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Abstract We introduce a stochastic weather generator for

the variables of minimum temperature, maximum temper-

ature and precipitation occurrence. Temperature variables

are modeled in vector autoregressive framework, condi-

tional on precipitation occurrence. Precipitation occurrence

arises via a probit model, and both temperature and

occurrence are spatially correlated using spatial Gaussian

processes. Additionally, local climate is included by spa-

tially varying model coefficients, allowing spatially

evolving relationships between variables. The method is

illustrated on a network of stations in the Pampas region of

Argentina where nonstationary relationships and historical

spatial correlation challenge existing approaches.

Keywords Spatial correlation � Pampas � Precipitation �
Temperature � Weather simulation

1 Introduction

Risk-based approaches are widely used in natural resources

management such as water, land, crop, and ecology. Pro-

cess-based models of these resources are driven with

ensembles of input sequences, which are typically daily

weather, resulting in ensembles of system variables and

their probability density functions that provide estimates of

risk that are useful for decision making. Historic data is

often limited in space and time hence the risk estimates

based solely on them do not accurately reflect the under-

lying variability. Therefore, robust generation of weather

sequences that capture the underlying variability is essen-

tial. Generating random weather sequences that are statis-

tically consistent with historical observations is known as

stochastic weather generation.

Crop models for agriculture planning, hydrologic mod-

els for generating streamflow needed for water resources

management, and erosion models for land erosion man-

agement (Wallis and Griffiths 1997; Richardson 1981;

Richardson and Wright 1984; Wilks 1998; Wilks and

Wilby 1999; Friend et al. 1997) have motivated the

development of stochastic weather generators over the

years. Traditional weather generators at a single location

model the precipitation occurrence as a Markov Chain

(Richardson 1981; Katz 1977; Stern and Coe 1984;

Woolhiser 1992) or within a Poisson process framework

(Foufoula-Georgiou and Georgakakos 1991; Furrer and

Katz 2008). The daily rainfall amounts are modeled by

fitting a gamma density function (Katz 1977; Buishand

1978; Yang et al. 2005; Furrer and Katz 2007). These

models are traditionally estimated for each month or

shorter to capture the seasonality. Conditioned on the

rainfall state, temperatures are then simulated using auto-

regressive models (Richardson 1981).

Multi-site extensions of single-site weather generators

can be unwieldy with large number of parameters to cap-

ture the statistics at each site and their spatial correlation

(Mehrotra et al. 2006), more so with a large number of

locations. Wilks (1998) proposed a multi-site precipitation
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model with two-state Markov chain and mixed exponential

distribution coupled with spatially correlated transformed

normal variables to enable capturing the spatial correlation

in precipitation. Later, Wilks (1999) extended this to

multiple variables (temperature, solar radiation). Variations

of this have been used in subsequent multi-site rainfall

generators (Srikanthan and Pegram 2009; Brissette et al.

2007) and weather generators (Qian et al. 2002; Baigorria

and Jones 2010; Khalili et al. 2009). Markov chains and

direct acyclic graphs have been developed and proposed

for stochastic multi-site rainfall simulation (Kim et al.

2008) as promising and less complex alternatives for

space-time simulation. Bayesian hierarchical models for

spatial rainfall have been developed in recent years (Lima

and Lall 2009) which have the ability to provide robust

estimation of uncertainties and are proving to be an

attractive alternative with increase in computational power.

Along this same line, Fassò and Finazzi (2011) offer a state

of the art approach to space-time modeling using recent

maximum likelihood advances based on the EM algorithm.

For modeling sites with heavy-tailed precipitation distri-

butions, a generalized Pareto distribution (Lennartsson

et al. 2008) or a stretched exponential distribution (Furrer

and Katz 2008) have been shown to be good alternatives to

the more traditional methods.

