Advanced Data Analysis Techniques
(Statistical Learning Techniques for Engineering and Science)
CVEN 6833

  Spring 2025
Instructor: Prof. R. Balaji
Office Location: ECOT-452
Phone: (303)-492-5968
E-mail: balajir@colorado.edu
In-Person: Tue. and Th. 10:00 - 11:15 in SEEC N124
Thumbnail 

Course Material & Resources
R-Session/Homeworks
Relevant Research Papers

Information

Useful Books 
Linear Regression
Generalized Linear Models (GLM)
Maximum Likelihood Estimation
GLM Fitting Presentation - From Online

Nonparametric (Local) Regression
Spatial Modeling - Kriging

Bayesian Hierarchical Modeling
Bayes resources - notes, presentations, etc.

Multivariate Methods - PCA/CCA

Clustering/Trees/Data Mining

Self Organizing Maps (SOMs)

Extreme Value Distribution Resources

Hidden Markov Models

Copulas

Singular Spectrum Analysis

Spectral Analysis

R-links
Homeworks
R-Session Linear Regression
R-Session GLM/Local Polynomials
  •  1 and 2 variable data sets
  • Fit a best local polynomial model (using GCV)
  • Perform model diagnostics
  • Estimate the function at several locations
  • Plot/Map the estimates and error variance

R-JAGS Manual

R-Session Bayes
  •  Spatial Bayesian Hierarchical Modeling
  • Code/commands for results in Verdin et al. (2015)
  • STAN examples
  • spBayes - R Package

R-Session - Multivariate Methods 

  •  PCA
  • SVD
  • CCA
  • Multivariate Forecasting
  • SST and PDSI data (examples)
GLMs

Local Polynomial Applications

GAM & Bayesian Dynamic Regression

Hierarchical Modeling in Space - Kriging

CART

Extremes Clustering

Multivariate Modeling and Forecasting

Multivariate Modeling and Forecasting