AREN 2110 Property Tables Information and Exercises

INTERPOLATION

You may sometimes have to calculate one or more properties of a substance at a state that is "between" states given in the rows of the property tables. For example, suppose you need to calculate the temperature of saturated liquid water (x = 0) at 4.7 MPa. Table A-5 (Saturated Water – Pressure Table) shows in the first three columns for the next lower and higher pressures:

P (MPa)	T_{s} (°C)	$v_{f} (m^{3}/kg)$
4	250.40	0.001252
5	263.99	0.001286

You can assume that the changes in properties are all linearly proportional and use linear interpolation to estimate.

$$\frac{4.7-4}{5-4} = \frac{T-250.40}{263.99-250.40}$$
$$T = 259.9^{\circ} C$$

Linear interpolation works for estimating any thermodynamic intensive property in any phase for tabulated materials.

For superheated refrigerant at 1.4 MPa and $T = 72 \degree C$, the enthalpy can be estimated by interpolation using the rows from Table A-13 for 1.4 MPa:

$T(r^{o}C)$	$v_{f} (m^{3}/kg)$	u (kJ/kg)	h (kJ/kg)
70	0.001252	262.17	295.31
80	0.001286	272.87	307.10

 $\frac{72-70}{80-70} = \frac{h-295.31}{307.1-295.31}$ h = 297.7kJ/kg Problems

- 1. For water, using the thermodynamic property tables in the appendices (A-4, A-5, and A-6) find:
 - a) The phase of water at 8 MPa and 400 °C AND the specific volume and specific internal energy for water. Are temperature and pressure independent? Why?

400 °C is greater than T_s at 8 MPa, therefore substance is superheated vapor. From Table A-6: $v = 0.03432 \text{ m}^3/\text{kg}$, u = 2,863.8 kJ/kg.

Pressure and temperature are independent since the pure substance is a single phase (vapor).

b) The specific internal energy, u, for superheated steam at 10 MPa and 620 $^{\circ}C$?

620 °C is greater than T_s at 10 MPa, therefore substance is superheated vapor. Need to interpolate in Table A-6 between state properties at 600 and 650 °C.:

 $\frac{620-600}{650-600} = \frac{u-3241.7}{3338.2-3241.7}$

u = 3,280.3 kJ/kg

c) The specific enthalpy of saturated liquid water at 100 kPa. The specific enthalpy, h, of liquid water at 20 °C and 100 kPa.

<mark>1. h = h_f@100 kPa = 417.46 kJ/kg</mark>

2. h = h_f@20 °C = 83.96 kJ/kg

d) The phase AND the specific internal energy of water at 0.2 MPa with specific volume of $0.80 \text{ m}^3/\text{kg}$.

At 0.2 MPa, $v_f < 0.8 \text{ m}^3/\text{kg} < v_g$. Therefore substance is a saturated liquid vapor mixture.

Need quality, x, using Table A-5: $x = \frac{0.8 - 0.001061}{0.8857 - 0.00161} = 0.90$

$u = x(u_{fg}) + u_{f} = 0.90(2025) + 504.49 = 2,333.3 \text{ kJ/kg}$

- 2. For refrigerant, R-134a, using the thermodynamic property tables in the appendices (A-11, A-12, and A-13) find:
 - a) The <u>change</u> in specific enthalpy during condensation of saturated vapor to saturated liquid at 30 °C.

 $\Delta h = -h_{fg} @ 30 \degree C.$ From Table A-11: $\Delta h = -172.0 \text{ kJ/kg}$

b) The <u>total</u> volume of 2 kg of R-134a after expansion from mixture to saturated vapor at 0.12 MPa.

V = 2 kg*v_g @0.12 MPa. From Table A-12: V = 2 kg *0.1614 m³/kg = 0.3228 m^3

c) The phase AND the temperature of R-134a at 0.5 MPa with specific enthalpy of 300 kJ/kg.

300 kJ/kg > $h_f @ 0.5$ MPa, therefore refrigerant is superheated vapor. From Table A-13, $T = 60 \ ^{\circ}C$ (actually h @ 60 $^{\circ}C$ is 299.95 kJ/kg, but this is too close to bother to interpolate.)

d) The phase of R-134a at 0.5 MPa with specific enthalpy of 71.33 kJ/kg AND the temperature.

71.33 kJ/kg = $h_f @ 0.5$ MPa (Table A-12), so refrigerant is saturated liquid and T = $T_s = \frac{15.74 \text{ }^{\circ}\text{C}}{2}$.