Generalized linear models (GLMs) can greatly reduce

the modeling effort of weather generators besides enabling

the modeling of non-normal variables and being parsimo-

nious (McCullagh and Nelder 1989). Herein, a GLM model

(probit regression) is adopted for precipitation occurrence

with a suite of covariates enabling the spatial modeling of

occurrence with a single model—unlike a number of

Markov chain models. A separate GLM is fitted to pre-

cipitation intensity, often using a gamma distribution and

appropriate link function to capture non-Gaussian features.

Early use of GLM for weather generation was by Stern and

Coe (1984) with subsequent work by Yang et al. (2005)

and Chandler (2005). Furrer and Katz (2007) developed

this framework to include climate variables such as El Nino

Southern Oscillation index for a location in the Pampas

region of Argentina. Other methods to incorporate large

scale climate information in weather generators include

modeling the underlying climate process using a Hidden

Markov Model and then conditionally generating stochas-

tic weather sequences (Hauser and Demirov 2013). A

limited extension of the GLM approach with a Poisson

cluster model to multi-site precipitation generation was

proposed by Wheater et al. (2005).

Semi-parametric approaches have been developed that

resample historical data using an empirical distribution

function—with precipitation occurrence modeled as a wet

and dry process and seasonality addressed using Fourier

components (Racsko et al. 1991; Semenov and Barrow

1997). These are relatively easy to implement and are

widely used in climate change studies, especially in Europe

(Calanca and Semenov 2013; Semenov and Calanca 2013).

Multi-site extensions and enhancements to generate

extremes have also been proposed in the above references

and in (Semenov 2008). These weather generators have

been shown to capture extreme events well over a region in

New Zealand (Hashmi et al. 2011). In general, weather

generators have difficulty capturing the properties of

extreme events well—a formal way to enable this using

extreme value distributions is proposed in Furrer and Katz

(2008).

Nonparametric weather generators which make no

assumption of the underlying distribution of the process

and are data-driven have gained prominence in recent

decades. Kernel density-based generators of precipitation

(Lall and Sharma 1996; Harrold et al. 2003; Mehrotra and

Sharma 2007) and other variables (Rajagopalan et al.

1997a, b) have been shown to perform very well at cap-

turing non-normal and nonlinear features. Kernel methods

perform poorly in high dimensions. To alleviate this,

K-nearest neighbor (K-NN) time series bootstrap (Lall and

Sharma 1996) based weather generators were developed

(Rajagopalan and Lall 1999). In this, K-NNs of a weather

vector on a current day are obtained from historical days

within a window of the current day, and one of the

neighbors (i.e., one of the historical days) is resampled with

a weighted metric. The historical weather on the following

day of the resampled neighbor becomes the simulated

weather for the subsequent day. This is akin to resampling

from a nonparametric estimation of the local conditional

probability density function. For multi-site generation this

is done on the site-averaged time series and the weather

vector at all the locations of the selected day is taken to

obtain multi-site simulation. As can be seen this is easy to

implement and robust in capturing non-Gaussian features.

This has been extended to multi-site and also has been

conditioned on large scale climate information, climate

forecasts, climate change projections, etc. (Yates et al.

2003; Apipattanavis et al. 2007; Buishand and Brandsma

2001; Beersma and Buishand 2003; Sharif and Burn 2007).

Recently, Caraway et al. (2014) modified this approach for

multi-site weather simulation by incorporating a cluster

analysis wherein the sites are clustered and a single-site

weather generator is applied to each cluster average. This

modeling approach shows good performance in moun-

tainous terrain.

One of the major drawbacks with the weather generators

described above is their relative inability to generate

weather sequences at any arbitrary locations, other than the

locations with data. This is quite important for running

hydrology, crop and ecology models which require weather

sequences on a grid. It is in this context that the GLM-
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based methods offer a parsimonious and robust approach.

Kleiber et al. (2012) extended this with latent Gaussian

processes to model spatial occurrence and amounts of

rainfall over the state of Iowa, US and the Pampas region

of Argentina, and to temperature in complex terrain

(Kleiber et al. 2013). Motivated by this drawback, in this

paper we develop a GLM-based spatial weather generator

which combines the precipitation and temperature gener-

ator of Kleiber et al. (2012) and Kleiber et al. (2013) and

demonstrate it for application to the Pampas region. While

we demonstrate the simulation of weather sequences at the

locations with data, the model can generate sequences at

any arbitrary location. The model, data and applications are

described in the following sections.

