AREN 2110

Property Tables Information and Exercises

INTERPOLATION

You may sometimes have to calculate one or more properties of a substance at a state that is "between" states given in the rows of the property tables. For example, suppose you need to calculate the temperature of saturated liquid water $(x=0)$ at 4.7 MPa. Table A-5 (Saturated Water - Pressure Table) shows in the first three columns for the next lower and higher pressures:

$\mathrm{P}(\mathrm{MPa})$	$\mathrm{T}_{\mathrm{s}}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\mathrm{f}}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$
4	250.40	0.001252
5	263.99	0.001286

You can assume that the changes in properties are all linearly proportional and use linear interpolation to estimate.

$$
\begin{aligned}
& \frac{4.7-4}{5-4}=\frac{\mathrm{T}-250.40}{263.99-250.40} \\
& \mathrm{~T}=259.9^{\circ} \mathrm{C}
\end{aligned}
$$

Linear interpolation works for estimating any thermodynamic intensive property in any phase for tabulated materials.

For superheated refrigerant at 1.4 MPa and $\mathrm{T}=72{ }^{\circ} \mathrm{C}$, the enthalpy can be estimated by interpolation using the rows from Table A-13 for 1.4 MPa :

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{v}_{\mathrm{f}}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$
70	0.001252	262.17	295.31
80	0.001286	272.87	307.10

$$
\begin{aligned}
& \frac{72-70}{80-70}=\frac{\mathrm{h}-295.31}{307.1-295.31} \\
& \mathrm{~h}=297.7 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Problems

1. For water, using the thermodynamic property tables in the appendices (A-4, A-5, and A-6) find:
a) The phase of water at 8 MPa and $400{ }^{\circ} \mathrm{C}$ AND the specific volume and specific internal energy for water. Are temperature and pressure independent? Why?
$400{ }^{\circ} \mathrm{C}$ is greater than T_{s} at 8 MPa , therefore substance is superheated vapor. From Table A-6: $v=0.03432 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{u}=2,863.8 \mathrm{~kJ} / \mathrm{kg}$.

Pressure and temperature are independent since the pure substance is a single phase (vapor).
b) The specific internal energy, u, for superheated steam at 10 MPa and 620 ${ }^{\circ} \mathrm{C}$?
$620{ }^{\circ} \mathrm{C}$ is greater than T_{s} at 10 MPa , therefore substance is superheated vapor. Need to interpolate in Table A-6 between state properties at 600 and $650{ }^{\circ} \mathrm{C}$.:

$$
\begin{gathered}
\frac{620-600}{650-600}=\frac{\mathrm{u}-3241.7}{3338.2-3241.7} \\
\mathbf{u}=\mathbf{3 , 2 8 0 . 3} \mathbf{~ k J} / \mathbf{k g}
\end{gathered}
$$

c) The specific enthalpy of saturated liquid water at 100 kPa . The specific enthalpy, h, of liquid water at $20^{\circ} \mathrm{C}$ and 100 kPa .

$$
\begin{gathered}
\text { 1. } \mathrm{h}=\mathrm{h}_{\mathrm{f}} @ 100 \mathrm{kPa}=417.46 \mathrm{~kJ} / \mathrm{kg} \\
\text { 2. } \mathrm{h}=\mathrm{h}_{\mathrm{f}} @ 20{ }^{\circ} \mathrm{C}=83.96 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

d) The phase AND the specific internal energy of water at 0.2 MPa with specific volume of $0.80 \mathrm{~m}^{3} / \mathrm{kg}$.

At $0.2 \mathrm{MPa}, \mathrm{v}_{\mathrm{f}}<0.8 \mathrm{~m}^{3} / \mathrm{kg}<\mathrm{v}_{\mathrm{g}}$. Therefore substance is a saturated liquid vapor mixture.

Need quality, \mathbf{x}, using Table A-5: $\mathrm{x}=\frac{0.8-0.001061}{0.8857-0.00161}=0.90$

$$
\mathbf{u}=x\left(\mathbf{u}_{\mathrm{fg}}\right)+\mathbf{u}_{\mathrm{f}}=0.90(2025)+504.49=2,333.3 \mathrm{~kJ} / \mathrm{kg}
$$

2. For refrigerant, R-134a, using the thermodynamic property tables in the appendices (A-11, A-12, and A-13) find:
a) The change in specific enthalpy during condensation of saturated vapor to saturated liquid at $30^{\circ} \mathrm{C}$.
$\Delta h=-h_{\mathrm{fg}} @ 30{ }^{\circ} \mathrm{C}$. From Table A-11: $\Delta \mathrm{h}=-172.0 \mathrm{~kJ} / \mathrm{kg}$
b) The total volume of 2 kg of R-134a after expansion from mixture to saturated vapor at 0.12 MPa .

$$
\begin{aligned}
& \text { V = } 2 \mathrm{~kg}^{*} \mathrm{v}_{\mathrm{g}} @ 0.12 \text { MPa. From Table A-12: } \\
& \mathrm{V}=2 \mathrm{~kg}^{*} 0.1614 \mathrm{~m}^{3} / \mathrm{kg}=0.3228 \mathrm{~m}^{3}
\end{aligned}
$$

c) The phase AND the temperature of R-134a at 0.5 MPa with specific enthalpy of $300 \mathrm{~kJ} / \mathrm{kg}$.
$300 \mathrm{~kJ} / \mathrm{kg}>\mathrm{h}_{\mathrm{f}} @ 0.5 \mathrm{MPa}$, therefore refrigerant is superheated vapor. From Table A-13, T = $60{ }^{\circ} \mathrm{C}$ (actually h @ $60{ }^{\circ} \mathrm{C}$ is $299.95 \mathrm{~kJ} / \mathrm{kg}$, but this is too close to bother to interpolate.)
d) The phase of R-134a at 0.5 MPa with specific enthalpy of $71.33 \mathrm{~kJ} / \mathrm{kg}$ AND the temperature.
$71.33 \mathrm{~kJ} / \mathrm{kg}=\mathbf{h}_{\mathrm{f}}$ @ 0.5 MPa (Table A-12), so refrigerant is saturated liquid and $\mathrm{T}=\mathrm{T}_{\mathrm{s}}=15.74{ }^{\circ} \mathrm{C}$.

