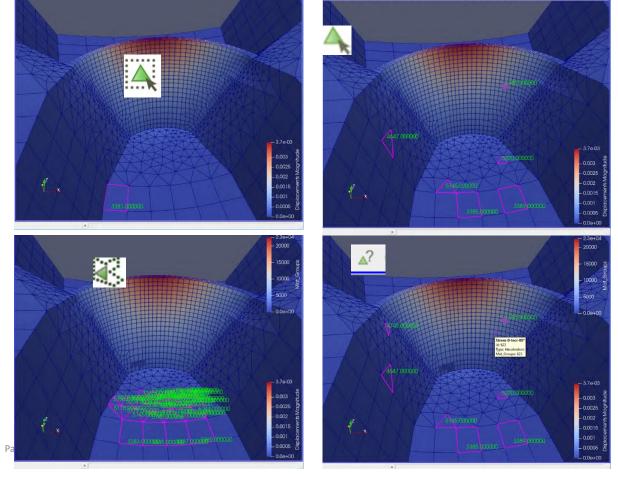


Figure 3.27: Examples of brush selections

3.5.1 Shrink Plot

A shrink plot can be obtained through the Shrink Filter by a factor shwon on the left, Fig. 3.29.

3.6 Smeared cracks

Whenever the .pst file contains data for smeared cracks, those can be displayed in any one of 3 forms. Note that pst file contains a single COD which is the average of those in the element integration points.

Oriented disks of non zero COD for each element, Fig. 3.30(a) and 3.30(b)

Element variable flat colored elements, Fig. 3.30(c)

Point variable Maximum value of surrounding a node is assigned to it, Fig. 3.30(d)

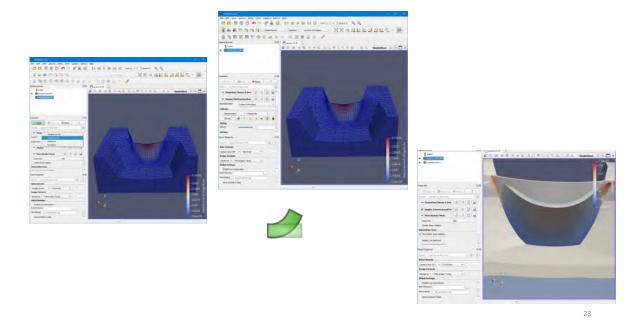


Figure 3.28: Example of deformed shape

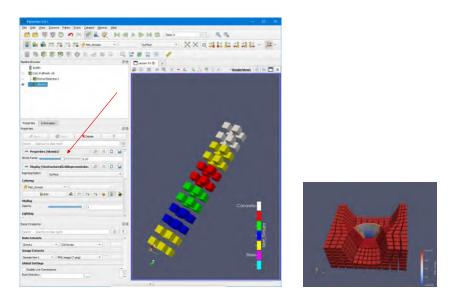


Figure 3.29: Shrink Plot

Histograms for each increment COD histogram is plotted and saved as a pdf, Fig. 3.30(e)Excel file CODs for each crack are written on an Excel file, one sheet per increment, Fig. Fig. 3.30(f)

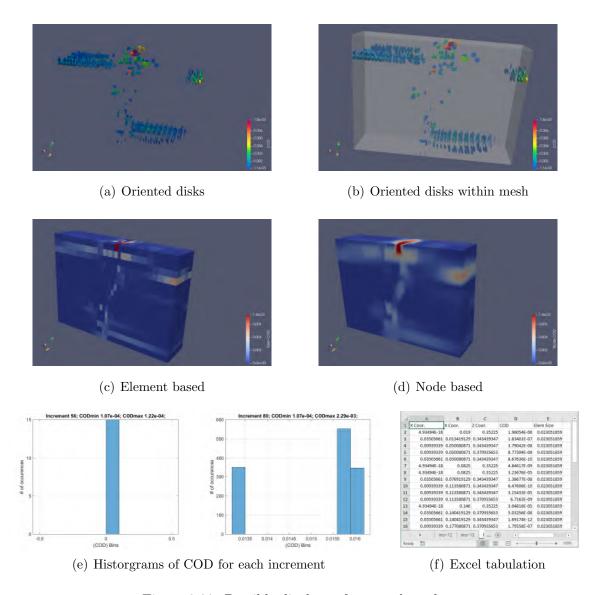


Figure 3.30: Possible displays of smeared cracks

3.7 Animation

3.7.1 Time step bar

Time step progrss bar can be visualized through the corresponding filter, Fig. 3.31.

3.7.2 Save animation

Animation can be saved, Fig. 3.32.

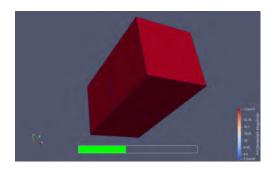
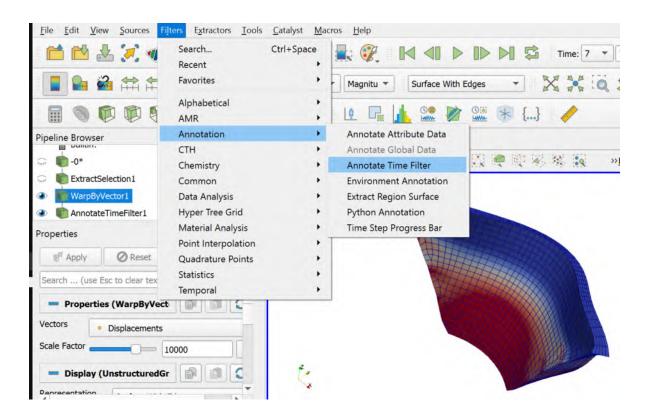
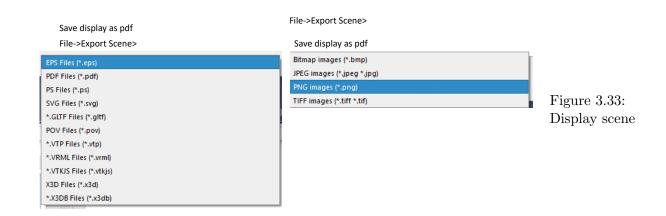


Figure 3.31: Time step bar




Figure 3.32: Save animation

3.7.3 Saving display

Saving the display, Fig. 3.33

File-¿Export Scene-¿ file format (such as eps, svg, bmp, jpg, or tiff)

Note that you can also click on the camera icon (third right above the display) and capture the screenshot

Bibliography

Haussman, G. and V.E. Saouma (2009). Spider, a 3D Interactive Graphics Finite Element Post-Processor; User's Manual. URL: \url{http://civil.colorado.edu/~saouma/pdf/spider.pdf}.

Saouma, V.E., J. Červenka, and R.W. Reich (2010). Merlin Finite Element User's Manual.