2 Stochastic model

A basic full stochastic weather generator requires simul-

taneous simulation of minimum and maximum tempera-

ture, as well as precipitation, including both occurrence and

intensity. The idea behind our approach is to condition the

bivariate temperature process on precipitation occurrence.

Although there is clearly a physical relationship between

temperature and precipitation, precipitation largely occurs

due to large scale atmospheric movement, while surface

temperatures are highly controlled by local climate factors

and by whether or not precipitation occurs. By maintaining

a generalized linear modeling framework, we can

straightforwardly condition temperature simulations on

precipitation occurrence, thus allowing for distinct pre-

cipitation stochastic models to be used.

We follow the framework proposed by Kleiber et al.

(2013) in focusing on the two components of local climate

and weather. Local climate refers to the average behavior

of a weather variable across time and space, while the

weather component yields variability and individual real-

izations that deviate from climatology. For minimum and

maximum temperatures at location s 2 R
2 and day t,

ZNðs; tÞ and ZXðs; tÞ, respectively, we use the following

decomposition,

ZNðs; tÞ ¼ bNðsÞ0XNðs; tÞ þWNðs; tÞ
ZXðs; tÞ ¼ bXðsÞ0XXðs; tÞ þWXðs; tÞ:

The first component is a local regression on some covariate

vector Xiðs; tÞ, while the weather component (denoted by W

for weather) generates variability and spatial correlation via

a multivariate normal Gaussian process. In our experience,

temperature persistence is most straightforwardly accoun-

ted for by autoregressive terms in the mean function, and

the weather component can then be viewed as temporally

independent. It is worthwhile to note that the use of

Gaussian models for temperature is justified for some

climates [see Kleiber et al. (2013)]. Transformed variables

can be used to produce stochastic realizations without

assuming a Gaussian distribution, but these realizations

have shown results that are consistent with this study.

The local climate component is a spatially varying

coefficient model, where biðsÞ ¼ ðb0iðsÞ; b1iðsÞ; . . .;

bpiðsÞÞ0, for i ¼ N;X determines the influence of each

covariate on temperature at a given location. For example,

the intercept term b0iðsÞ accounts for the fact that, typi-

cally, temperatures at higher elevations tend to be lower

than those at lower elevations or near oceans or seas. In our

experience, it is useful and appropriate to include autore-

gressive terms in the covariate vectors Xiðs; tÞ ¼
ðX0iðs; tÞ; . . .;Xpiðs; tÞÞ0.

Estimation of the coefficients biðsÞ rely on observations at

a network of locations s ¼ s1; . . .; sn over a time period t ¼
1; . . .; T (note that an incomplete historical record does not

affect estimation). A Bayesian approach would be to impose

a prior distribution on the coefficients, viewing them as

spatial processes, but for large networks of observation

stations computations become infeasible using standard

Bayesian techniques. Below, we allow the coefficients to

vary with location, but suppress a stochastic representation.

The precipitation process is broken into two compo-

nents: the occurrence at location s on day t, Oðs; tÞ, and the

intensity or amount, Aðs; tÞ, given that there is some pre-

cipitation. In particular, we follow Kleiber et al. (2012) in

modeling the occurrence process as a probit process,

where the latent process WOðs; tÞ is Gaussian. If the latent

process is positive, it rains at location s, whereas if the

process is negative, it does not rain. The latent process is

given a mean function that is a regression on some

covariates, bOðsÞ0XOðs; tÞ, with spatially varying coeffi-

cients as in the temperature model. Realizations are spa-

tially correlated by imposing a nontrivial covariance

structure for WOðs; tÞ. Kleiber et al. (2012) used an expo-

nential covariance function to model spatial correlation, for

example. Briefly, the precipitation intensity process fol-

lows the same approach as Kleiber et al. (2012). In par-

ticular, the intensity at a particular location and time is

modeled as a gamma random variable, whose scale and

shape parameters vary with location and time. Simulations

are spatially correlated by imposing a zero-mean Gaussian

process WAðs; tÞ with covariance function CAðh; tÞ, such

that

Aðs; tÞ ¼ G�1
s;t ðUðWAðs; tÞÞÞ

where Gs;t is the cumulative distribution function (CDF) of

the gamma distribution at site s and time t, and U is the

CDF of a standard normal. This transformation approach is

O(s, t) = [WO(s,t)≥0]
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called a spatially varying anamorphosis function (Chilès

and Delfiner 1999), which retains the gamma distribution at

individual locations but allows for spatial correlation

between locations. We do not explore this model in detail

here, acknowledging that other precipitation models can be

swapped in easily.

2.1 Estimation and modeling choices

We take a conditional approach to estimation by first gath-

ering local estimates b̂jiðsÞ by ordinary least squares at each

observation location for both minimum and maximum

temperature. Spatial covariance often exhibits seasonal

patterns, where, for example, temperatures tend to exhibit

greater variability in summer than in winter. Additionally,

length scale of spatial correlation can also vary across time.

To account for these nonstationarities, we estimate the

nonparametric spatial covariance structure for Wiðs; tÞ on a

monthly basis, using the empirical covariance matrix of the

residuals at the observation network. For each day t and

spatial location s, we form the residuals Wiðs; tÞ ¼
Ziðs; tÞbiðsÞ0Xðs; tÞ, where biðsÞ is the least squares estimate.

These residuals are then assumed to be realizations from the

Wi process, and from these values we form the empirical

covariance matrix. Estimation for precipitation occurrence

follows a similar strategy; we first estimate local mean

coefficients b̂jOðsÞ by probit regression, using all historical

occurrence observations. The spatial structure for the latent

process is estimated as the empirical correlation based on the

probit model errors at all network stations, using occurrences

as observations separately for each month.

For our coupled weather generator, we judiciously

choose a multivariate autoregressive structure on the tem-

perature process, conditional on precipitation occurrence.

In particular, we set

XNðs; tÞ ¼ ð1; cosð2pt=365Þ; sinð2pt=365Þ;
rðtÞ; ZNðs; t � 1Þ; ZXðs; t � 1Þ;Oðs; tÞÞ0:

The first three entries are an intercept and two harmonics to

account for seasonal trends; rðtÞ is a linear drift between

�1 and 1 (for numerical stability), which we include to

control for temperature trends over the period of our data

set; the latter three entries imply a trivariate autoregressive

structure. Note that temperature is conditioned on the

coincidental occurrence; in practice this usually implies

cooler temperatures on rainy days and warmer temperature

on dry days. The same covariates are used for the maxi-

mum temperature process. The precipitation occurrence

process is given the following covariates,

XOðs; tÞ ¼ ð1; cosð2pt=365Þ; sinð2pt=365Þ;Oðs; t � 1ÞÞ0;

where now precipitation uses a single autoregressive

model. Note the linear drift is not included in the precipi-

tation model because precipitation tends to exhibit epoch-

like traits rather than gradual trends.

Simulation can proceed by simulating an entire trajec-

tory of precipitation occurrence, with amounts if required

for scientific purposes. Conditional on this realization, an

initial temperature is chosen (we use the average of that

calendar day’s observations), and daily realizations are

then available by simulating the weather component as

multivariate normals, and adding the weather to the local

climate.

3 Stochastic weather simulation in the Pampas

To illustrate the performance and capability of the pro-

posed coupled model, we consider a dataset of minimum

temperature, maximum temperature and precipitation

observations at a network of 19 locations in the Pampas

region of Argentina, shown in Fig. 1. The Pampas region

covers much of northeastern Argentina, all of Uruguay, and

very little of southeastern Brazil—covering more than

750,000 km2—and is of utmost agricultural importance for

much of the South American continent. With global food

prices on the rise, the ability to quantify and forecast cli-

mate variability for the purposes of climate change impact

assessment in the region is absolutely necessary. Obser-

vations are available over approximately an 80 year period,

although the longest station record is from 1908 to 2010.

Spatial precipitation simulation was previously explored by

Fig. 1 Study region geography with elevation (in meters), black dots

are observation station locations; red dot represents Santiago del

Estero
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Kleiber et al. (2012) on this dataset, but these authors did

not consider the temperature observations.

We adopt the model setup as outlined in Sect. 2, and

estimate local regression coefficients (linear regression for

temperature, probit regression for precipitation occur-

rence). Conditional on these estimates, the spatial covari-

ance structure is estimated empirically. In our model,

temperature simulations are conditional on precipitation

occurrence, but the dependence is one-directional. Thus,

we begin by simulating precipitation occurrence each day

over the 19 locations throughout the Pampas. We simulate

100 trajectories of occurrence independently, thus pro-

ducing an ensemble of daily weather patterns. To consis-

tently compare simulations to observations, we necessitate

that output from the coupled weather generator be masked

to match the pattern of missing values from the observed

precipitation and temperature time series.

Validation of the precipitation occurrence model is

carried out through spells analysis—local and regional wet

and dry spells. A regional dry spell occurs when all 19

locations report no rain—occurrence at any location breaks

the regional dry spell. Figure 2 shows the density of spells

from the 100 trajectories as well as that from the observed

time series.

As can be seen in Fig. 2, both wet and dry spells are

reproduced with good skill by the trajectories at Santiago

del Estero. Simulated wet spells are very nearly perfect,

while there is slight discrepancy in the density occurrence

of dry spells—simulations are producing systematically

shorter dry spells than the observations. Due to this

underrepresentation of local dry spells, there is even greater

discrepancy between observed and simulated regional dry

spells. The trajectories imply that regional dry spells are

very rarely longer than one day, while observations show

they have a better chance of lasting at least three days.

However, the frequency of longer domain dry spells is

adequately reproduced, particularly above spells of eight or

more days. To illustrate the validity of this model in

reproducing the frequency of long dry spells, two dry spells

analysis were carried out for an independent station. We

simulated weather for a station not included in the model—

thus validating the ability of this model to simulate weather

at any arbitrary location—and analyzed the ability to

reproduce long dry spells. These long dry spells are crucial

to capture for impact assessment planning. As can be seen

in Fig. 3, the model is quite impressive in its ability to

reproduce the frequency and longevity of dry spells,

especially considering this station was not included in the

model fit.

Allowing the coupled relationship between temperature

and precipitation to vary with location is important over

large domains, such as in the Pampas. Figure 4a illustrates

the relationship that precipitation occurrence has with

minimum temperature. It can be seen there is little spatial

Fig. 2 a, b Densities for

simulated local wet and dry

spells at Santiago del Estero, c,

d regional dry and wet spells;

observed densities shown in red
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structure relating these processes, implying that precipita-

tion occurrence is not the only contributing factor in sim-

ulating minimum temperatures in the region. Note that the

coefficient on occurrence is generally positive, indicating

that the presence of precipitation implies that minimum

temperatures tend to be between 1–2 �C warmer. Con-

versely, Fig. 4b shows that there is a much stronger spatial

structure relating precipitation occurrence and maximum

temperature. Indeed, inland maximum temperatures tend to

be reduced with the presence of precipitation, while the

maximum temperature at locations near the ocean are less

affected by precipitation.

Capturing the spatial coherence of daily weather pat-

terns is of utmost importance in producing realistic weather

generator output. To this end, pairwise correlations are

considered for minimum and maximum temperatures at all

19 locations, producing 19�18
2
¼ 171 pairs, as can be seen

in Fig. 5. These pairwise correlations are somewhat con-

sistent between the simulations and historical observations,

although there is evidence of slightly reduced model cor-

relation, on the order of 5 %.

Figure 5 illustrates that minimum and maximum tem-

peratures are positively spatially correlated, in that neigh-

boring locations have similar daily temperature patterns. It

follows to analyze the output from the coupled temperature

models further, thus assessing its ability to reproduce cold

and hot spells. A cold spell is defined as the number of

consecutive days that the minimum temperature at a

location is less than 5 �C. Similarly, a hot spell is defined

as the number of consecutive days that the maximum

temperature at a location exceeds 30 �C. A regional cold

spell occurs when the minimum temperatures at all 19

locations are less than 5 �C. For a regional hot spell, the

maximum temperatures at all 19 locations must exceed

30 �C. For consistency, and because simulated precipita-

tion occurrence is used as input in the minimum and

maximum temperature models, local cold and hot spells are

Fig. 4 Precipitation occurrence coefficient for a minimum temperature and b maximum temperature

Fig. 3 Dry spells validation for Pergamino, a station not included in

the model. Boxplots show the count of dry spells equal to (left) or

greater than (right) ten days for the 100 realizations. Red dots

represent the count of these dry spells for the historical data
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analyzed for Santiago del Estero, Argentina. Figure 6a–b

shows that the 100 trajectories reproduce the density of

cold and hot spells with good skill. The shape and peak of

simulated cold spells are nearly perfect, while those of hot

spells show slight discrepancy with respect to observations.

In Fig. 6c–d, it can be seen there is not systematic

underrepresentation of local hot spells—as was the case for

local dry spells at this location—as the simulated and

observed densities of regional cold and hot spells are

reproduced with very good skill.

The space-time aspect of this stochastic weather gen-

erator may be examined by obtaining the covariance of

Fig. 5 Observed versus simulated pairwise correlations for minimum and maximum temperatures

Fig. 6 a, b Densities for

simulated local cold and hot

spells at Santiago del Estero,

c, d regional cold and hot spells.

Observed density shown in red
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daily weather on a monthly scale, resulting in an ensemble

of empirical variograms per month. It is assumed the

monthly covariance is isotropic, such that weather patterns

vary on the same scale in all directions to a given lag. For a

given month, the daily weather is used to obtain an

empirical variogram; the process is repeated for all days

within the given month with non-missing data, and the

ensemble of empirical variograms may be visualized as

boxplots. Ensemble variograms of daily maximum tem-

perature for January are shown in Fig. 7. Note that Fig. 7a

shows the ensemble of empirical variograms for observed

maximum temperature, while Fig. 7b shows that for a

randomly-selected trajectory. We see that the spatial

correlation structure based on model realizations are sim-

ilar to those observed in the historical data, indicating that

the model adequately captures the spatial behavior as well

as the local behavior of temperature.

4 Discussion

We have introduced a conditional approach to daily space-

time stochastic weather simulation wherein temperature is

conditioned on precipitation occurrence. Although this idea

has previously been explored, we endow the model with

additional flexibility by allowing model coefficients to vary

Fig. 7 Variograms for a observed and b simulated daily January maximum temperatures
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with location within a local climate framework. Simula-

tions are correlated via Gaussian process residual terms,

yielding spatially and temporally consistent realizations.

In this manuscript we have focused on a spells analysis

for model output assessment, as the purpose of this

research is to provide a stochastic weather generator that

generates daily weather ensembles where the minimum and

maximum temperatures are conditioned on precipitation

occurrence. The precipitation intensities have not been

validated nor reported on because they are produced from

the same technique as in Kleiber et al. (2012). Validation of

the model’s ability to simulate weather at any arbitrary

location was validated by producing statistically consistent

simulations at an independent station. Not only were short

spells reproduced with near perfection, the longevity and

frequency of dry spells were maintained throughout all 100

realizations. The ability to reproduce long dry spells is

crucial for impact assessment planning.

Future work will consider gridded simulation, the output

of which can be used to run hydrologic models for decision

support. The authors have also considered a more sophis-

ticated relationship between temperature and precipitation,

as well as the introduction of other important variables

such as solar radiation.
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